remoteproc_core.c 39.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
/*
 * Remote Processor Framework
 *
 * Copyright (C) 2011 Texas Instruments, Inc.
 * Copyright (C) 2011 Google, Inc.
 *
 * Ohad Ben-Cohen <ohad@wizery.com>
 * Brian Swetland <swetland@google.com>
 * Mark Grosen <mgrosen@ti.com>
 * Fernando Guzman Lugo <fernando.lugo@ti.com>
 * Suman Anna <s-anna@ti.com>
 * Robert Tivy <rtivy@ti.com>
 * Armando Uribe De Leon <x0095078@ti.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#define pr_fmt(fmt)    "%s: " fmt, __func__

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/string.h>
#include <linux/debugfs.h>
#include <linux/remoteproc.h>
#include <linux/iommu.h>
#include <linux/klist.h>
#include <linux/elf.h>
#include <linux/virtio_ids.h>
#include <linux/virtio_ring.h>

#include "remoteproc_internal.h"

static void klist_rproc_get(struct klist_node *n);
static void klist_rproc_put(struct klist_node *n);

/*
 * klist of the available remote processors.
 *
 * We need this in order to support name-based lookups (needed by the
 * rproc_get_by_name()).
 *
 * That said, we don't use rproc_get_by_name() anymore within the rpmsg
 * framework. The use cases that do require its existence should be
 * scrutinized, and hopefully migrated to rproc_boot() using device-based
 * binding.
 *
 * If/when this materializes, we could drop the klist (and the by_name
 * API).
 */
static DEFINE_KLIST(rprocs, klist_rproc_get, klist_rproc_put);

typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
				struct fw_resource *rsc, int len);

/*
 * This is the IOMMU fault handler we register with the IOMMU API
 * (when relevant; not all remote processors access memory through
 * an IOMMU).
 *
 * IOMMU core will invoke this handler whenever the remote processor
 * will try to access an unmapped device address.
 *
 * Currently this is mostly a stub, but it will be later used to trigger
 * the recovery of the remote processor.
 */
static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
		unsigned long iova, int flags)
{
	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);

	/*
	 * Let the iommu core know we're not really handling this fault;
	 * we just plan to use this as a recovery trigger.
	 */
	return -ENOSYS;
}

static int rproc_enable_iommu(struct rproc *rproc)
{
	struct iommu_domain *domain;
	struct device *dev = rproc->dev;
	int ret;

	/*
	 * We currently use iommu_present() to decide if an IOMMU
	 * setup is needed.
	 *
	 * This works for simple cases, but will easily fail with
	 * platforms that do have an IOMMU, but not for this specific
	 * rproc.
	 *
	 * This will be easily solved by introducing hw capabilities
	 * that will be set by the remoteproc driver.
	 */
	if (!iommu_present(dev->bus)) {
108 109
		dev_dbg(dev, "iommu not found\n");
		return 0;
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
	}

	domain = iommu_domain_alloc(dev->bus);
	if (!domain) {
		dev_err(dev, "can't alloc iommu domain\n");
		return -ENOMEM;
	}

	iommu_set_fault_handler(domain, rproc_iommu_fault);

	ret = iommu_attach_device(domain, dev);
	if (ret) {
		dev_err(dev, "can't attach iommu device: %d\n", ret);
		goto free_domain;
	}

	rproc->domain = domain;

	return 0;

free_domain:
	iommu_domain_free(domain);
	return ret;
}

static void rproc_disable_iommu(struct rproc *rproc)
{
	struct iommu_domain *domain = rproc->domain;
	struct device *dev = rproc->dev;

	if (!domain)
		return;

	iommu_detach_device(domain, dev);
	iommu_domain_free(domain);

	return;
}

/*
 * Some remote processors will ask us to allocate them physically contiguous
 * memory regions (which we call "carveouts"), and map them to specific
 * device addresses (which are hardcoded in the firmware).
 *
 * They may then ask us to copy objects into specific device addresses (e.g.
 * code/data sections) or expose us certain symbols in other device address
 * (e.g. their trace buffer).
 *
 * This function is an internal helper with which we can go over the allocated
 * carveouts and translate specific device address to kernel virtual addresses
 * so we can access the referenced memory.
 *
 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 * but only on kernel direct mapped RAM memory. Instead, we're just using
 * here the output of the DMA API, which should be more correct.
 */
static void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
{
	struct rproc_mem_entry *carveout;
	void *ptr = NULL;

	list_for_each_entry(carveout, &rproc->carveouts, node) {
		int offset = da - carveout->da;

		/* try next carveout if da is too small */
		if (offset < 0)
			continue;

		/* try next carveout if da is too large */
		if (offset + len > carveout->len)
			continue;

		ptr = carveout->va + offset;

		break;
	}

	return ptr;
}

/**
 * rproc_load_segments() - load firmware segments to memory
 * @rproc: remote processor which will be booted using these fw segments
 * @elf_data: the content of the ELF firmware image
 *
 * This function loads the firmware segments to memory, where the remote
 * processor expects them.
 *
 * Some remote processors will expect their code and data to be placed
 * in specific device addresses, and can't have them dynamically assigned.
 *
 * We currently support only those kind of remote processors, and expect
 * the program header's paddr member to contain those addresses. We then go
 * through the physically contiguous "carveout" memory regions which we
 * allocated (and mapped) earlier on behalf of the remote processor,
 * and "translate" device address to kernel addresses, so we can copy the
 * segments where they are expected.
 *
 * Currently we only support remote processors that required carveout
 * allocations and got them mapped onto their iommus. Some processors
 * might be different: they might not have iommus, and would prefer to
 * directly allocate memory for every segment/resource. This is not yet
 * supported, though.
 */
static int rproc_load_segments(struct rproc *rproc, const u8 *elf_data)
{
	struct device *dev = rproc->dev;
	struct elf32_hdr *ehdr;
	struct elf32_phdr *phdr;
	int i, ret = 0;

	ehdr = (struct elf32_hdr *)elf_data;
	phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);

	/* go through the available ELF segments */
	for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
		u32 da = phdr->p_paddr;
		u32 memsz = phdr->p_memsz;
		u32 filesz = phdr->p_filesz;
		void *ptr;

		if (phdr->p_type != PT_LOAD)
			continue;

		dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
					phdr->p_type, da, memsz, filesz);

		if (filesz > memsz) {
			dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
							filesz, memsz);
			ret = -EINVAL;
			break;
		}

		/* grab the kernel address for this device address */
		ptr = rproc_da_to_va(rproc, da, memsz);
		if (!ptr) {
			dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
			ret = -EINVAL;
			break;
		}

		/* put the segment where the remote processor expects it */
		if (phdr->p_filesz)
			memcpy(ptr, elf_data + phdr->p_offset, filesz);

		/*
		 * Zero out remaining memory for this segment.
		 *
		 * This isn't strictly required since dma_alloc_coherent already
		 * did this for us. albeit harmless, we may consider removing
		 * this.
		 */
		if (memsz > filesz)
			memset(ptr + filesz, 0, memsz - filesz);
	}

	return ret;
}

/**
 * rproc_handle_virtio_hdr() - handle a virtio header resource
 * @rproc: the remote processor
 * @rsc: the resource descriptor
 *
 * The existence of this virtio hdr resource entry means that the firmware
 * of this @rproc supports this virtio device.
 *
 * Currently we support only a single virtio device of type VIRTIO_ID_RPMSG,
 * but the plan is to remove this limitation and support any number
 * of virtio devices (and of any type). We'll also add support for dynamically
 * adding (and removing) virtio devices over the rpmsg bus, but small
 * firmwares that doesn't want to get involved with rpmsg will be able
 * to simple use the resource table for this.
 *
 * At this point this virtio header entry is rather simple: it just
 * announces the virtio device id and the supported virtio device features.
 * The plan though is to extend this to include the vring information and
 * the virtio config space, too (but first, some resource table overhaul
 * is needed: move from fixed-sized to variable-length TLV entries).
 *
 * For now, the 'flags' member of the resource entry contains the virtio
 * device id, the 'da' member contains the device features, and 'pa' is
 * where we need to store the guest features once negotiation completes.
 * As usual, the 'id' member of this resource contains the index of this
 * resource type (i.e. is this the first virtio hdr entry, the 2nd, ...).
 *
 * Returns 0 on success, or an appropriate error code otherwise
 */
static int rproc_handle_virtio_hdr(struct rproc *rproc, struct fw_resource *rsc)
{
	struct rproc_vdev *rvdev;

	/* we only support VIRTIO_ID_RPMSG devices for now */
	if (rsc->flags != VIRTIO_ID_RPMSG) {
		dev_warn(rproc->dev, "unsupported vdev: %d\n", rsc->flags);
		return -EINVAL;
	}

	/* we only support a single vdev per rproc for now */
	if (rsc->id || rproc->rvdev) {
		dev_warn(rproc->dev, "redundant vdev entry: %s\n", rsc->name);
		return -EINVAL;
	}

	rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
	if (!rvdev)
		return -ENOMEM;

	/* remember the device features */
	rvdev->dfeatures = rsc->da;

	rproc->rvdev = rvdev;
	rvdev->rproc = rproc;

	return 0;
}

/**
 * rproc_handle_vring() - handle a vring fw resource
 * @rproc: the remote processor
 * @rsc: the vring resource descriptor
 *
 * This resource entry requires allocation of non-cacheable memory
 * for a virtio vring. Currently we only support two vrings per remote
 * processor, required for the virtio rpmsg device.
 *
 * The 'len' member of @rsc should contain the number of buffers this vring
 * support and 'da' should either contain the device address where
 * the remote processor is expecting the vring, or indicate that
 * dynamically allocation of the vring's device address is supported.
 *
 * Note: 'da' is currently not handled. This will be revised when the generic
 * iommu-based DMA API will arrive, or a dynanic & non-iommu use case show
 * up. Meanwhile, statically-addressed iommu-based images should use
 * RSC_DEVMEM resource entries to map their require 'da' to the physical
 * address of their base CMA region.
 *
 * Returns 0 on success, or an appropriate error code otherwise
 */
static int rproc_handle_vring(struct rproc *rproc, struct fw_resource *rsc)
{
	struct device *dev = rproc->dev;
	struct rproc_vdev *rvdev = rproc->rvdev;
	dma_addr_t dma;
	int size, id = rsc->id;
	void *va;

	/* no vdev is in place ? */
	if (!rvdev) {
		dev_err(dev, "vring requested without a virtio dev entry\n");
		return -EINVAL;
	}

	/* the firmware must provide the expected queue size */
	if (!rsc->len) {
		dev_err(dev, "missing expected queue size\n");
		return -EINVAL;
	}

	/* we currently support two vrings per rproc (for rx and tx) */
	if (id >= ARRAY_SIZE(rvdev->vring)) {
		dev_err(dev, "%s: invalid vring id %d\n", rsc->name, id);
		return -EINVAL;
	}

	/* have we already allocated this vring id ? */
	if (rvdev->vring[id].len) {
		dev_err(dev, "%s: duplicated id %d\n", rsc->name, id);
		return -EINVAL;
	}

	/* actual size of vring (in bytes) */
	size = PAGE_ALIGN(vring_size(rsc->len, AMP_VRING_ALIGN));

	/*
	 * Allocate non-cacheable memory for the vring. In the future
	 * this call will also configure the IOMMU for us
	 */
	va = dma_alloc_coherent(dev, size, &dma, GFP_KERNEL);
	if (!va) {
		dev_err(dev, "dma_alloc_coherent failed\n");
		return -ENOMEM;
	}

	dev_dbg(dev, "vring%d: va %p dma %x qsz %d ring size %x\n", id, va,
					dma, rsc->len, size);

	rvdev->vring[id].len = rsc->len;
	rvdev->vring[id].va = va;
	rvdev->vring[id].dma = dma;

	return 0;
}

/**
 * rproc_handle_trace() - handle a shared trace buffer resource
 * @rproc: the remote processor
 * @rsc: the trace resource descriptor
 *
 * In case the remote processor dumps trace logs into memory,
 * export it via debugfs.
 *
 * Currently, the 'da' member of @rsc should contain the device address
 * where the remote processor is dumping the traces. Later we could also
 * support dynamically allocating this address using the generic
 * DMA API (but currently there isn't a use case for that).
 *
 * Returns 0 on success, or an appropriate error code otherwise
 */
static int rproc_handle_trace(struct rproc *rproc, struct fw_resource *rsc)
{
	struct rproc_mem_entry *trace;
	struct device *dev = rproc->dev;
	void *ptr;
	char name[15];

	/* what's the kernel address of this resource ? */
	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
	if (!ptr) {
		dev_err(dev, "erroneous trace resource entry\n");
		return -EINVAL;
	}

	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
	if (!trace) {
		dev_err(dev, "kzalloc trace failed\n");
		return -ENOMEM;
	}

	/* set the trace buffer dma properties */
	trace->len = rsc->len;
	trace->va = ptr;

	/* make sure snprintf always null terminates, even if truncating */
	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);

	/* create the debugfs entry */
	trace->priv = rproc_create_trace_file(name, rproc, trace);
	if (!trace->priv) {
		trace->va = NULL;
		kfree(trace);
		return -EINVAL;
	}

	list_add_tail(&trace->node, &rproc->traces);

	rproc->num_traces++;

	dev_dbg(dev, "%s added: va %p, da 0x%llx, len 0x%x\n", name, ptr,
						rsc->da, rsc->len);

	return 0;
}

/**
 * rproc_handle_devmem() - handle devmem resource entry
 * @rproc: remote processor handle
 * @rsc: the devmem resource entry
 *
 * Remote processors commonly need to access certain on-chip peripherals.
 *
 * Some of these remote processors access memory via an iommu device,
 * and might require us to configure their iommu before they can access
 * the on-chip peripherals they need.
 *
 * This resource entry is a request to map such a peripheral device.
 *
 * These devmem entries will contain the physical address of the device in
 * the 'pa' member. If a specific device address is expected, then 'da' will
 * contain it (currently this is the only use case supported). 'len' will
 * contain the size of the physical region we need to map.
 *
 * Currently we just "trust" those devmem entries to contain valid physical
 * addresses, but this is going to change: we want the implementations to
 * tell us ranges of physical addresses the firmware is allowed to request,
 * and not allow firmwares to request access to physical addresses that
 * are outside those ranges.
 */
static int rproc_handle_devmem(struct rproc *rproc, struct fw_resource *rsc)
{
	struct rproc_mem_entry *mapping;
	int ret;

	/* no point in handling this resource without a valid iommu domain */
	if (!rproc->domain)
		return -EINVAL;

	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
	if (!mapping) {
		dev_err(rproc->dev, "kzalloc mapping failed\n");
		return -ENOMEM;
	}

	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
	if (ret) {
		dev_err(rproc->dev, "failed to map devmem: %d\n", ret);
		goto out;
	}

	/*
	 * We'll need this info later when we'll want to unmap everything
	 * (e.g. on shutdown).
	 *
	 * We can't trust the remote processor not to change the resource
	 * table, so we must maintain this info independently.
	 */
	mapping->da = rsc->da;
	mapping->len = rsc->len;
	list_add_tail(&mapping->node, &rproc->mappings);

	dev_dbg(rproc->dev, "mapped devmem pa 0x%llx, da 0x%llx, len 0x%x\n",
					rsc->pa, rsc->da, rsc->len);

	return 0;

out:
	kfree(mapping);
	return ret;
}

/**
 * rproc_handle_carveout() - handle phys contig memory allocation requests
 * @rproc: rproc handle
 * @rsc: the resource entry
 *
 * This function will handle firmware requests for allocation of physically
 * contiguous memory regions.
 *
 * These request entries should come first in the firmware's resource table,
 * as other firmware entries might request placing other data objects inside
 * these memory regions (e.g. data/code segments, trace resource entries, ...).
 *
 * Allocating memory this way helps utilizing the reserved physical memory
 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 * pressure is important; it may have a substantial impact on performance.
 */
static int rproc_handle_carveout(struct rproc *rproc, struct fw_resource *rsc)
{
	struct rproc_mem_entry *carveout, *mapping;
	struct device *dev = rproc->dev;
	dma_addr_t dma;
	void *va;
	int ret;

	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
	if (!mapping) {
		dev_err(dev, "kzalloc mapping failed\n");
		return -ENOMEM;
	}

	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
	if (!carveout) {
		dev_err(dev, "kzalloc carveout failed\n");
		ret = -ENOMEM;
		goto free_mapping;
	}

	va = dma_alloc_coherent(dev, rsc->len, &dma, GFP_KERNEL);
	if (!va) {
		dev_err(dev, "failed to dma alloc carveout: %d\n", rsc->len);
		ret = -ENOMEM;
		goto free_carv;
	}

	dev_dbg(dev, "carveout va %p, dma %x, len 0x%x\n", va, dma, rsc->len);

	/*
	 * Ok, this is non-standard.
	 *
	 * Sometimes we can't rely on the generic iommu-based DMA API
	 * to dynamically allocate the device address and then set the IOMMU
	 * tables accordingly, because some remote processors might
	 * _require_ us to use hard coded device addresses that their
	 * firmware was compiled with.
	 *
	 * In this case, we must use the IOMMU API directly and map
	 * the memory to the device address as expected by the remote
	 * processor.
	 *
	 * Obviously such remote processor devices should not be configured
	 * to use the iommu-based DMA API: we expect 'dma' to contain the
	 * physical address in this case.
	 */
	if (rproc->domain) {
		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
								rsc->flags);
		if (ret) {
			dev_err(dev, "iommu_map failed: %d\n", ret);
			goto dma_free;
		}

		/*
		 * We'll need this info later when we'll want to unmap
		 * everything (e.g. on shutdown).
		 *
		 * We can't trust the remote processor not to change the
		 * resource table, so we must maintain this info independently.
		 */
		mapping->da = rsc->da;
		mapping->len = rsc->len;
		list_add_tail(&mapping->node, &rproc->mappings);

		dev_dbg(dev, "carveout mapped 0x%llx to 0x%x\n", rsc->da, dma);

		/*
		 * Some remote processors might need to know the pa
		 * even though they are behind an IOMMU. E.g., OMAP4's
		 * remote M3 processor needs this so it can control
		 * on-chip hardware accelerators that are not behind
		 * the IOMMU, and therefor must know the pa.
		 *
		 * Generally we don't want to expose physical addresses
		 * if we don't have to (remote processors are generally
		 * _not_ trusted), so we might want to do this only for
		 * remote processor that _must_ have this (e.g. OMAP4's
		 * dual M3 subsystem).
		 */
		rsc->pa = dma;
	}

	carveout->va = va;
	carveout->len = rsc->len;
	carveout->dma = dma;
	carveout->da = rsc->da;

	list_add_tail(&carveout->node, &rproc->carveouts);

	return 0;

dma_free:
	dma_free_coherent(dev, rsc->len, va, dma);
free_carv:
	kfree(carveout);
free_mapping:
	kfree(mapping);
	return ret;
}

/* handle firmware resource entries before booting the remote processor */
static int
rproc_handle_boot_rsc(struct rproc *rproc, struct fw_resource *rsc, int len)
{
	struct device *dev = rproc->dev;
	int ret = 0;

	while (len >= sizeof(*rsc)) {
		dev_dbg(dev, "rsc: type %d, da 0x%llx, pa 0x%llx, len 0x%x, "
			"id %d, name %s, flags %x\n", rsc->type, rsc->da,
			rsc->pa, rsc->len, rsc->id, rsc->name, rsc->flags);

		switch (rsc->type) {
		case RSC_CARVEOUT:
			ret = rproc_handle_carveout(rproc, rsc);
			break;
		case RSC_DEVMEM:
			ret = rproc_handle_devmem(rproc, rsc);
			break;
		case RSC_TRACE:
			ret = rproc_handle_trace(rproc, rsc);
			break;
		case RSC_VRING:
			ret = rproc_handle_vring(rproc, rsc);
			break;
		case RSC_VIRTIO_DEV:
			/* this one is handled early upon registration */
			break;
		default:
			dev_warn(dev, "unsupported resource %d\n", rsc->type);
			break;
		}

		if (ret)
			break;

		rsc++;
		len -= sizeof(*rsc);
	}

	return ret;
}

/* handle firmware resource entries while registering the remote processor */
static int
rproc_handle_virtio_rsc(struct rproc *rproc, struct fw_resource *rsc, int len)
{
	struct device *dev = rproc->dev;
698
	int ret = -ENODEV;
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

	for (; len >= sizeof(*rsc); rsc++, len -= sizeof(*rsc))
		if (rsc->type == RSC_VIRTIO_DEV) {
			dev_dbg(dev, "found vdev %d/%s features %llx\n",
					rsc->flags, rsc->name, rsc->da);
			ret = rproc_handle_virtio_hdr(rproc, rsc);
			break;
		}

	return ret;
}

/**
 * rproc_handle_resources() - find and handle the resource table
 * @rproc: the rproc handle
 * @elf_data: the content of the ELF firmware image
 * @handler: function that should be used to handle the resource table
 *
 * This function finds the resource table inside the remote processor's
 * firmware, and invoke a user-supplied handler with it (we have two
 * possible handlers: one is invoked upon registration of @rproc,
 * in order to register the supported virito devices, and the other is
 * invoked when @rproc is actually booted).
 *
 * Currently this function fails if a resource table doesn't exist.
 * This restriction will be removed when we'll start supporting remote
 * processors that don't need a resource table.
 */
static int rproc_handle_resources(struct rproc *rproc, const u8 *elf_data,
					rproc_handle_resources_t handler)

{
	struct elf32_hdr *ehdr;
	struct elf32_shdr *shdr;
	const char *name_table;
	int i, ret = -EINVAL;

	ehdr = (struct elf32_hdr *)elf_data;
	shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
	name_table = elf_data + shdr[ehdr->e_shstrndx].sh_offset;

	/* look for the resource table and handle it */
	for (i = 0; i < ehdr->e_shnum; i++, shdr++) {
		if (!strcmp(name_table + shdr->sh_name, ".resource_table")) {
			struct fw_resource *table = (struct fw_resource *)
						(elf_data + shdr->sh_offset);

			ret = handler(rproc, table, shdr->sh_size);

			break;
		}
	}

	return ret;
}

/**
 * rproc_resource_cleanup() - clean up and free all acquired resources
 * @rproc: rproc handle
 *
 * This function will free all resources acquired for @rproc, and it
 * is called when @rproc shuts down, or just failed booting.
 */
static void rproc_resource_cleanup(struct rproc *rproc)
{
	struct rproc_mem_entry *entry, *tmp;
	struct device *dev = rproc->dev;
	struct rproc_vdev *rvdev = rproc->rvdev;
	int i;

	/* clean up debugfs trace entries */
	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
		rproc_remove_trace_file(entry->priv);
		rproc->num_traces--;
		list_del(&entry->node);
		kfree(entry);
	}

	/* free the coherent memory allocated for the vrings */
	for (i = 0; rvdev && i < ARRAY_SIZE(rvdev->vring); i++) {
		int qsz = rvdev->vring[i].len;
		void *va = rvdev->vring[i].va;
		int dma = rvdev->vring[i].dma;

		/* virtqueue size is expressed in number of buffers supported */
		if (qsz) {
			/* how many bytes does this vring really occupy ? */
			int size = PAGE_ALIGN(vring_size(qsz, AMP_VRING_ALIGN));

			dma_free_coherent(rproc->dev, size, va, dma);

			rvdev->vring[i].len = 0;
		}
	}

	/* clean up carveout allocations */
	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
		dma_free_coherent(dev, entry->len, entry->va, entry->dma);
		list_del(&entry->node);
		kfree(entry);
	}

	/* clean up iommu mapping entries */
	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
		size_t unmapped;

		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
		if (unmapped != entry->len) {
			/* nothing much to do besides complaining */
			dev_err(dev, "failed to unmap %u/%u\n", entry->len,
								unmapped);
		}

		list_del(&entry->node);
		kfree(entry);
	}
}

/* make sure this fw image is sane */
static int rproc_fw_sanity_check(struct rproc *rproc, const struct firmware *fw)
{
	const char *name = rproc->firmware;
	struct device *dev = rproc->dev;
	struct elf32_hdr *ehdr;

	if (!fw) {
		dev_err(dev, "failed to load %s\n", name);
		return -EINVAL;
	}

	if (fw->size < sizeof(struct elf32_hdr)) {
		dev_err(dev, "Image is too small\n");
		return -EINVAL;
	}

	ehdr = (struct elf32_hdr *)fw->data;

	if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) {
		dev_err(dev, "Image is corrupted (bad magic)\n");
		return -EINVAL;
	}

	if (ehdr->e_phnum == 0) {
		dev_err(dev, "No loadable segments\n");
		return -EINVAL;
	}

	if (ehdr->e_phoff > fw->size) {
		dev_err(dev, "Firmware size is too small\n");
		return -EINVAL;
	}

	return 0;
}

/*
 * take a firmware and boot a remote processor with it.
 */
static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
{
	struct device *dev = rproc->dev;
	const char *name = rproc->firmware;
	struct elf32_hdr *ehdr;
	int ret;

	ret = rproc_fw_sanity_check(rproc, fw);
	if (ret)
		return ret;

	ehdr = (struct elf32_hdr *)fw->data;

	dev_info(dev, "Booting fw image %s, size %d\n", name, fw->size);

	/*
	 * if enabling an IOMMU isn't relevant for this rproc, this is
	 * just a nop
	 */
	ret = rproc_enable_iommu(rproc);
	if (ret) {
		dev_err(dev, "can't enable iommu: %d\n", ret);
		return ret;
	}

	/*
	 * The ELF entry point is the rproc's boot addr (though this is not
	 * a configurable property of all remote processors: some will always
	 * boot at a specific hardcoded address).
	 */
	rproc->bootaddr = ehdr->e_entry;

	/* handle fw resources which are required to boot rproc */
	ret = rproc_handle_resources(rproc, fw->data, rproc_handle_boot_rsc);
	if (ret) {
		dev_err(dev, "Failed to process resources: %d\n", ret);
		goto clean_up;
	}

	/* load the ELF segments to memory */
	ret = rproc_load_segments(rproc, fw->data);
	if (ret) {
		dev_err(dev, "Failed to load program segments: %d\n", ret);
		goto clean_up;
	}

	/* power up the remote processor */
	ret = rproc->ops->start(rproc);
	if (ret) {
		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
		goto clean_up;
	}

	rproc->state = RPROC_RUNNING;

	dev_info(dev, "remote processor %s is now up\n", rproc->name);

	return 0;

clean_up:
	rproc_resource_cleanup(rproc);
	rproc_disable_iommu(rproc);
	return ret;
}

/*
 * take a firmware and look for virtio devices to register.
 *
 * Note: this function is called asynchronously upon registration of the
 * remote processor (so we must wait until it completes before we try
 * to unregister the device. one other option is just to use kref here,
 * that might be cleaner).
 */
static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
{
	struct rproc *rproc = context;
	struct device *dev = rproc->dev;
	int ret;

	if (rproc_fw_sanity_check(rproc, fw) < 0)
		goto out;

	/* does the fw supports any virtio devices ? */
	ret = rproc_handle_resources(rproc, fw->data, rproc_handle_virtio_rsc);
	if (ret) {
		dev_info(dev, "No fw virtio device was found\n");
		goto out;
	}

	/* add the virtio device (currently only rpmsg vdevs are supported) */
	ret = rproc_add_rpmsg_vdev(rproc);
	if (ret)
		goto out;

out:
	if (fw)
		release_firmware(fw);
	/* allow rproc_unregister() contexts, if any, to proceed */
	complete_all(&rproc->firmware_loading_complete);
}

/**
 * rproc_boot() - boot a remote processor
 * @rproc: handle of a remote processor
 *
 * Boot a remote processor (i.e. load its firmware, power it on, ...).
 *
 * If the remote processor is already powered on, this function immediately
 * returns (successfully).
 *
 * Returns 0 on success, and an appropriate error value otherwise.
 */
int rproc_boot(struct rproc *rproc)
{
	const struct firmware *firmware_p;
	struct device *dev;
	int ret;

	if (!rproc) {
		pr_err("invalid rproc handle\n");
		return -EINVAL;
	}

	dev = rproc->dev;

	ret = mutex_lock_interruptible(&rproc->lock);
	if (ret) {
		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
		return ret;
	}

	/* loading a firmware is required */
	if (!rproc->firmware) {
		dev_err(dev, "%s: no firmware to load\n", __func__);
		ret = -EINVAL;
		goto unlock_mutex;
	}

	/* prevent underlying implementation from being removed */
	if (!try_module_get(dev->driver->owner)) {
		dev_err(dev, "%s: can't get owner\n", __func__);
		ret = -EINVAL;
		goto unlock_mutex;
	}

	/* skip the boot process if rproc is already powered up */
	if (atomic_inc_return(&rproc->power) > 1) {
		ret = 0;
		goto unlock_mutex;
	}

	dev_info(dev, "powering up %s\n", rproc->name);

	/* load firmware */
	ret = request_firmware(&firmware_p, rproc->firmware, dev);
	if (ret < 0) {
		dev_err(dev, "request_firmware failed: %d\n", ret);
		goto downref_rproc;
	}

	ret = rproc_fw_boot(rproc, firmware_p);

	release_firmware(firmware_p);

downref_rproc:
	if (ret) {
		module_put(dev->driver->owner);
		atomic_dec(&rproc->power);
	}
unlock_mutex:
	mutex_unlock(&rproc->lock);
	return ret;
}
EXPORT_SYMBOL(rproc_boot);

/**
 * rproc_shutdown() - power off the remote processor
 * @rproc: the remote processor
 *
 * Power off a remote processor (previously booted with rproc_boot()).
 *
 * In case @rproc is still being used by an additional user(s), then
 * this function will just decrement the power refcount and exit,
 * without really powering off the device.
 *
 * Every call to rproc_boot() must (eventually) be accompanied by a call
 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
 *
 * Notes:
 * - we're not decrementing the rproc's refcount, only the power refcount.
 *   which means that the @rproc handle stays valid even after rproc_shutdown()
 *   returns, and users can still use it with a subsequent rproc_boot(), if
 *   needed.
 * - don't call rproc_shutdown() to unroll rproc_get_by_name(), exactly
 *   because rproc_shutdown() _does not_ decrement the refcount of @rproc.
 *   To decrement the refcount of @rproc, use rproc_put() (but _only_ if
 *   you acquired @rproc using rproc_get_by_name()).
 */
void rproc_shutdown(struct rproc *rproc)
{
	struct device *dev = rproc->dev;
	int ret;

	ret = mutex_lock_interruptible(&rproc->lock);
	if (ret) {
		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
		return;
	}

	/* if the remote proc is still needed, bail out */
	if (!atomic_dec_and_test(&rproc->power))
		goto out;

	/* power off the remote processor */
	ret = rproc->ops->stop(rproc);
	if (ret) {
		atomic_inc(&rproc->power);
		dev_err(dev, "can't stop rproc: %d\n", ret);
		goto out;
	}

	/* clean up all acquired resources */
	rproc_resource_cleanup(rproc);

	rproc_disable_iommu(rproc);

	rproc->state = RPROC_OFFLINE;

	dev_info(dev, "stopped remote processor %s\n", rproc->name);

out:
	mutex_unlock(&rproc->lock);
	if (!ret)
		module_put(dev->driver->owner);
}
EXPORT_SYMBOL(rproc_shutdown);

/**
 * rproc_release() - completely deletes the existence of a remote processor
 * @kref: the rproc's kref
 *
 * This function should _never_ be called directly.
 *
 * The only reasonable location to use it is as an argument when kref_put'ing
 * @rproc's refcount.
 *
 * This way it will be called when no one holds a valid pointer to this @rproc
 * anymore (and obviously after it is removed from the rprocs klist).
 *
 * Note: this function is not static because rproc_vdev_release() needs it when
 * it decrements @rproc's refcount.
 */
void rproc_release(struct kref *kref)
{
	struct rproc *rproc = container_of(kref, struct rproc, refcount);

	dev_info(rproc->dev, "removing %s\n", rproc->name);

	rproc_delete_debug_dir(rproc);

	/* at this point no one holds a reference to rproc anymore */
	kfree(rproc);
}

/* will be called when an rproc is added to the rprocs klist */
static void klist_rproc_get(struct klist_node *n)
{
	struct rproc *rproc = container_of(n, struct rproc, node);

	kref_get(&rproc->refcount);
}

/* will be called when an rproc is removed from the rprocs klist */
static void klist_rproc_put(struct klist_node *n)
{
	struct rproc *rproc = container_of(n, struct rproc, node);

	kref_put(&rproc->refcount, rproc_release);
}

static struct rproc *next_rproc(struct klist_iter *i)
{
	struct klist_node *n;

	n = klist_next(i);
	if (!n)
		return NULL;

	return container_of(n, struct rproc, node);
}

/**
 * rproc_get_by_name() - find a remote processor by name and boot it
 * @name: name of the remote processor
 *
 * Finds an rproc handle using the remote processor's name, and then
 * boot it. If it's already powered on, then just immediately return
 * (successfully).
 *
 * Returns the rproc handle on success, and NULL on failure.
 *
 * This function increments the remote processor's refcount, so always
 * use rproc_put() to decrement it back once rproc isn't needed anymore.
 *
 * Note: currently this function (and its counterpart rproc_put()) are not
 * used anymore by the rpmsg subsystem. We need to scrutinize the use cases
 * that still need them, and see if we can migrate them to use the non
 * name-based boot/shutdown interface.
 */
struct rproc *rproc_get_by_name(const char *name)
{
	struct rproc *rproc;
	struct klist_iter i;
	int ret;

	/* find the remote processor, and upref its refcount */
	klist_iter_init(&rprocs, &i);
	while ((rproc = next_rproc(&i)) != NULL)
		if (!strcmp(rproc->name, name)) {
			kref_get(&rproc->refcount);
			break;
		}
	klist_iter_exit(&i);

	/* can't find this rproc ? */
	if (!rproc) {
		pr_err("can't find remote processor %s\n", name);
		return NULL;
	}

	ret = rproc_boot(rproc);
	if (ret < 0) {
		kref_put(&rproc->refcount, rproc_release);
		return NULL;
	}

	return rproc;
}
EXPORT_SYMBOL(rproc_get_by_name);

/**
 * rproc_put() - decrement the refcount of a remote processor, and shut it down
 * @rproc: the remote processor
 *
 * This function tries to shutdown @rproc, and it then decrements its
 * refcount.
 *
 * After this function returns, @rproc may _not_ be used anymore, and its
 * handle should be considered invalid.
 *
 * This function should be called _iff_ the @rproc handle was grabbed by
 * calling rproc_get_by_name().
 */
void rproc_put(struct rproc *rproc)
{
	/* try to power off the remote processor */
	rproc_shutdown(rproc);

	/* downref rproc's refcount */
	kref_put(&rproc->refcount, rproc_release);
}
EXPORT_SYMBOL(rproc_put);

/**
 * rproc_register() - register a remote processor
 * @rproc: the remote processor handle to register
 *
 * Registers @rproc with the remoteproc framework, after it has been
 * allocated with rproc_alloc().
 *
 * This is called by the platform-specific rproc implementation, whenever
 * a new remote processor device is probed.
 *
 * Returns 0 on success and an appropriate error code otherwise.
 *
 * Note: this function initiates an asynchronous firmware loading
 * context, which will look for virtio devices supported by the rproc's
 * firmware.
 *
 * If found, those virtio devices will be created and added, so as a result
 * of registering this remote processor, additional virtio drivers will be
 * probed.
 *
 * Currently, though, we only support a single RPMSG virtio vdev per remote
 * processor.
 */
int rproc_register(struct rproc *rproc)
{
	struct device *dev = rproc->dev;
	int ret = 0;

	/* expose to rproc_get_by_name users */
	klist_add_tail(&rproc->node, &rprocs);

	dev_info(rproc->dev, "%s is available\n", rproc->name);

	/* create debugfs entries */
	rproc_create_debug_dir(rproc);

	/* rproc_unregister() calls must wait until async loader completes */
	init_completion(&rproc->firmware_loading_complete);

	/*
	 * We must retrieve early virtio configuration info from
	 * the firmware (e.g. whether to register a virtio rpmsg device,
	 * what virtio features does it support, ...).
	 *
	 * We're initiating an asynchronous firmware loading, so we can
	 * be built-in kernel code, without hanging the boot process.
	 */
	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
					rproc->firmware, dev, GFP_KERNEL,
					rproc, rproc_fw_config_virtio);
	if (ret < 0) {
		dev_err(dev, "request_firmware_nowait failed: %d\n", ret);
		complete_all(&rproc->firmware_loading_complete);
		klist_remove(&rproc->node);
	}

	return ret;
}
EXPORT_SYMBOL(rproc_register);

/**
 * rproc_alloc() - allocate a remote processor handle
 * @dev: the underlying device
 * @name: name of this remote processor
 * @ops: platform-specific handlers (mainly start/stop)
 * @firmware: name of firmware file to load
 * @len: length of private data needed by the rproc driver (in bytes)
 *
 * Allocates a new remote processor handle, but does not register
 * it yet.
 *
 * This function should be used by rproc implementations during initialization
 * of the remote processor.
 *
 * After creating an rproc handle using this function, and when ready,
 * implementations should then call rproc_register() to complete
 * the registration of the remote processor.
 *
 * On success the new rproc is returned, and on failure, NULL.
 *
 * Note: _never_ directly deallocate @rproc, even if it was not registered
 * yet. Instead, if you just need to unroll rproc_alloc(), use rproc_free().
 */
struct rproc *rproc_alloc(struct device *dev, const char *name,
				const struct rproc_ops *ops,
				const char *firmware, int len)
{
	struct rproc *rproc;

	if (!dev || !name || !ops)
		return NULL;

	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
	if (!rproc) {
		dev_err(dev, "%s: kzalloc failed\n", __func__);
		return NULL;
	}

	rproc->dev = dev;
	rproc->name = name;
	rproc->ops = ops;
	rproc->firmware = firmware;
	rproc->priv = &rproc[1];

	atomic_set(&rproc->power, 0);

	kref_init(&rproc->refcount);

	mutex_init(&rproc->lock);

	INIT_LIST_HEAD(&rproc->carveouts);
	INIT_LIST_HEAD(&rproc->mappings);
	INIT_LIST_HEAD(&rproc->traces);

	rproc->state = RPROC_OFFLINE;

	return rproc;
}
EXPORT_SYMBOL(rproc_alloc);

/**
 * rproc_free() - free an rproc handle that was allocated by rproc_alloc
 * @rproc: the remote processor handle
 *
 * This function should _only_ be used if @rproc was only allocated,
 * but not registered yet.
 *
 * If @rproc was already successfully registered (by calling rproc_register()),
 * then use rproc_unregister() instead.
 */
void rproc_free(struct rproc *rproc)
{
	kfree(rproc);
}
EXPORT_SYMBOL(rproc_free);

/**
 * rproc_unregister() - unregister a remote processor
 * @rproc: rproc handle to unregister
 *
 * Unregisters a remote processor, and decrements its refcount.
 * If its refcount drops to zero, then @rproc will be freed. If not,
 * it will be freed later once the last reference is dropped.
 *
 * This function should be called when the platform specific rproc
 * implementation decides to remove the rproc device. it should
 * _only_ be called if a previous invocation of rproc_register()
 * has completed successfully.
 *
 * After rproc_unregister() returns, @rproc is _not_ valid anymore and
 * it shouldn't be used. More specifically, don't call rproc_free()
 * or try to directly free @rproc after rproc_unregister() returns;
 * none of these are needed, and calling them is a bug.
 *
 * Returns 0 on success and -EINVAL if @rproc isn't valid.
 */
int rproc_unregister(struct rproc *rproc)
{
	if (!rproc)
		return -EINVAL;

	/* if rproc is just being registered, wait */
	wait_for_completion(&rproc->firmware_loading_complete);

	/* was an rpmsg vdev created ? */
	if (rproc->rvdev)
		rproc_remove_rpmsg_vdev(rproc);

	klist_remove(&rproc->node);

	kref_put(&rproc->refcount, rproc_release);

	return 0;
}
EXPORT_SYMBOL(rproc_unregister);

static int __init remoteproc_init(void)
{
	rproc_init_debugfs();
	return 0;
}
module_init(remoteproc_init);

static void __exit remoteproc_exit(void)
{
	rproc_exit_debugfs();
}
module_exit(remoteproc_exit);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Generic Remote Processor Framework");