rcutree.c 101.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43 44 45 46 47 48
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52
#include <linux/prefetch.h>
53 54
#include <linux/delay.h>
#include <linux/stop_machine.h>
55
#include <linux/random.h>
56

57
#include "rcutree.h"
58 59 60
#include <trace/events/rcu.h>

#include "rcu.h"
61

62 63
/* Data structures. */

64
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
65
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
66

67
#define RCU_STATE_INITIALIZER(sname, sabbr, cr) { \
68
	.level = { &sname##_state.node[0] }, \
69
	.call = cr, \
70
	.fqs_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
71 72
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
73
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
74 75
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
76
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
77
	.onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
78
	.name = #sname, \
79
	.abbr = sabbr, \
80 81
}

82
struct rcu_state rcu_sched_state =
83
	RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
84
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
85

86
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
87
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
88

89
static struct rcu_state *rcu_state;
90
LIST_HEAD(rcu_struct_flavors);
91

92 93
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
94
module_param(rcu_fanout_leaf, int, 0444);
95 96 97 98 99 100 101 102 103 104
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

105 106 107 108
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
109
 * optimize synchronize_sched() to a simple barrier().  When this variable
110 111 112 113
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
114 115 116
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

117 118 119 120 121 122 123 124 125 126 127 128 129 130
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

131 132
#ifdef CONFIG_RCU_BOOST

133 134 135 136 137
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
138
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
139
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
140
DEFINE_PER_CPU(char, rcu_cpu_has_work);
141

142 143
#endif /* #ifdef CONFIG_RCU_BOOST */

T
Thomas Gleixner 已提交
144
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
145 146
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
147

148 149 150 151 152 153 154 155 156 157 158 159
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

160 161 162 163 164 165 166 167 168 169
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

170
/*
171
 * Note a quiescent state.  Because we do not need to know
172
 * how many quiescent states passed, just if there was at least
173
 * one since the start of the grace period, this just sets a flag.
174
 * The caller must have disabled preemption.
175
 */
176
void rcu_sched_qs(int cpu)
177
{
178
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
179

180
	if (rdp->passed_quiesce == 0)
181
		trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
182
	rdp->passed_quiesce = 1;
183 184
}

185
void rcu_bh_qs(int cpu)
186
{
187
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
188

189
	if (rdp->passed_quiesce == 0)
190
		trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
191
	rdp->passed_quiesce = 1;
192
}
193

194 195 196
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
197
 * The caller must have disabled preemption.
198 199 200
 */
void rcu_note_context_switch(int cpu)
{
201
	trace_rcu_utilization("Start context switch");
202
	rcu_sched_qs(cpu);
203
	rcu_preempt_note_context_switch(cpu);
204
	trace_rcu_utilization("End context switch");
205
}
206
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
207

208
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
209
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
210
	.dynticks = ATOMIC_INIT(1),
211
};
212

E
Eric Dumazet 已提交
213 214 215
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
216

E
Eric Dumazet 已提交
217 218 219
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
220

221 222 223 224 225 226
static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

227 228
static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
				  struct rcu_data *rdp);
229 230
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
static void force_quiescent_state(struct rcu_state *rsp);
231
static int rcu_pending(int cpu);
232 233

/*
234
 * Return the number of RCU-sched batches processed thus far for debug & stats.
235
 */
236
long rcu_batches_completed_sched(void)
237
{
238
	return rcu_sched_state.completed;
239
}
240
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
241 242 243 244 245 246 247 248 249 250

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

251 252 253 254 255
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
256
	force_quiescent_state(&rcu_bh_state);
257 258 259
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

285 286 287 288 289
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
290
	force_quiescent_state(&rcu_sched_state);
291 292 293
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

294 295 296 297 298 299
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
300 301
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
302 303 304
}

/*
305 306 307
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
308 309 310 311
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
312
	int i;
P
Paul E. McKenney 已提交
313

314 315
	if (rcu_gp_in_progress(rsp))
		return 0;  /* No, a grace period is already in progress. */
316
	if (rcu_nocb_needs_gp(rsp))
317
		return 1;  /* Yes, a no-CBs CPU needs one. */
318 319 320 321 322 323 324 325 326 327
	if (!rdp->nxttail[RCU_NEXT_TAIL])
		return 0;  /* No, this is a no-CBs (or offline) CPU. */
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
		return 1;  /* Yes, this CPU has newly registered callbacks. */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
				 rdp->nxtcompleted[i]))
			return 1;  /* Yes, CBs for future grace period. */
	return 0; /* No grace period needed. */
328 329 330 331 332 333 334 335 336 337
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

338
/*
339
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
340 341 342 343 344
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
345 346
static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
				bool user)
347
{
348
	trace_rcu_dyntick("Start", oldval, rdtp->dynticks_nesting);
349
	if (!user && !is_idle_task(current)) {
350 351
		struct task_struct *idle = idle_task(smp_processor_id());

352
		trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
353
		ftrace_dump(DUMP_ORIG);
354 355 356
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
357
	}
358
	rcu_prepare_for_idle(smp_processor_id());
359 360 361 362 363
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
364 365

	/*
366
	 * It is illegal to enter an extended quiescent state while
367 368 369 370 371 372 373 374
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
375
}
376

377 378 379
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
380
 */
381
static void rcu_eqs_enter(bool user)
382
{
383
	long long oldval;
384 385 386
	struct rcu_dynticks *rdtp;

	rdtp = &__get_cpu_var(rcu_dynticks);
387
	oldval = rdtp->dynticks_nesting;
388 389 390 391 392
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
		rdtp->dynticks_nesting = 0;
	else
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
393
	rcu_eqs_enter_common(rdtp, oldval, user);
394
}
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
410 411 412
	unsigned long flags;

	local_irq_save(flags);
413
	rcu_eqs_enter(false);
414
	local_irq_restore(flags);
415
}
416
EXPORT_SYMBOL_GPL(rcu_idle_enter);
417

418
#ifdef CONFIG_RCU_USER_QS
419 420 421 422 423 424 425 426 427 428
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
429
	rcu_eqs_enter(1);
430 431
}

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
/**
 * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
 * after the current irq returns.
 *
 * This is similar to rcu_user_enter() but in the context of a non-nesting
 * irq. After this call, RCU enters into idle mode when the interrupt
 * returns.
 */
void rcu_user_enter_after_irq(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	/* Ensure this irq is interrupting a non-idle RCU state.  */
	WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK));
	rdtp->dynticks_nesting = 1;
	local_irq_restore(flags);
}
452
#endif /* CONFIG_RCU_USER_QS */
453

454 455 456 457 458 459
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
460
 *
461 462 463 464 465 466 467 468
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
469
 */
470
void rcu_irq_exit(void)
471 472
{
	unsigned long flags;
473
	long long oldval;
474 475 476 477
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
478
	oldval = rdtp->dynticks_nesting;
479 480
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
481 482 483
	if (rdtp->dynticks_nesting)
		trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
	else
484
		rcu_eqs_enter_common(rdtp, oldval, true);
485 486 487 488
	local_irq_restore(flags);
}

/*
489
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
490 491 492 493 494
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
495 496
static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
			       int user)
497
{
498 499 500 501 502
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
503
	rcu_cleanup_after_idle(smp_processor_id());
504
	trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
505
	if (!user && !is_idle_task(current)) {
506 507
		struct task_struct *idle = idle_task(smp_processor_id());

508 509
		trace_rcu_dyntick("Error on exit: not idle task",
				  oldval, rdtp->dynticks_nesting);
510
		ftrace_dump(DUMP_ORIG);
511 512 513
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
514 515 516
	}
}

517 518 519
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
520
 */
521
static void rcu_eqs_exit(bool user)
522 523 524 525 526 527
{
	struct rcu_dynticks *rdtp;
	long long oldval;

	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
528 529 530 531 532
	WARN_ON_ONCE(oldval < 0);
	if (oldval & DYNTICK_TASK_NEST_MASK)
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
	else
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
533
	rcu_eqs_exit_common(rdtp, oldval, user);
534
}
535 536 537 538 539 540 541 542 543 544 545 546 547 548

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
549 550 551
	unsigned long flags;

	local_irq_save(flags);
552
	rcu_eqs_exit(false);
553
	local_irq_restore(flags);
554
}
555
EXPORT_SYMBOL_GPL(rcu_idle_exit);
556

557
#ifdef CONFIG_RCU_USER_QS
558 559 560 561 562 563 564 565
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
566
	rcu_eqs_exit(1);
567 568
}

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
/**
 * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
 * idle mode after the current non-nesting irq returns.
 *
 * This is similar to rcu_user_exit() but in the context of an irq.
 * This is called when the irq has interrupted a userspace RCU idle mode
 * context. When the current non-nesting interrupt returns after this call,
 * the CPU won't restore the RCU idle mode.
 */
void rcu_user_exit_after_irq(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	/* Ensure we are interrupting an RCU idle mode. */
	WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK);
	rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE;
	local_irq_restore(flags);
}
590
#endif /* CONFIG_RCU_USER_QS */
591

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
622 623 624
	if (oldval)
		trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
	else
625
		rcu_eqs_exit_common(rdtp, oldval, true);
626 627 628 629 630 631 632 633 634 635 636 637 638 639
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

640 641
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
642
		return;
643 644 645 646 647 648
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
649 650 651 652 653 654 655 656 657 658 659 660 661
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

662 663
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
664
		return;
665 666 667 668 669
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
670 671 672
}

/**
673
 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
674
 *
675
 * If the current CPU is in its idle loop and is neither in an interrupt
676
 * or NMI handler, return true.
677
 */
678
int rcu_is_cpu_idle(void)
679
{
680 681 682 683 684 685
	int ret;

	preempt_disable();
	ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
	preempt_enable();
	return ret;
686
}
687
EXPORT_SYMBOL(rcu_is_cpu_idle);
688

689
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
690 691 692 693 694 695 696

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
697 698 699 700 701 702 703 704 705 706 707
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
708 709 710 711 712 713
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
714 715
	struct rcu_data *rdp;
	struct rcu_node *rnp;
716 717 718 719 720
	bool ret;

	if (in_nmi())
		return 1;
	preempt_disable();
721 722 723
	rdp = &__get_cpu_var(rcu_sched_data);
	rnp = rdp->mynode;
	ret = (rdp->grpmask & rnp->qsmaskinit) ||
724 725 726 727 728 729
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

730
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
731

732
/**
733
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
734
 *
735 736 737
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
738
 */
739
static int rcu_is_cpu_rrupt_from_idle(void)
740
{
741
	return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
742 743 744 745 746
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
747
 * is in dynticks idle mode, which is an extended quiescent state.
748 749 750
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
751
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
752
	return (rdp->dynticks_snap & 0x1) == 0;
753 754 755 756 757 758
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
759
 * for this same CPU, or by virtue of having been offline.
760 761 762
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
763 764
	unsigned int curr;
	unsigned int snap;
765

766 767
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
768 769 770 771 772 773 774 775 776

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
777
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
778
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
779 780 781 782
		rdp->dynticks_fqs++;
		return 1;
	}

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
		rdp->offline_fqs++;
		return 1;
	}
802 803 804 805 806 807 808 809 810 811

	/*
	 * There is a possibility that a CPU in adaptive-ticks state
	 * might run in the kernel with the scheduling-clock tick disabled
	 * for an extended time period.  Invoke rcu_kick_nohz_cpu() to
	 * force the CPU to restart the scheduling-clock tick in this
	 * CPU is in this state.
	 */
	rcu_kick_nohz_cpu(rdp->cpu);

812
	return 0;
813 814 815 816 817
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
818
	rsp->jiffies_stall = jiffies + rcu_jiffies_till_stall_check();
819 820
}

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
/*
 * Dump stacks of all tasks running on stalled CPUs.  This is a fallback
 * for architectures that do not implement trigger_all_cpu_backtrace().
 * The NMI-triggered stack traces are more accurate because they are
 * printed by the target CPU.
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

844 845 846 847 848
static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
849
	int ndetected = 0;
850
	struct rcu_node *rnp = rcu_get_root(rsp);
851
	long totqlen = 0;
852 853 854

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
855
	raw_spin_lock_irqsave(&rnp->lock, flags);
856
	delta = jiffies - rsp->jiffies_stall;
857
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
858
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
859 860
		return;
	}
861
	rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
862
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
863

864 865 866 867 868
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
869
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
870
	       rsp->name);
871
	print_cpu_stall_info_begin();
872
	rcu_for_each_leaf_node(rsp, rnp) {
873
		raw_spin_lock_irqsave(&rnp->lock, flags);
874
		ndetected += rcu_print_task_stall(rnp);
875 876 877 878 879 880 881 882
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
883
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
884
	}
885 886 887 888 889 890 891

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
892
	ndetected += rcu_print_task_stall(rnp);
893 894 895
	raw_spin_unlock_irqrestore(&rnp->lock, flags);

	print_cpu_stall_info_end();
896 897 898
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
	pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
899
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
900
	       rsp->gpnum, rsp->completed, totqlen);
901
	if (ndetected == 0)
902
		pr_err("INFO: Stall ended before state dump start\n");
903
	else if (!trigger_all_cpu_backtrace())
904
		rcu_dump_cpu_stacks(rsp);
905

906
	/* Complain about tasks blocking the grace period. */
907 908 909

	rcu_print_detail_task_stall(rsp);

910
	force_quiescent_state(rsp);  /* Kick them all. */
911 912 913 914
}

static void print_cpu_stall(struct rcu_state *rsp)
{
915
	int cpu;
916 917
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
918
	long totqlen = 0;
919

920 921 922 923 924
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
925
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
926 927 928
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
929 930 931 932
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
	pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
		jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
933 934
	if (!trigger_all_cpu_backtrace())
		dump_stack();
935

P
Paul E. McKenney 已提交
936
	raw_spin_lock_irqsave(&rnp->lock, flags);
937
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
938
		rsp->jiffies_stall = jiffies +
939
				     3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
940
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
941

942 943 944 945 946
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
947 948
	unsigned long j;
	unsigned long js;
949 950
	struct rcu_node *rnp;

951
	if (rcu_cpu_stall_suppress)
952
		return;
953 954
	j = ACCESS_ONCE(jiffies);
	js = ACCESS_ONCE(rsp->jiffies_stall);
955
	rnp = rdp->mynode;
956 957
	if (rcu_gp_in_progress(rsp) &&
	    (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
958 959 960 961

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

962 963
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
964

965
		/* They had a few time units to dump stack, so complain. */
966 967 968 969
		print_other_cpu_stall(rsp);
	}
}

970 971 972 973 974 975 976 977 978 979 980
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
981 982 983 984
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
985 986
}

987 988 989 990 991 992 993
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	int i;

994 995
	if (init_nocb_callback_list(rdp))
		return;
996 997 998 999 1000
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
				unsigned long c, char *s)
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
 * rcu_node structure's ->need_future_gp field.
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
static unsigned long __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
{
	unsigned long c;
	int i;
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
	trace_rcu_future_gp(rnp, rdp, c, "Startleaf");
	if (rnp->need_future_gp[c & 0x1]) {
		trace_rcu_future_gp(rnp, rdp, c, "Prestartleaf");
		return c;
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
	 * need to explicitly start one.
	 */
	if (rnp->gpnum != rnp->completed ||
	    ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
		rnp->need_future_gp[c & 0x1]++;
		trace_rcu_future_gp(rnp, rdp, c, "Startedleaf");
		return c;
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
	if (rnp != rnp_root)
		raw_spin_lock(&rnp_root->lock);

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
		trace_rcu_future_gp(rnp, rdp, c, "Prestartedroot");
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
		trace_rcu_future_gp(rnp, rdp, c, "Startedleafroot");
	} else {
		trace_rcu_future_gp(rnp, rdp, c, "Startedroot");
1117
		rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
	}
unlock_out:
	if (rnp != rnp_root)
		raw_spin_unlock(&rnp_root->lock);
	return c;
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rcu_nocb_gp_cleanup(rsp, rnp);
	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
	trace_rcu_future_gp(rnp, rdp, c, needmore ? "CleanupMore" : "Cleanup");
	return needmore;
}

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
 * not hurt to call it repeatedly.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
		return;

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
		return;

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1203 1204
	/* Record any needed additional grace periods. */
	rcu_start_future_gp(rnp, rdp);
1205 1206 1207 1208 1209 1210

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "AccWaitCB");
	else
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "AccReadyCB");
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
		return;

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
	rcu_accelerate_cbs(rsp, rnp, rdp);
}

1256
/*
1257 1258 1259
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1260
 */
1261
static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1262
{
1263
	/* Handle the ends of any preceding grace periods first. */
1264
	if (rdp->completed == rnp->completed) {
1265

1266
		/* No grace period end, so just accelerate recent callbacks. */
1267
		rcu_accelerate_cbs(rsp, rnp, rdp);
1268

1269 1270 1271 1272
	} else {

		/* Advance callbacks. */
		rcu_advance_cbs(rsp, rnp, rdp);
1273 1274 1275

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1276
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
1277
	}
1278

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	if (rdp->gpnum != rnp->gpnum) {
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
		rdp->passed_quiesce = 0;
		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
		zero_cpu_stall_ticks(rdp);
	}
}

1293
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1294 1295 1296 1297 1298 1299
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1300 1301
	if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
	     rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
1302 1303 1304 1305
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
		local_irq_restore(flags);
		return;
	}
1306
	__note_gp_changes(rsp, rnp, rdp);
1307 1308 1309
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
}

1310 1311 1312 1313 1314 1315 1316 1317
/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
1318
	/* Set state so that this CPU will detect the next quiescent state. */
1319
	__note_gp_changes(rsp, rnp, rdp);
1320 1321
}

1322
/*
1323
 * Initialize a new grace period.
1324
 */
1325
static int rcu_gp_init(struct rcu_state *rsp)
1326 1327
{
	struct rcu_data *rdp;
1328
	struct rcu_node *rnp = rcu_get_root(rsp);
1329

1330
	raw_spin_lock_irq(&rnp->lock);
1331
	rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1332

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	if (rcu_gp_in_progress(rsp)) {
		/* Grace period already in progress, don't start another.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
	trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
	record_gp_stall_check_time(rsp);
	raw_spin_unlock_irq(&rnp->lock);

	/* Exclude any concurrent CPU-hotplug operations. */
1346
	mutex_lock(&rsp->onoff_mutex);
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1362 1363
		raw_spin_lock_irq(&rnp->lock);
		rdp = this_cpu_ptr(rsp->rda);
1364 1365
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
1366
		ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1367
		WARN_ON_ONCE(rnp->completed != rsp->completed);
1368
		ACCESS_ONCE(rnp->completed) = rsp->completed;
1369 1370 1371 1372 1373 1374 1375
		if (rnp == rdp->mynode)
			rcu_start_gp_per_cpu(rsp, rnp, rdp);
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
1376
#ifdef CONFIG_PROVE_RCU_DELAY
1377
		if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
1378
		    system_state == SYSTEM_RUNNING)
1379
			udelay(200);
1380
#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1381 1382
		cond_resched();
	}
1383

1384
	mutex_unlock(&rsp->onoff_mutex);
1385 1386
	return 1;
}
1387

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
/*
 * Do one round of quiescent-state forcing.
 */
int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
{
	int fqs_state = fqs_state_in;
	struct rcu_node *rnp = rcu_get_root(rsp);

	rsp->n_force_qs++;
	if (fqs_state == RCU_SAVE_DYNTICK) {
		/* Collect dyntick-idle snapshots. */
		force_qs_rnp(rsp, dyntick_save_progress_counter);
		fqs_state = RCU_FORCE_QS;
	} else {
		/* Handle dyntick-idle and offline CPUs. */
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
	}
	/* Clear flag to prevent immediate re-entry. */
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		raw_spin_lock_irq(&rnp->lock);
		rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
		raw_spin_unlock_irq(&rnp->lock);
	}
	return fqs_state;
}

1414 1415 1416
/*
 * Clean up after the old grace period.
 */
1417
static void rcu_gp_cleanup(struct rcu_state *rsp)
1418 1419
{
	unsigned long gp_duration;
1420
	int nocb = 0;
1421 1422
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1423

1424 1425 1426 1427
	raw_spin_lock_irq(&rnp->lock);
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1428

1429 1430 1431 1432 1433 1434 1435 1436
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
1437
	raw_spin_unlock_irq(&rnp->lock);
1438

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1449
		raw_spin_lock_irq(&rnp->lock);
1450
		ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1451 1452
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
1453
			__note_gp_changes(rsp, rnp, rdp);
1454
		nocb += rcu_future_gp_cleanup(rsp, rnp);
1455 1456
		raw_spin_unlock_irq(&rnp->lock);
		cond_resched();
1457
	}
1458 1459
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irq(&rnp->lock);
1460
	rcu_nocb_gp_set(rnp, nocb);
1461 1462 1463 1464

	rsp->completed = rsp->gpnum; /* Declare grace period done. */
	trace_rcu_grace_period(rsp->name, rsp->completed, "end");
	rsp->fqs_state = RCU_GP_IDLE;
1465
	rdp = this_cpu_ptr(rsp->rda);
1466
	rcu_advance_cbs(rsp, rnp, rdp);  /* Reduce false positives below. */
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
	if (cpu_needs_another_gp(rsp, rdp))
		rsp->gp_flags = 1;
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
1477
	int fqs_state;
1478
	unsigned long j;
1479
	int ret;
1480 1481 1482 1483 1484 1485 1486
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
1487 1488 1489 1490 1491
			wait_event_interruptible(rsp->gp_wq,
						 rsp->gp_flags &
						 RCU_GP_FLAG_INIT);
			if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
			    rcu_gp_init(rsp))
1492 1493 1494 1495
				break;
			cond_resched();
			flush_signals(current);
		}
1496

1497 1498
		/* Handle quiescent-state forcing. */
		fqs_state = RCU_SAVE_DYNTICK;
1499 1500 1501 1502 1503
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
1504
		for (;;) {
1505
			rsp->jiffies_force_qs = jiffies + j;
1506 1507 1508 1509
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
					(rsp->gp_flags & RCU_GP_FLAG_FQS) ||
					(!ACCESS_ONCE(rnp->qsmask) &&
					 !rcu_preempt_blocked_readers_cgp(rnp)),
1510
					j);
1511
			/* If grace period done, leave loop. */
1512
			if (!ACCESS_ONCE(rnp->qsmask) &&
1513
			    !rcu_preempt_blocked_readers_cgp(rnp))
1514
				break;
1515 1516 1517 1518 1519 1520 1521 1522 1523
			/* If time for quiescent-state forcing, do it. */
			if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
				fqs_state = rcu_gp_fqs(rsp, fqs_state);
				cond_resched();
			} else {
				/* Deal with stray signal. */
				cond_resched();
				flush_signals(current);
			}
1524 1525 1526 1527 1528 1529 1530 1531
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
1532
		}
1533 1534 1535

		/* Handle grace-period end. */
		rcu_gp_cleanup(rsp);
1536 1537 1538
	}
}

1539 1540 1541 1542 1543 1544 1545 1546
static void rsp_wakeup(struct irq_work *work)
{
	struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);

	/* Wake up rcu_gp_kthread() to start the grace period. */
	wake_up(&rsp->gp_wq);
}

1547 1548 1549
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
1550
 * the root node's ->lock and hard irqs must be disabled.
1551 1552 1553 1554
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
1555 1556
 */
static void
1557 1558
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
1559
{
1560
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1561
		/*
1562
		 * Either we have not yet spawned the grace-period
1563 1564
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
1565
		 * Either way, don't start a new grace period.
1566 1567 1568
		 */
		return;
	}
1569
	rsp->gp_flags = RCU_GP_FLAG_INIT;
1570

1571 1572 1573 1574 1575 1576
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
	 * could cause possible deadlocks with the rq->lock. Deter
	 * the wakeup to interrupt context.
	 */
	irq_work_queue(&rsp->wakeup_work);
1577 1578
}

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
 */
static void
rcu_start_gp(struct rcu_state *rsp)
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
	rcu_advance_cbs(rsp, rnp, rdp);
	rcu_start_gp_advanced(rsp, rnp, rdp);
}

1604
/*
P
Paul E. McKenney 已提交
1605 1606 1607
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
1608 1609
 * if one is needed.  Note that the caller must hold rnp->lock, which
 * is released before return.
1610
 */
P
Paul E. McKenney 已提交
1611
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1612
	__releases(rcu_get_root(rsp)->lock)
1613
{
1614
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1615 1616
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
1617 1618
}

1619
/*
P
Paul E. McKenney 已提交
1620 1621 1622 1623 1624 1625
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1626 1627
 */
static void
P
Paul E. McKenney 已提交
1628 1629
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1630 1631
	__releases(rnp->lock)
{
1632 1633
	struct rcu_node *rnp_c;

1634 1635 1636 1637 1638
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1639
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1640 1641 1642
			return;
		}
		rnp->qsmask &= ~mask;
1643 1644 1645 1646
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1647
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1648 1649

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
1650
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1651 1652 1653 1654 1655 1656 1657 1658 1659
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1660
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1661
		rnp_c = rnp;
1662
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1663
		raw_spin_lock_irqsave(&rnp->lock, flags);
1664
		WARN_ON_ONCE(rnp_c->qsmask);
1665 1666 1667 1668
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1669
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1670
	 * to clean up and start the next grace period if one is needed.
1671
	 */
P
Paul E. McKenney 已提交
1672
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1673 1674 1675
}

/*
P
Paul E. McKenney 已提交
1676 1677 1678 1679 1680 1681 1682
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
1683 1684
 */
static void
1685
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1686 1687 1688 1689 1690 1691
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
1692
	raw_spin_lock_irqsave(&rnp->lock, flags);
1693 1694
	if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
	    rnp->completed == rnp->gpnum) {
1695 1696

		/*
1697 1698 1699 1700
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
1701
		 */
1702
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
1703
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1704 1705 1706 1707
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1708
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1709 1710 1711 1712 1713 1714 1715
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
1716
		rcu_accelerate_cbs(rsp, rnp, rdp);
1717

P
Paul E. McKenney 已提交
1718
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
1732 1733
	if (rdp->gpnum != rsp->gpnum) {
		note_gp_changes(rsp, rdp);
1734
		return;
1735
	}
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
1748
	if (!rdp->passed_quiesce)
1749 1750
		return;

P
Paul E. McKenney 已提交
1751 1752 1753 1754
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
1755
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1756 1757 1758 1759
}

#ifdef CONFIG_HOTPLUG_CPU

1760
/*
1761 1762
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
1763
 * ->orphan_lock.
1764
 */
1765 1766 1767
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
1768
{
P
Paul E. McKenney 已提交
1769
	/* No-CBs CPUs do not have orphanable callbacks. */
1770
	if (rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
1771 1772
		return;

1773 1774
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
1775 1776
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
1777
	 */
1778
	if (rdp->nxtlist != NULL) {
1779 1780 1781
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
1782
		rdp->qlen_lazy = 0;
1783
		ACCESS_ONCE(rdp->qlen) = 0;
1784 1785 1786
	}

	/*
1787 1788 1789 1790 1791 1792 1793
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
1794
	 */
1795 1796 1797 1798
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1799 1800 1801
	}

	/*
1802 1803 1804
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
1805
	 */
1806
	if (rdp->nxtlist != NULL) {
1807 1808
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1809
	}
1810

1811
	/* Finally, initialize the rcu_data structure's list to empty.  */
1812
	init_callback_list(rdp);
1813 1814 1815 1816
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
1817
 * orphanage.  The caller must hold the ->orphan_lock.
1818 1819 1820 1821 1822 1823
 */
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
	int i;
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);

P
Paul E. McKenney 已提交
1824 1825 1826 1827
	/* No-CBs CPUs are handled specially. */
	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
		return;

1828 1829 1830 1831
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
1832 1833
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
1873 1874 1875
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
			       "cpuofl");
1876 1877 1878
}

/*
1879
 * The CPU has been completely removed, and some other CPU is reporting
1880 1881
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
1882 1883
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1884
 */
1885
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1886
{
1887 1888 1889
	unsigned long flags;
	unsigned long mask;
	int need_report = 0;
1890
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1891
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
1892

1893
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
1894
	rcu_boost_kthread_setaffinity(rnp, -1);
1895

1896
	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1897 1898

	/* Exclude any attempts to start a new grace period. */
1899
	mutex_lock(&rsp->onoff_mutex);
1900
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
1901

1902 1903 1904 1905
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
	rcu_adopt_orphan_cbs(rsp);

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
			if (rnp != rdp->mynode)
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			break;
		}
		if (rnp == rdp->mynode)
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
		else
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
1927
	 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
1928 1929
	 * held leads to deadlock.
	 */
1930
	raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
1931 1932 1933 1934 1935 1936 1937
	rnp = rdp->mynode;
	if (need_report & RCU_OFL_TASKS_NORM_GP)
		rcu_report_unblock_qs_rnp(rnp, flags);
	else
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp, true);
1938 1939 1940
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
1941 1942 1943
	init_callback_list(rdp);
	/* Disallow further callbacks on this CPU. */
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
1944
	mutex_unlock(&rsp->onoff_mutex);
1945 1946 1947 1948
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1949
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1950 1951 1952
{
}

1953
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1954 1955 1956 1957 1958 1959 1960 1961 1962
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1963
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1964 1965 1966
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
1967 1968
	long bl, count, count_lazy;
	int i;
1969

1970
	/* If no callbacks are ready, just return. */
1971
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1972
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1973 1974 1975
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
1976
		return;
1977
	}
1978 1979 1980 1981 1982 1983

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
1984
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1985
	bl = rdp->blimit;
1986
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1987 1988 1989 1990
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
1991 1992 1993
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
1994 1995 1996
	local_irq_restore(flags);

	/* Invoke callbacks. */
1997
	count = count_lazy = 0;
1998 1999 2000
	while (list) {
		next = list->next;
		prefetch(next);
2001
		debug_rcu_head_unqueue(list);
2002 2003
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2004
		list = next;
2005 2006 2007 2008
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2009 2010 2011 2012
			break;
	}

	local_irq_save(flags);
2013 2014 2015
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2016 2017 2018 2019 2020

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2021 2022 2023
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2024 2025 2026
			else
				break;
	}
2027 2028
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2029
	ACCESS_ONCE(rdp->qlen) -= count;
2030
	rdp->n_cbs_invoked += count;
2031 2032 2033 2034 2035

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2036 2037 2038 2039 2040 2041
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2042
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2043

2044 2045
	local_irq_restore(flags);

2046
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2047
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2048
		invoke_rcu_core();
2049 2050 2051 2052 2053
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2054
 * Also schedule RCU core processing.
2055
 *
2056
 * This function must be called from hardirq context.  It is normally
2057 2058 2059 2060 2061
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
2062
	trace_rcu_utilization("Start scheduler-tick");
2063
	increment_cpu_stall_ticks();
2064
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2065 2066 2067 2068 2069

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2070
		 * a quiescent state, so note it.
2071 2072
		 *
		 * No memory barrier is required here because both
2073 2074 2075
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2076 2077
		 */

2078 2079
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
2080 2081 2082 2083 2084 2085 2086

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2087
		 * critical section, so note it.
2088 2089
		 */

2090
		rcu_bh_qs(cpu);
2091
	}
2092
	rcu_preempt_check_callbacks(cpu);
2093
	if (rcu_pending(cpu))
2094
		invoke_rcu_core();
2095
	trace_rcu_utilization("End scheduler-tick");
2096 2097 2098 2099 2100
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2101 2102
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2103
 * The caller must have suppressed start of new grace periods.
2104
 */
2105
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
2106 2107 2108 2109 2110
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2111
	struct rcu_node *rnp;
2112

2113
	rcu_for_each_leaf_node(rsp, rnp) {
2114
		cond_resched();
2115
		mask = 0;
P
Paul E. McKenney 已提交
2116
		raw_spin_lock_irqsave(&rnp->lock, flags);
2117
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
2118
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2119
			return;
2120
		}
2121
		if (rnp->qsmask == 0) {
2122
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2123 2124
			continue;
		}
2125
		cpu = rnp->grplo;
2126
		bit = 1;
2127
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2128 2129
			if ((rnp->qsmask & bit) != 0 &&
			    f(per_cpu_ptr(rsp->rda, cpu)))
2130 2131
				mask |= bit;
		}
2132
		if (mask != 0) {
2133

P
Paul E. McKenney 已提交
2134 2135
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
2136 2137
			continue;
		}
P
Paul E. McKenney 已提交
2138
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2139
	}
2140
	rnp = rcu_get_root(rsp);
2141 2142 2143 2144
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
2145 2146 2147 2148 2149 2150
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2151
static void force_quiescent_state(struct rcu_state *rsp)
2152 2153
{
	unsigned long flags;
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
	rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
	for (; rnp != NULL; rnp = rnp->parent) {
		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
			rsp->n_force_qs_lh++;
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2172

2173 2174 2175 2176 2177 2178
	/* Reached the root of the rcu_node tree, acquire lock. */
	raw_spin_lock_irqsave(&rnp_old->lock, flags);
	raw_spin_unlock(&rnp_old->fqslock);
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		rsp->n_force_qs_lh++;
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2179
		return;  /* Someone beat us to it. */
2180
	}
2181
	rsp->gp_flags |= RCU_GP_FLAG_FQS;
2182
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2183
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
2184 2185 2186
}

/*
2187 2188 2189
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2190 2191
 */
static void
2192
__rcu_process_callbacks(struct rcu_state *rsp)
2193 2194
{
	unsigned long flags;
2195
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2196

2197 2198
	WARN_ON_ONCE(rdp->beenonline == 0);

2199
	/* Handle the end of a grace period that some other CPU ended.  */
2200
	note_gp_changes(rsp, rdp);
2201 2202 2203 2204 2205

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2206
	local_irq_save(flags);
2207
	if (cpu_needs_another_gp(rsp, rdp)) {
2208
		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2209 2210
		rcu_start_gp(rsp);
		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2211 2212
	} else {
		local_irq_restore(flags);
2213 2214 2215
	}

	/* If there are callbacks ready, invoke them. */
2216
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2217
		invoke_rcu_callbacks(rsp, rdp);
2218 2219
}

2220
/*
2221
 * Do RCU core processing for the current CPU.
2222
 */
2223
static void rcu_process_callbacks(struct softirq_action *unused)
2224
{
2225 2226
	struct rcu_state *rsp;

2227 2228
	if (cpu_is_offline(smp_processor_id()))
		return;
2229
	trace_rcu_utilization("Start RCU core");
2230 2231
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2232
	trace_rcu_utilization("End RCU core");
2233 2234
}

2235
/*
2236 2237 2238 2239 2240
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
2241
 */
2242
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2243
{
2244 2245
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
2246 2247
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2248 2249
		return;
	}
2250
	invoke_rcu_callbacks_kthread();
2251 2252
}

2253
static void invoke_rcu_core(void)
2254
{
2255 2256
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
2257 2258
}

2259 2260 2261 2262 2263
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2264
{
2265 2266 2267 2268
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2269
	if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
2270 2271
		invoke_rcu_core();

2272
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2273
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2274
		return;
2275

2276 2277 2278 2279 2280 2281 2282
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
2283
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2284 2285

		/* Are we ignoring a completed grace period? */
2286
		note_gp_changes(rsp, rdp);
2287 2288 2289 2290 2291

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

2292 2293 2294
			raw_spin_lock(&rnp_root->lock);
			rcu_start_gp(rsp);
			raw_spin_unlock(&rnp_root->lock);
2295 2296 2297 2298 2299
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2300
				force_quiescent_state(rsp);
2301 2302 2303
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
2304
	}
2305 2306
}

P
Paul E. McKenney 已提交
2307 2308 2309 2310 2311 2312
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
2313 2314
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
P
Paul E. McKenney 已提交
2315
	   struct rcu_state *rsp, int cpu, bool lazy)
2316 2317 2318 2319
{
	unsigned long flags;
	struct rcu_data *rdp;

2320
	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2321
	debug_rcu_head_queue(head);
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
2332
	rdp = this_cpu_ptr(rsp->rda);
2333 2334

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
2335 2336 2337 2338 2339 2340 2341
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
		offline = !__call_rcu_nocb(rdp, head, lazy);
		WARN_ON_ONCE(offline);
2342 2343 2344 2345
		/* _call_rcu() is illegal on offline CPU; leak the callback. */
		local_irq_restore(flags);
		return;
	}
2346
	ACCESS_ONCE(rdp->qlen)++;
2347 2348
	if (lazy)
		rdp->qlen_lazy++;
2349 2350
	else
		rcu_idle_count_callbacks_posted();
2351 2352 2353
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2354

2355 2356
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2357
					 rdp->qlen_lazy, rdp->qlen);
2358
	else
2359
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2360

2361 2362
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
2363 2364 2365 2366
	local_irq_restore(flags);
}

/*
2367
 * Queue an RCU-sched callback for invocation after a grace period.
2368
 */
2369
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2370
{
P
Paul E. McKenney 已提交
2371
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
2372
}
2373
EXPORT_SYMBOL_GPL(call_rcu_sched);
2374 2375

/*
2376
 * Queue an RCU callback for invocation after a quicker grace period.
2377 2378 2379
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
2380
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
2381 2382 2383
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
2395 2396
	int ret;

2397
	might_sleep();  /* Check for RCU read-side critical section. */
2398 2399 2400 2401
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
2402 2403
}

2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
2438 2439 2440 2441 2442 2443 2444 2445 2446
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
2447 2448 2449 2450
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2451 2452
	if (rcu_blocking_is_gp())
		return;
2453 2454 2455 2456
	if (rcu_expedited)
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
2468 2469 2470
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
2471 2472 2473
 */
void synchronize_rcu_bh(void)
{
2474 2475 2476 2477
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2478 2479
	if (rcu_blocking_is_gp())
		return;
2480 2481 2482 2483
	if (rcu_expedited)
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
2484 2485 2486
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
2514
 *
2515 2516 2517 2518
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
2543 2544
	long firstsnap, s, snap;
	int trycount = 0;
2545
	struct rcu_state *rsp = &rcu_sched_state;
2546

2547 2548 2549 2550 2551 2552 2553 2554
	/*
	 * If we are in danger of counter wrap, just do synchronize_sched().
	 * By allowing sync_sched_expedited_started to advance no more than
	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
	 * that more than 3.5 billion CPUs would be required to force a
	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
	 * course be required on a 64-bit system.
	 */
2555 2556
	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
			 (ulong)atomic_long_read(&rsp->expedited_done) +
2557 2558
			 ULONG_MAX / 8)) {
		synchronize_sched();
2559
		atomic_long_inc(&rsp->expedited_wrap);
2560 2561
		return;
	}
2562

2563 2564 2565 2566
	/*
	 * Take a ticket.  Note that atomic_inc_return() implies a
	 * full memory barrier.
	 */
2567
	snap = atomic_long_inc_return(&rsp->expedited_start);
2568
	firstsnap = snap;
2569
	get_online_cpus();
2570
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2571 2572 2573 2574 2575 2576 2577 2578 2579

	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();
2580
		atomic_long_inc(&rsp->expedited_tryfail);
2581

2582
		/* Check to see if someone else did our work for us. */
2583
		s = atomic_long_read(&rsp->expedited_done);
2584
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2585 2586 2587
			/* ensure test happens before caller kfree */
			smp_mb__before_atomic_inc(); /* ^^^ */
			atomic_long_inc(&rsp->expedited_workdone1);
2588 2589
			return;
		}
2590 2591

		/* No joy, try again later.  Or just synchronize_sched(). */
2592
		if (trycount++ < 10) {
2593
			udelay(trycount * num_online_cpus());
2594
		} else {
2595
			wait_rcu_gp(call_rcu_sched);
2596
			atomic_long_inc(&rsp->expedited_normal);
2597 2598 2599
			return;
		}

2600
		/* Recheck to see if someone else did our work for us. */
2601
		s = atomic_long_read(&rsp->expedited_done);
2602
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2603 2604 2605
			/* ensure test happens before caller kfree */
			smp_mb__before_atomic_inc(); /* ^^^ */
			atomic_long_inc(&rsp->expedited_workdone2);
2606 2607 2608 2609 2610
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
2611 2612 2613 2614
		 * callers to piggyback on our grace period.  We retry
		 * after they started, so our grace period works for them,
		 * and they started after our first try, so their grace
		 * period works for us.
2615 2616
		 */
		get_online_cpus();
2617
		snap = atomic_long_read(&rsp->expedited_start);
2618 2619
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}
2620
	atomic_long_inc(&rsp->expedited_stoppedcpus);
2621 2622 2623 2624 2625

	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
2626
	 * than we did already did their update.
2627 2628
	 */
	do {
2629
		atomic_long_inc(&rsp->expedited_done_tries);
2630
		s = atomic_long_read(&rsp->expedited_done);
2631
		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2632 2633 2634
			/* ensure test happens before caller kfree */
			smp_mb__before_atomic_inc(); /* ^^^ */
			atomic_long_inc(&rsp->expedited_done_lost);
2635 2636
			break;
		}
2637
	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2638
	atomic_long_inc(&rsp->expedited_done_exit);
2639 2640 2641 2642 2643

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

2644 2645 2646 2647 2648 2649 2650 2651 2652
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
2653 2654
	struct rcu_node *rnp = rdp->mynode;

2655 2656 2657 2658 2659 2660
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
2661 2662
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
2663
		rdp->n_rp_qs_pending++;
2664
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
2665
		rdp->n_rp_report_qs++;
2666
		return 1;
2667
	}
2668 2669

	/* Does this CPU have callbacks ready to invoke? */
2670 2671
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
2672
		return 1;
2673
	}
2674 2675

	/* Has RCU gone idle with this CPU needing another grace period? */
2676 2677
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
2678
		return 1;
2679
	}
2680 2681

	/* Has another RCU grace period completed?  */
2682
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2683
		rdp->n_rp_gp_completed++;
2684
		return 1;
2685
	}
2686 2687

	/* Has a new RCU grace period started? */
2688
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2689
		rdp->n_rp_gp_started++;
2690
		return 1;
2691
	}
2692 2693

	/* nothing to do */
2694
	rdp->n_rp_need_nothing++;
2695 2696 2697 2698 2699 2700 2701 2702
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
2703
static int rcu_pending(int cpu)
2704
{
2705 2706 2707 2708 2709 2710
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
			return 1;
	return 0;
2711 2712 2713
}

/*
2714 2715 2716
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
2717
 */
2718
static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
2719
{
2720 2721 2722
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
2723 2724
	struct rcu_state *rsp;

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
	for_each_rcu_flavor(rsp) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
		if (rdp->qlen != rdp->qlen_lazy)
			al = false;
		if (rdp->nxtlist)
			hc = true;
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
2735 2736
}

2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

2748 2749 2750 2751
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
2752
static void rcu_barrier_callback(struct rcu_head *rhp)
2753
{
2754 2755 2756
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

2757 2758
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2759
		complete(&rsp->barrier_completion);
2760 2761 2762
	} else {
		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
	}
2763 2764 2765 2766 2767 2768 2769
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
2770
	struct rcu_state *rsp = type;
2771
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2772

2773
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2774
	atomic_inc(&rsp->barrier_cpu_count);
2775
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2776 2777 2778 2779 2780 2781
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
2782
static void _rcu_barrier(struct rcu_state *rsp)
2783
{
2784 2785
	int cpu;
	struct rcu_data *rdp;
2786 2787
	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
	unsigned long snap_done;
2788

2789
	_rcu_barrier_trace(rsp, "Begin", -1, snap);
2790

2791
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2792
	mutex_lock(&rsp->barrier_mutex);
2793

2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
	/*
	 * Ensure that all prior references, including to ->n_barrier_done,
	 * are ordered before the _rcu_barrier() machinery.
	 */
	smp_mb();  /* See above block comment. */

	/*
	 * Recheck ->n_barrier_done to see if others did our work for us.
	 * This means checking ->n_barrier_done for an even-to-odd-to-even
	 * transition.  The "if" expression below therefore rounds the old
	 * value up to the next even number and adds two before comparing.
	 */
	snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2807
	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
2808
	if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2809
		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

	/*
	 * Increment ->n_barrier_done to avoid duplicate work.  Use
	 * ACCESS_ONCE() to prevent the compiler from speculating
	 * the increment to precede the early-exit check.
	 */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2822
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2823
	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2824

2825
	/*
2826 2827
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
2828 2829
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
2830
	 */
2831
	init_completion(&rsp->barrier_completion);
2832
	atomic_set(&rsp->barrier_cpu_count, 1);
2833
	get_online_cpus();
2834 2835

	/*
2836 2837 2838
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
2839
	 */
P
Paul E. McKenney 已提交
2840
	for_each_possible_cpu(cpu) {
2841
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
2842
			continue;
2843
		rdp = per_cpu_ptr(rsp->rda, cpu);
2844
		if (rcu_is_nocb_cpu(cpu)) {
P
Paul E. McKenney 已提交
2845 2846 2847 2848 2849 2850
			_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
					   rsp->n_barrier_done);
			atomic_inc(&rsp->barrier_cpu_count);
			__call_rcu(&rdp->barrier_head, rcu_barrier_callback,
				   rsp, cpu, 0);
		} else if (ACCESS_ONCE(rdp->qlen)) {
2851 2852
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
					   rsp->n_barrier_done);
2853
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2854
		} else {
2855 2856
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
					   rsp->n_barrier_done);
2857 2858
		}
	}
2859
	put_online_cpus();
2860 2861 2862 2863 2864

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
2865
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2866
		complete(&rsp->barrier_completion);
2867

2868 2869 2870 2871
	/* Increment ->n_barrier_done to prevent duplicate work. */
	smp_mb(); /* Keep increment after above mechanism. */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2872
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2873 2874
	smp_mb(); /* Keep increment before caller's subsequent code. */

2875
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2876
	wait_for_completion(&rsp->barrier_completion);
2877 2878

	/* Other rcu_barrier() invocations can now safely proceed. */
2879
	mutex_unlock(&rsp->barrier_mutex);
2880 2881 2882 2883 2884 2885 2886
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
2887
	_rcu_barrier(&rcu_bh_state);
2888 2889 2890 2891 2892 2893 2894 2895
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
2896
	_rcu_barrier(&rcu_sched_state);
2897 2898 2899
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

2900
/*
2901
 * Do boot-time initialization of a CPU's per-CPU RCU data.
2902
 */
2903 2904
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2905 2906
{
	unsigned long flags;
2907
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2908 2909 2910
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2911
	raw_spin_lock_irqsave(&rnp->lock, flags);
2912
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2913
	init_callback_list(rdp);
2914
	rdp->qlen_lazy = 0;
2915
	ACCESS_ONCE(rdp->qlen) = 0;
2916
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2917
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2918
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2919
	rdp->cpu = cpu;
2920
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
2921
	rcu_boot_init_nocb_percpu_data(rdp);
P
Paul E. McKenney 已提交
2922
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2923 2924 2925 2926 2927 2928 2929
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2930
 */
2931
static void __cpuinit
P
Paul E. McKenney 已提交
2932
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2933 2934 2935
{
	unsigned long flags;
	unsigned long mask;
2936
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2937 2938
	struct rcu_node *rnp = rcu_get_root(rsp);

2939 2940 2941
	/* Exclude new grace periods. */
	mutex_lock(&rsp->onoff_mutex);

2942
	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2943
	raw_spin_lock_irqsave(&rnp->lock, flags);
2944
	rdp->beenonline = 1;	 /* We have now been online. */
P
Paul E. McKenney 已提交
2945
	rdp->preemptible = preemptible;
2946 2947
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
2948
	rdp->blimit = blimit;
2949
	init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
2950
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2951 2952
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
P
Paul E. McKenney 已提交
2953
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
2954 2955 2956 2957 2958 2959

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
2960
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2961 2962
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
2963
		if (rnp == rdp->mynode) {
2964 2965 2966 2967 2968 2969
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
2970
			rdp->completed = rnp->completed;
2971 2972
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
2973
			trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2974
		}
P
Paul E. McKenney 已提交
2975
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2976 2977
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
2978
	local_irq_restore(flags);
2979

2980
	mutex_unlock(&rsp->onoff_mutex);
2981 2982
}

P
Peter Zijlstra 已提交
2983
static void __cpuinit rcu_prepare_cpu(int cpu)
2984
{
2985 2986 2987 2988 2989
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rcu_init_percpu_data(cpu, rsp,
				     strcmp(rsp->name, "rcu_preempt") == 0);
2990 2991 2992
}

/*
2993
 * Handle CPU online/offline notification events.
2994
 */
2995 2996
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
2997 2998
{
	long cpu = (long)hcpu;
2999
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
3000
	struct rcu_node *rnp = rdp->mynode;
3001
	struct rcu_state *rsp;
3002

3003
	trace_rcu_utilization("Start CPU hotplug");
3004 3005 3006
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
3007 3008
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
3009 3010
		break;
	case CPU_ONLINE:
3011
	case CPU_DOWN_FAILED:
T
Thomas Gleixner 已提交
3012
		rcu_boost_kthread_setaffinity(rnp, -1);
3013 3014
		break;
	case CPU_DOWN_PREPARE:
3015
		rcu_boost_kthread_setaffinity(rnp, cpu);
3016
		break;
3017 3018
	case CPU_DYING:
	case CPU_DYING_FROZEN:
3019 3020
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
3021
		break;
3022 3023 3024 3025
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
3026 3027
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dead_cpu(cpu, rsp);
3028 3029 3030 3031
		break;
	default:
		break;
	}
3032
	trace_rcu_utilization("End CPU hotplug");
3033
	return NOTIFY_OK;
3034 3035
}

3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
/*
 * Spawn the kthread that handles this RCU flavor's grace periods.
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp;
	struct task_struct *t;

	for_each_rcu_flavor(rsp) {
		t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rsp->gp_kthread = t;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
P
Paul E. McKenney 已提交
3053
		rcu_spawn_nocb_kthreads(rsp);
3054 3055 3056 3057 3058
	}
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

3074 3075 3076 3077 3078 3079 3080 3081 3082
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

3083
	for (i = rcu_num_lvls - 1; i > 0; i--)
3084
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3085
	rsp->levelspread[0] = rcu_fanout_leaf;
3086 3087 3088 3089 3090 3091 3092 3093
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

3094
	cprv = nr_cpu_ids;
3095
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
3106 3107
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
3108
{
3109 3110 3111 3112 3113 3114 3115 3116
	static char *buf[] = { "rcu_node_0",
			       "rcu_node_1",
			       "rcu_node_2",
			       "rcu_node_3" };  /* Match MAX_RCU_LVLS */
	static char *fqs[] = { "rcu_node_fqs_0",
			       "rcu_node_fqs_1",
			       "rcu_node_fqs_2",
			       "rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
3117 3118 3119 3120 3121
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

3122 3123
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

3124 3125 3126 3127
	/* Silence gcc 4.8 warning about array index out of range. */
	if (rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls overflow");

3128 3129
	/* Initialize the level-tracking arrays. */

3130 3131 3132
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
3133 3134 3135 3136 3137
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

3138
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3139 3140 3141
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
3142
			raw_spin_lock_init(&rnp->lock);
3143 3144
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
3145 3146 3147
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
3148 3149
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
3167
			INIT_LIST_HEAD(&rnp->blkd_tasks);
3168
			rcu_init_one_nocb(rnp);
3169 3170
		}
	}
3171

3172
	rsp->rda = rda;
3173
	init_waitqueue_head(&rsp->gp_wq);
3174
	init_irq_work(&rsp->wakeup_work, rsp_wakeup);
3175
	rnp = rsp->level[rcu_num_lvls - 1];
3176
	for_each_possible_cpu(i) {
3177
		while (i > rnp->grphi)
3178
			rnp++;
3179
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3180 3181
		rcu_boot_init_percpu_data(i, rsp);
	}
3182
	list_add(&rsp->flavors, &rcu_struct_flavors);
3183 3184
}

3185 3186 3187 3188 3189 3190 3191 3192 3193
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
 * replace the definitions in rcutree.h because those are needed to size
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
	int i;
	int j;
3194
	int n = nr_cpu_ids;
3195 3196 3197
	int rcu_capacity[MAX_RCU_LVLS + 1];

	/* If the compile-time values are accurate, just leave. */
3198 3199
	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
	    nr_cpu_ids == NR_CPUS)
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
		return;

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

3246
void __init rcu_init(void)
3247
{
P
Paul E. McKenney 已提交
3248
	int cpu;
3249

3250
	rcu_bootup_announce();
3251
	rcu_init_geometry();
3252 3253
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3254
	__rcu_init_preempt();
J
Jiang Fang 已提交
3255
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3256 3257 3258 3259 3260 3261 3262

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
P
Paul E. McKenney 已提交
3263 3264
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3265 3266
}

3267
#include "rcutree_plugin.h"