tcp_htcp.c 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
/*
 * H-TCP congestion control. The algorithm is detailed in:
 * R.N.Shorten, D.J.Leith:
 *   "H-TCP: TCP for high-speed and long-distance networks"
 *   Proc. PFLDnet, Argonne, 2004.
 * http://www.hamilton.ie/net/htcp3.pdf
 */

#include <linux/config.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <net/tcp.h>

#define ALPHA_BASE	(1<<7)  /* 1.0 with shift << 7 */
#define BETA_MIN	(1<<6)  /* 0.5 with shift << 7 */
#define BETA_MAX	102	/* 0.8 with shift << 7 */

static int use_rtt_scaling = 1;
module_param(use_rtt_scaling, int, 0644);
MODULE_PARM_DESC(use_rtt_scaling, "turn on/off RTT scaling");

static int use_bandwidth_switch = 1;
module_param(use_bandwidth_switch, int, 0644);
MODULE_PARM_DESC(use_bandwidth_switch, "turn on/off bandwidth switcher");

struct htcp {
	u16	alpha;		/* Fixed point arith, << 7 */
	u8	beta;           /* Fixed point arith, << 7 */
	u8	modeswitch;     /* Delay modeswitch until we had at least one congestion event */
	u8	ccount;		/* Number of RTTs since last congestion event */
	u8	undo_ccount;
	u16	packetcount;
	u32	minRTT;
	u32	maxRTT;
	u32	snd_cwnd_cnt2;

	u32	undo_maxRTT;
	u32	undo_old_maxB;

	/* Bandwidth estimation */
	u32	minB;
	u32	maxB;
	u32	old_maxB;
	u32	Bi;
	u32	lasttime;
};

static inline void htcp_reset(struct htcp *ca)
{
	ca->undo_ccount = ca->ccount;
	ca->undo_maxRTT = ca->maxRTT;
	ca->undo_old_maxB = ca->old_maxB;

	ca->ccount = 0;
	ca->snd_cwnd_cnt2 = 0;
}

static u32 htcp_cwnd_undo(struct tcp_sock *tp)
{
	struct htcp *ca = tcp_ca(tp);
	ca->ccount = ca->undo_ccount;
	ca->maxRTT = ca->undo_maxRTT;
	ca->old_maxB = ca->undo_old_maxB;
	return max(tp->snd_cwnd, (tp->snd_ssthresh<<7)/ca->beta);
}

static inline void measure_rtt(struct tcp_sock *tp)
{
	struct htcp *ca = tcp_ca(tp);
	u32 srtt = tp->srtt>>3;

	/* keep track of minimum RTT seen so far, minRTT is zero at first */
	if (ca->minRTT > srtt || !ca->minRTT)
		ca->minRTT = srtt;

	/* max RTT */
	if (tp->ca_state == TCP_CA_Open && tp->snd_ssthresh < 0xFFFF && ca->ccount > 3) {
		if (ca->maxRTT < ca->minRTT)
			ca->maxRTT = ca->minRTT;
		if (ca->maxRTT < srtt && srtt <= ca->maxRTT+HZ/50)
			ca->maxRTT = srtt;
	}
}

static void measure_achieved_throughput(struct tcp_sock *tp, u32 pkts_acked)
{
	struct htcp *ca = tcp_ca(tp);
	u32 now = tcp_time_stamp;

	/* achieved throughput calculations */
	if (tp->ca_state != TCP_CA_Open && tp->ca_state != TCP_CA_Disorder) {
		ca->packetcount = 0;
		ca->lasttime = now;
		return;
	}

	ca->packetcount += pkts_acked;

	if (ca->packetcount >= tp->snd_cwnd - (ca->alpha>>7? : 1)
			&& now - ca->lasttime >= ca->minRTT
			&& ca->minRTT > 0) {
		__u32 cur_Bi = ca->packetcount*HZ/(now - ca->lasttime);
		if (ca->ccount <= 3) {
			/* just after backoff */
			ca->minB = ca->maxB = ca->Bi = cur_Bi;
		} else {
			ca->Bi = (3*ca->Bi + cur_Bi)/4;
			if (ca->Bi > ca->maxB)
				ca->maxB = ca->Bi;
			if (ca->minB > ca->maxB)
				ca->minB = ca->maxB;
		}
		ca->packetcount = 0;
		ca->lasttime = now;
	}
}

static inline void htcp_beta_update(struct htcp *ca, u32 minRTT, u32 maxRTT)
{
	if (use_bandwidth_switch) {
		u32 maxB = ca->maxB;
		u32 old_maxB = ca->old_maxB;
		ca->old_maxB = ca->maxB;

		if (!between(5*maxB, 4*old_maxB, 6*old_maxB)) {
			ca->beta = BETA_MIN;
			ca->modeswitch = 0;
			return;
		}
	}

	if (ca->modeswitch && minRTT > max(HZ/100, 1) && maxRTT) {
		ca->beta = (minRTT<<7)/maxRTT;
		if (ca->beta < BETA_MIN)
			ca->beta = BETA_MIN;
		else if (ca->beta > BETA_MAX)
			ca->beta = BETA_MAX;
	} else {
		ca->beta = BETA_MIN;
		ca->modeswitch = 1;
	}
}

static inline void htcp_alpha_update(struct htcp *ca)
{
	u32 minRTT = ca->minRTT;
	u32 factor = 1;
	u32 diff = ca->ccount * minRTT; /* time since last backoff */

	if (diff > HZ) {
		diff -= HZ;
		factor = 1+ ( 10*diff + ((diff/2)*(diff/2)/HZ) )/HZ;
	}

	if (use_rtt_scaling && minRTT) {
		u32 scale = (HZ<<3)/(10*minRTT);
		scale = min(max(scale, 1U<<2), 10U<<3); /* clamping ratio to interval [0.5,10]<<3 */
		factor = (factor<<3)/scale;
		if (!factor)
			factor = 1;
	}

	ca->alpha = 2*factor*((1<<7)-ca->beta);
	if (!ca->alpha)
		ca->alpha = ALPHA_BASE;
}

/* After we have the rtt data to calculate beta, we'd still prefer to wait one
 * rtt before we adjust our beta to ensure we are working from a consistent
 * data.
 *
 * This function should be called when we hit a congestion event since only at
 * that point do we really have a real sense of maxRTT (the queues en route
 * were getting just too full now).
 */
static void htcp_param_update(struct tcp_sock *tp)
{
	struct htcp *ca = tcp_ca(tp);
	u32 minRTT = ca->minRTT;
	u32 maxRTT = ca->maxRTT;

	htcp_beta_update(ca, minRTT, maxRTT);
	htcp_alpha_update(ca);

	/* add slowly fading memory for maxRTT to accommodate routing changes etc */
	if (minRTT > 0 && maxRTT > minRTT)
		ca->maxRTT = minRTT + ((maxRTT-minRTT)*95)/100;
}

static u32 htcp_recalc_ssthresh(struct tcp_sock *tp)
{
	struct htcp *ca = tcp_ca(tp);
	htcp_param_update(tp);
	return max((tp->snd_cwnd * ca->beta) >> 7, 2U);
}

static void htcp_cong_avoid(struct tcp_sock *tp, u32 ack, u32 rtt,
			    u32 in_flight, int data_acked)
{
	struct htcp *ca = tcp_ca(tp);

	if (in_flight < tp->snd_cwnd)
		return;

        if (tp->snd_cwnd <= tp->snd_ssthresh) {
                /* In "safe" area, increase. */
		if (tp->snd_cwnd < tp->snd_cwnd_clamp)
			tp->snd_cwnd++;
	} else {
		measure_rtt(tp);

		/* keep track of number of round-trip times since last backoff event */
		if (ca->snd_cwnd_cnt2++ > tp->snd_cwnd) {
			ca->ccount++;
			ca->snd_cwnd_cnt2 = 0;
			htcp_alpha_update(ca);
		}

                /* In dangerous area, increase slowly.
		 * In theory this is tp->snd_cwnd += alpha / tp->snd_cwnd
		 */
		if ((tp->snd_cwnd_cnt++ * ca->alpha)>>7 >= tp->snd_cwnd) {
			if (tp->snd_cwnd < tp->snd_cwnd_clamp)
				tp->snd_cwnd++;
			tp->snd_cwnd_cnt = 0;
			ca->ccount++;
		}
	}
}

/* Lower bound on congestion window. */
static u32 htcp_min_cwnd(struct tcp_sock *tp)
{
	return tp->snd_ssthresh;
}


static void htcp_init(struct tcp_sock *tp)
{
	struct htcp *ca = tcp_ca(tp);

	memset(ca, 0, sizeof(struct htcp));
	ca->alpha = ALPHA_BASE;
	ca->beta = BETA_MIN;
}

static void htcp_state(struct tcp_sock *tp, u8 new_state)
{
	switch (new_state) {
	case TCP_CA_CWR:
	case TCP_CA_Recovery:
	case TCP_CA_Loss:
		htcp_reset(tcp_ca(tp));
		break;
	}
}

static struct tcp_congestion_ops htcp = {
	.init		= htcp_init,
	.ssthresh	= htcp_recalc_ssthresh,
	.min_cwnd	= htcp_min_cwnd,
	.cong_avoid	= htcp_cong_avoid,
	.set_state	= htcp_state,
	.undo_cwnd	= htcp_cwnd_undo,
	.pkts_acked	= measure_achieved_throughput,
	.owner		= THIS_MODULE,
	.name		= "htcp",
};

static int __init htcp_register(void)
{
	BUG_ON(sizeof(struct htcp) > TCP_CA_PRIV_SIZE);
	BUILD_BUG_ON(BETA_MIN >= BETA_MAX);
	if (!use_bandwidth_switch)
		htcp.pkts_acked = NULL;
	return tcp_register_congestion_control(&htcp);
}

static void __exit htcp_unregister(void)
{
	tcp_unregister_congestion_control(&htcp);
}

module_init(htcp_register);
module_exit(htcp_unregister);

MODULE_AUTHOR("Baruch Even");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("H-TCP");