check-integrity.c 96.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/*
 * Copyright (C) STRATO AG 2011.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

/*
 * This module can be used to catch cases when the btrfs kernel
 * code executes write requests to the disk that bring the file
 * system in an inconsistent state. In such a state, a power-loss
 * or kernel panic event would cause that the data on disk is
 * lost or at least damaged.
 *
 * Code is added that examines all block write requests during
 * runtime (including writes of the super block). Three rules
 * are verified and an error is printed on violation of the
 * rules:
 * 1. It is not allowed to write a disk block which is
 *    currently referenced by the super block (either directly
 *    or indirectly).
 * 2. When a super block is written, it is verified that all
 *    referenced (directly or indirectly) blocks fulfill the
 *    following requirements:
 *    2a. All referenced blocks have either been present when
 *        the file system was mounted, (i.e., they have been
 *        referenced by the super block) or they have been
 *        written since then and the write completion callback
40 41 42
 *        was called and no write error was indicated and a
 *        FLUSH request to the device where these blocks are
 *        located was received and completed.
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
 *    2b. All referenced blocks need to have a generation
 *        number which is equal to the parent's number.
 *
 * One issue that was found using this module was that the log
 * tree on disk became temporarily corrupted because disk blocks
 * that had been in use for the log tree had been freed and
 * reused too early, while being referenced by the written super
 * block.
 *
 * The search term in the kernel log that can be used to filter
 * on the existence of detected integrity issues is
 * "btrfs: attempt".
 *
 * The integrity check is enabled via mount options. These
 * mount options are only supported if the integrity check
 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
 *
 * Example #1, apply integrity checks to all metadata:
 * mount /dev/sdb1 /mnt -o check_int
 *
 * Example #2, apply integrity checks to all metadata and
 * to data extents:
 * mount /dev/sdb1 /mnt -o check_int_data
 *
 * Example #3, apply integrity checks to all metadata and dump
 * the tree that the super block references to kernel messages
 * each time after a super block was written:
 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
 *
 * If the integrity check tool is included and activated in
 * the mount options, plenty of kernel memory is used, and
 * plenty of additional CPU cycles are spent. Enabling this
 * functionality is not intended for normal use. In most
 * cases, unless you are a btrfs developer who needs to verify
 * the integrity of (super)-block write requests, do not
 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
 * include and compile the integrity check tool.
80 81 82 83 84 85 86 87 88
 *
 * Expect millions of lines of information in the kernel log with an
 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
 * kernel config to at least 26 (which is 64MB). Usually the value is
 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
 * changed like this before LOG_BUF_SHIFT can be set to a high value:
 * config LOG_BUF_SHIFT
 *       int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
 *       range 12 30
89 90 91 92 93 94 95 96
 */

#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/buffer_head.h>
#include <linux/mutex.h>
#include <linux/genhd.h>
#include <linux/blkdev.h>
97
#include <linux/vmalloc.h>
98
#include <linux/string.h>
99 100
#include "ctree.h"
#include "disk-io.h"
101
#include "hash.h"
102 103 104 105 106 107
#include "transaction.h"
#include "extent_io.h"
#include "volumes.h"
#include "print-tree.h"
#include "locking.h"
#include "check-integrity.h"
108
#include "rcu-string.h"
109
#include "compression.h"
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

#define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
#define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
#define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
#define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
#define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
#define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
#define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
#define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6)	/* in characters,
							 * excluding " [...]" */
#define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)

/*
 * The definition of the bitmask fields for the print_mask.
 * They are specified with the mount option check_integrity_print_mask.
 */
#define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE			0x00000001
#define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION		0x00000002
#define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE			0x00000004
#define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE			0x00000008
#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH			0x00000010
#define BTRFSIC_PRINT_MASK_END_IO_BIO_BH			0x00000020
#define BTRFSIC_PRINT_MASK_VERBOSE				0x00000040
#define BTRFSIC_PRINT_MASK_VERY_VERBOSE				0x00000080
#define BTRFSIC_PRINT_MASK_INITIAL_TREE				0x00000100
#define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES			0x00000200
#define BTRFSIC_PRINT_MASK_INITIAL_DATABASE			0x00000400
#define BTRFSIC_PRINT_MASK_NUM_COPIES				0x00000800
#define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS		0x00001000
139
#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE		0x00002000
140 141 142 143 144 145 146 147 148 149 150 151 152

struct btrfsic_dev_state;
struct btrfsic_state;

struct btrfsic_block {
	u32 magic_num;		/* only used for debug purposes */
	unsigned int is_metadata:1;	/* if it is meta-data, not data-data */
	unsigned int is_superblock:1;	/* if it is one of the superblocks */
	unsigned int is_iodone:1;	/* if is done by lower subsystem */
	unsigned int iodone_w_error:1;	/* error was indicated to endio */
	unsigned int never_written:1;	/* block was added because it was
					 * referenced, not because it was
					 * written */
153
	unsigned int mirror_num;	/* large enough to hold
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
					 * BTRFS_SUPER_MIRROR_MAX */
	struct btrfsic_dev_state *dev_state;
	u64 dev_bytenr;		/* key, physical byte num on disk */
	u64 logical_bytenr;	/* logical byte num on disk */
	u64 generation;
	struct btrfs_disk_key disk_key;	/* extra info to print in case of
					 * issues, will not always be correct */
	struct list_head collision_resolving_node;	/* list node */
	struct list_head all_blocks_node;	/* list node */

	/* the following two lists contain block_link items */
	struct list_head ref_to_list;	/* list */
	struct list_head ref_from_list;	/* list */
	struct btrfsic_block *next_in_same_bio;
	void *orig_bio_bh_private;
	union {
		bio_end_io_t *bio;
		bh_end_io_t *bh;
	} orig_bio_bh_end_io;
	int submit_bio_bh_rw;
	u64 flush_gen; /* only valid if !never_written */
};

/*
 * Elements of this type are allocated dynamically and required because
 * each block object can refer to and can be ref from multiple blocks.
 * The key to lookup them in the hashtable is the dev_bytenr of
181
 * the block ref to plus the one from the block referred from.
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
 * The fact that they are searchable via a hashtable and that a
 * ref_cnt is maintained is not required for the btrfs integrity
 * check algorithm itself, it is only used to make the output more
 * beautiful in case that an error is detected (an error is defined
 * as a write operation to a block while that block is still referenced).
 */
struct btrfsic_block_link {
	u32 magic_num;		/* only used for debug purposes */
	u32 ref_cnt;
	struct list_head node_ref_to;	/* list node */
	struct list_head node_ref_from;	/* list node */
	struct list_head collision_resolving_node;	/* list node */
	struct btrfsic_block *block_ref_to;
	struct btrfsic_block *block_ref_from;
	u64 parent_generation;
};

struct btrfsic_dev_state {
	u32 magic_num;		/* only used for debug purposes */
	struct block_device *bdev;
	struct btrfsic_state *state;
	struct list_head collision_resolving_node;	/* list node */
	struct btrfsic_block dummy_block_for_bio_bh_flush;
	u64 last_flush_gen;
	char name[BDEVNAME_SIZE];
};

struct btrfsic_block_hashtable {
	struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
};

struct btrfsic_block_link_hashtable {
	struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
};

struct btrfsic_dev_state_hashtable {
	struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
};

struct btrfsic_block_data_ctx {
	u64 start;		/* virtual bytenr */
	u64 dev_bytenr;		/* physical bytenr on device */
	u32 len;
	struct btrfsic_dev_state *dev;
226 227 228
	char **datav;
	struct page **pagev;
	void *mem_to_free;
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
};

/* This structure is used to implement recursion without occupying
 * any stack space, refer to btrfsic_process_metablock() */
struct btrfsic_stack_frame {
	u32 magic;
	u32 nr;
	int error;
	int i;
	int limit_nesting;
	int num_copies;
	int mirror_num;
	struct btrfsic_block *block;
	struct btrfsic_block_data_ctx *block_ctx;
	struct btrfsic_block *next_block;
	struct btrfsic_block_data_ctx next_block_ctx;
	struct btrfs_header *hdr;
	struct btrfsic_stack_frame *prev;
};

/* Some state per mounted filesystem */
struct btrfsic_state {
	u32 print_mask;
	int include_extent_data;
	int csum_size;
	struct list_head all_blocks_list;
	struct btrfsic_block_hashtable block_hashtable;
	struct btrfsic_block_link_hashtable block_link_hashtable;
	struct btrfs_root *root;
	u64 max_superblock_generation;
	struct btrfsic_block *latest_superblock;
260 261
	u32 metablock_size;
	u32 datablock_size;
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
};

static void btrfsic_block_init(struct btrfsic_block *b);
static struct btrfsic_block *btrfsic_block_alloc(void);
static void btrfsic_block_free(struct btrfsic_block *b);
static void btrfsic_block_link_init(struct btrfsic_block_link *n);
static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
static void btrfsic_block_link_free(struct btrfsic_block_link *n);
static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
					struct btrfsic_block_hashtable *h);
static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
static struct btrfsic_block *btrfsic_block_hashtable_lookup(
		struct block_device *bdev,
		u64 dev_bytenr,
		struct btrfsic_block_hashtable *h);
static void btrfsic_block_link_hashtable_init(
		struct btrfsic_block_link_hashtable *h);
static void btrfsic_block_link_hashtable_add(
		struct btrfsic_block_link *l,
		struct btrfsic_block_link_hashtable *h);
static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
		struct block_device *bdev_ref_to,
		u64 dev_bytenr_ref_to,
		struct block_device *bdev_ref_from,
		u64 dev_bytenr_ref_from,
		struct btrfsic_block_link_hashtable *h);
static void btrfsic_dev_state_hashtable_init(
		struct btrfsic_dev_state_hashtable *h);
static void btrfsic_dev_state_hashtable_add(
		struct btrfsic_dev_state *ds,
		struct btrfsic_dev_state_hashtable *h);
static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
		struct block_device *bdev,
		struct btrfsic_dev_state_hashtable *h);
static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
static int btrfsic_process_superblock(struct btrfsic_state *state,
				      struct btrfs_fs_devices *fs_devices);
static int btrfsic_process_metablock(struct btrfsic_state *state,
				     struct btrfsic_block *block,
				     struct btrfsic_block_data_ctx *block_ctx,
				     int limit_nesting, int force_iodone_flag);
310 311 312
static void btrfsic_read_from_block_data(
	struct btrfsic_block_data_ctx *block_ctx,
	void *dst, u32 offset, size_t len);
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
static int btrfsic_create_link_to_next_block(
		struct btrfsic_state *state,
		struct btrfsic_block *block,
		struct btrfsic_block_data_ctx
		*block_ctx, u64 next_bytenr,
		int limit_nesting,
		struct btrfsic_block_data_ctx *next_block_ctx,
		struct btrfsic_block **next_blockp,
		int force_iodone_flag,
		int *num_copiesp, int *mirror_nump,
		struct btrfs_disk_key *disk_key,
		u64 parent_generation);
static int btrfsic_handle_extent_data(struct btrfsic_state *state,
				      struct btrfsic_block *block,
				      struct btrfsic_block_data_ctx *block_ctx,
				      u32 item_offset, int force_iodone_flag);
static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
			     struct btrfsic_block_data_ctx *block_ctx_out,
			     int mirror_num);
static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
static int btrfsic_read_block(struct btrfsic_state *state,
			      struct btrfsic_block_data_ctx *block_ctx);
static void btrfsic_dump_database(struct btrfsic_state *state);
static int btrfsic_test_for_metadata(struct btrfsic_state *state,
337
				     char **datav, unsigned int num_pages);
338
static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
339 340 341
					  u64 dev_bytenr, char **mapped_datav,
					  unsigned int num_pages,
					  struct bio *bio, int *bio_is_patched,
342 343 344 345 346 347
					  struct buffer_head *bh,
					  int submit_bio_bh_rw);
static int btrfsic_process_written_superblock(
		struct btrfsic_state *state,
		struct btrfsic_block *const block,
		struct btrfs_super_block *const super_hdr);
348
static void btrfsic_bio_end_io(struct bio *bp);
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
					      const struct btrfsic_block *block,
					      int recursion_level);
static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
					struct btrfsic_block *const block,
					int recursion_level);
static void btrfsic_print_add_link(const struct btrfsic_state *state,
				   const struct btrfsic_block_link *l);
static void btrfsic_print_rem_link(const struct btrfsic_state *state,
				   const struct btrfsic_block_link *l);
static char btrfsic_get_block_type(const struct btrfsic_state *state,
				   const struct btrfsic_block *block);
static void btrfsic_dump_tree(const struct btrfsic_state *state);
static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
				  const struct btrfsic_block *block,
				  int indent_level);
static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
		struct btrfsic_state *state,
		struct btrfsic_block_data_ctx *next_block_ctx,
		struct btrfsic_block *next_block,
		struct btrfsic_block *from_block,
		u64 parent_generation);
static struct btrfsic_block *btrfsic_block_lookup_or_add(
		struct btrfsic_state *state,
		struct btrfsic_block_data_ctx *block_ctx,
		const char *additional_string,
		int is_metadata,
		int is_iodone,
		int never_written,
		int mirror_num,
		int *was_created);
static int btrfsic_process_superblock_dev_mirror(
		struct btrfsic_state *state,
		struct btrfsic_dev_state *dev_state,
		struct btrfs_device *device,
		int superblock_mirror_num,
		struct btrfsic_dev_state **selected_dev_state,
		struct btrfs_super_block *selected_super);
static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
		struct block_device *bdev);
static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
					   u64 bytenr,
					   struct btrfsic_dev_state *dev_state,
393
					   u64 dev_bytenr);
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535

static struct mutex btrfsic_mutex;
static int btrfsic_is_initialized;
static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;


static void btrfsic_block_init(struct btrfsic_block *b)
{
	b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
	b->dev_state = NULL;
	b->dev_bytenr = 0;
	b->logical_bytenr = 0;
	b->generation = BTRFSIC_GENERATION_UNKNOWN;
	b->disk_key.objectid = 0;
	b->disk_key.type = 0;
	b->disk_key.offset = 0;
	b->is_metadata = 0;
	b->is_superblock = 0;
	b->is_iodone = 0;
	b->iodone_w_error = 0;
	b->never_written = 0;
	b->mirror_num = 0;
	b->next_in_same_bio = NULL;
	b->orig_bio_bh_private = NULL;
	b->orig_bio_bh_end_io.bio = NULL;
	INIT_LIST_HEAD(&b->collision_resolving_node);
	INIT_LIST_HEAD(&b->all_blocks_node);
	INIT_LIST_HEAD(&b->ref_to_list);
	INIT_LIST_HEAD(&b->ref_from_list);
	b->submit_bio_bh_rw = 0;
	b->flush_gen = 0;
}

static struct btrfsic_block *btrfsic_block_alloc(void)
{
	struct btrfsic_block *b;

	b = kzalloc(sizeof(*b), GFP_NOFS);
	if (NULL != b)
		btrfsic_block_init(b);

	return b;
}

static void btrfsic_block_free(struct btrfsic_block *b)
{
	BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
	kfree(b);
}

static void btrfsic_block_link_init(struct btrfsic_block_link *l)
{
	l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
	l->ref_cnt = 1;
	INIT_LIST_HEAD(&l->node_ref_to);
	INIT_LIST_HEAD(&l->node_ref_from);
	INIT_LIST_HEAD(&l->collision_resolving_node);
	l->block_ref_to = NULL;
	l->block_ref_from = NULL;
}

static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
{
	struct btrfsic_block_link *l;

	l = kzalloc(sizeof(*l), GFP_NOFS);
	if (NULL != l)
		btrfsic_block_link_init(l);

	return l;
}

static void btrfsic_block_link_free(struct btrfsic_block_link *l)
{
	BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
	kfree(l);
}

static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
{
	ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
	ds->bdev = NULL;
	ds->state = NULL;
	ds->name[0] = '\0';
	INIT_LIST_HEAD(&ds->collision_resolving_node);
	ds->last_flush_gen = 0;
	btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
	ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
	ds->dummy_block_for_bio_bh_flush.dev_state = ds;
}

static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
{
	struct btrfsic_dev_state *ds;

	ds = kzalloc(sizeof(*ds), GFP_NOFS);
	if (NULL != ds)
		btrfsic_dev_state_init(ds);

	return ds;
}

static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
{
	BUG_ON(!(NULL == ds ||
		 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
	kfree(ds);
}

static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
{
	int i;

	for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
		INIT_LIST_HEAD(h->table + i);
}

static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
					struct btrfsic_block_hashtable *h)
{
	const unsigned int hashval =
	    (((unsigned int)(b->dev_bytenr >> 16)) ^
	     ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);

	list_add(&b->collision_resolving_node, h->table + hashval);
}

static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
{
	list_del(&b->collision_resolving_node);
}

static struct btrfsic_block *btrfsic_block_hashtable_lookup(
		struct block_device *bdev,
		u64 dev_bytenr,
		struct btrfsic_block_hashtable *h)
{
	const unsigned int hashval =
	    (((unsigned int)(dev_bytenr >> 16)) ^
	     ((unsigned int)((uintptr_t)bdev))) &
	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
536
	struct btrfsic_block *b;
537

538
	list_for_each_entry(b, h->table + hashval, collision_resolving_node) {
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
		if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
			return b;
	}

	return NULL;
}

static void btrfsic_block_link_hashtable_init(
		struct btrfsic_block_link_hashtable *h)
{
	int i;

	for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
		INIT_LIST_HEAD(h->table + i);
}

static void btrfsic_block_link_hashtable_add(
		struct btrfsic_block_link *l,
		struct btrfsic_block_link_hashtable *h)
{
	const unsigned int hashval =
	    (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
	     ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
	     ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
	     ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
	     & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);

	BUG_ON(NULL == l->block_ref_to);
	BUG_ON(NULL == l->block_ref_from);
	list_add(&l->collision_resolving_node, h->table + hashval);
}

static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
{
	list_del(&l->collision_resolving_node);
}

static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
		struct block_device *bdev_ref_to,
		u64 dev_bytenr_ref_to,
		struct block_device *bdev_ref_from,
		u64 dev_bytenr_ref_from,
		struct btrfsic_block_link_hashtable *h)
{
	const unsigned int hashval =
	    (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
	     ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
	     ((unsigned int)((uintptr_t)bdev_ref_to)) ^
	     ((unsigned int)((uintptr_t)bdev_ref_from))) &
	     (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
589
	struct btrfsic_block_link *l;
590

591
	list_for_each_entry(l, h->table + hashval, collision_resolving_node) {
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
		BUG_ON(NULL == l->block_ref_to);
		BUG_ON(NULL == l->block_ref_from);
		if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
		    l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
		    l->block_ref_from->dev_state->bdev == bdev_ref_from &&
		    l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
			return l;
	}

	return NULL;
}

static void btrfsic_dev_state_hashtable_init(
		struct btrfsic_dev_state_hashtable *h)
{
	int i;

	for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
		INIT_LIST_HEAD(h->table + i);
}

static void btrfsic_dev_state_hashtable_add(
		struct btrfsic_dev_state *ds,
		struct btrfsic_dev_state_hashtable *h)
{
	const unsigned int hashval =
	    (((unsigned int)((uintptr_t)ds->bdev)) &
	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));

	list_add(&ds->collision_resolving_node, h->table + hashval);
}

static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
{
	list_del(&ds->collision_resolving_node);
}

static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
		struct block_device *bdev,
		struct btrfsic_dev_state_hashtable *h)
{
	const unsigned int hashval =
	    (((unsigned int)((uintptr_t)bdev)) &
	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
636
	struct btrfsic_dev_state *ds;
637

638
	list_for_each_entry(ds, h->table + hashval, collision_resolving_node) {
639 640 641 642 643 644 645 646 647 648
		if (ds->bdev == bdev)
			return ds;
	}

	return NULL;
}

static int btrfsic_process_superblock(struct btrfsic_state *state,
				      struct btrfs_fs_devices *fs_devices)
{
649
	int ret = 0;
650 651 652 653 654 655 656
	struct btrfs_super_block *selected_super;
	struct list_head *dev_head = &fs_devices->devices;
	struct btrfs_device *device;
	struct btrfsic_dev_state *selected_dev_state = NULL;
	int pass;

	BUG_ON(NULL == state);
657
	selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
658 659
	if (NULL == selected_super) {
		printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
660
		return -ENOMEM;
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
	}

	list_for_each_entry(device, dev_head, dev_list) {
		int i;
		struct btrfsic_dev_state *dev_state;

		if (!device->bdev || !device->name)
			continue;

		dev_state = btrfsic_dev_state_lookup(device->bdev);
		BUG_ON(NULL == dev_state);
		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
			ret = btrfsic_process_superblock_dev_mirror(
					state, dev_state, device, i,
					&selected_dev_state, selected_super);
			if (0 != ret && 0 == i) {
				kfree(selected_super);
				return ret;
			}
		}
	}

	if (NULL == state->latest_superblock) {
		printk(KERN_INFO "btrfsic: no superblock found!\n");
		kfree(selected_super);
		return -1;
	}

	state->csum_size = btrfs_super_csum_size(selected_super);

	for (pass = 0; pass < 3; pass++) {
		int num_copies;
		int mirror_num;
		u64 next_bytenr;

		switch (pass) {
		case 0:
			next_bytenr = btrfs_super_root(selected_super);
			if (state->print_mask &
			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
701
				printk(KERN_INFO "root@%llu\n", next_bytenr);
702 703 704 705 706
			break;
		case 1:
			next_bytenr = btrfs_super_chunk_root(selected_super);
			if (state->print_mask &
			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
707
				printk(KERN_INFO "chunk@%llu\n", next_bytenr);
708 709 710 711 712 713 714
			break;
		case 2:
			next_bytenr = btrfs_super_log_root(selected_super);
			if (0 == next_bytenr)
				continue;
			if (state->print_mask &
			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
715
				printk(KERN_INFO "log@%llu\n", next_bytenr);
716 717 718 719
			break;
		}

		num_copies =
720
		    btrfs_num_copies(state->root->fs_info,
721
				     next_bytenr, state->metablock_size);
722 723
		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
724
			       next_bytenr, num_copies);
725 726 727 728 729 730

		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
			struct btrfsic_block *next_block;
			struct btrfsic_block_data_ctx tmp_next_block_ctx;
			struct btrfsic_block_link *l;

731 732
			ret = btrfsic_map_block(state, next_bytenr,
						state->metablock_size,
733 734 735 736 737 738
						&tmp_next_block_ctx,
						mirror_num);
			if (ret) {
				printk(KERN_INFO "btrfsic:"
				       " btrfsic_map_block(root @%llu,"
				       " mirror %d) failed!\n",
739
				       next_bytenr, mirror_num);
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
				kfree(selected_super);
				return -1;
			}

			next_block = btrfsic_block_hashtable_lookup(
					tmp_next_block_ctx.dev->bdev,
					tmp_next_block_ctx.dev_bytenr,
					&state->block_hashtable);
			BUG_ON(NULL == next_block);

			l = btrfsic_block_link_hashtable_lookup(
					tmp_next_block_ctx.dev->bdev,
					tmp_next_block_ctx.dev_bytenr,
					state->latest_superblock->dev_state->
					bdev,
					state->latest_superblock->dev_bytenr,
					&state->block_link_hashtable);
			BUG_ON(NULL == l);

			ret = btrfsic_read_block(state, &tmp_next_block_ctx);
760
			if (ret < (int)PAGE_SIZE) {
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
				printk(KERN_INFO
				       "btrfsic: read @logical %llu failed!\n",
				       tmp_next_block_ctx.start);
				btrfsic_release_block_ctx(&tmp_next_block_ctx);
				kfree(selected_super);
				return -1;
			}

			ret = btrfsic_process_metablock(state,
							next_block,
							&tmp_next_block_ctx,
							BTRFS_MAX_LEVEL + 3, 1);
			btrfsic_release_block_ctx(&tmp_next_block_ctx);
		}
	}

	kfree(selected_super);
	return ret;
}

static int btrfsic_process_superblock_dev_mirror(
		struct btrfsic_state *state,
		struct btrfsic_dev_state *dev_state,
		struct btrfs_device *device,
		int superblock_mirror_num,
		struct btrfsic_dev_state **selected_dev_state,
		struct btrfs_super_block *selected_super)
{
	struct btrfs_super_block *super_tmp;
	u64 dev_bytenr;
	struct buffer_head *bh;
	struct btrfsic_block *superblock_tmp;
	int pass;
	struct block_device *const superblock_bdev = device->bdev;

	/* super block bytenr is always the unmapped device bytenr */
	dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
798
	if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes)
799 800 801
		return -1;
	bh = __bread(superblock_bdev, dev_bytenr / 4096,
		     BTRFS_SUPER_INFO_SIZE);
802 803 804 805 806 807
	if (NULL == bh)
		return -1;
	super_tmp = (struct btrfs_super_block *)
	    (bh->b_data + (dev_bytenr & 4095));

	if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
808
	    btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
809 810 811
	    memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
	    btrfs_super_nodesize(super_tmp) != state->metablock_size ||
	    btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
		brelse(bh);
		return 0;
	}

	superblock_tmp =
	    btrfsic_block_hashtable_lookup(superblock_bdev,
					   dev_bytenr,
					   &state->block_hashtable);
	if (NULL == superblock_tmp) {
		superblock_tmp = btrfsic_block_alloc();
		if (NULL == superblock_tmp) {
			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
			brelse(bh);
			return -1;
		}
		/* for superblock, only the dev_bytenr makes sense */
		superblock_tmp->dev_bytenr = dev_bytenr;
		superblock_tmp->dev_state = dev_state;
		superblock_tmp->logical_bytenr = dev_bytenr;
		superblock_tmp->generation = btrfs_super_generation(super_tmp);
		superblock_tmp->is_metadata = 1;
		superblock_tmp->is_superblock = 1;
		superblock_tmp->is_iodone = 1;
		superblock_tmp->never_written = 0;
		superblock_tmp->mirror_num = 1 + superblock_mirror_num;
		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
838 839
			btrfs_info_in_rcu(device->dev_root->fs_info,
				"new initial S-block (bdev %p, %s) @%llu (%s/%llu/%d)",
840
				     superblock_bdev,
841 842
				     rcu_str_deref(device->name), dev_bytenr,
				     dev_state->name, dev_bytenr,
843
				     superblock_mirror_num);
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
		list_add(&superblock_tmp->all_blocks_node,
			 &state->all_blocks_list);
		btrfsic_block_hashtable_add(superblock_tmp,
					    &state->block_hashtable);
	}

	/* select the one with the highest generation field */
	if (btrfs_super_generation(super_tmp) >
	    state->max_superblock_generation ||
	    0 == state->max_superblock_generation) {
		memcpy(selected_super, super_tmp, sizeof(*selected_super));
		*selected_dev_state = dev_state;
		state->max_superblock_generation =
		    btrfs_super_generation(super_tmp);
		state->latest_superblock = superblock_tmp;
	}

	for (pass = 0; pass < 3; pass++) {
		u64 next_bytenr;
		int num_copies;
		int mirror_num;
		const char *additional_string = NULL;
		struct btrfs_disk_key tmp_disk_key;

		tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
		tmp_disk_key.offset = 0;
		switch (pass) {
		case 0:
872 873
			btrfs_set_disk_key_objectid(&tmp_disk_key,
						    BTRFS_ROOT_TREE_OBJECTID);
874 875 876 877
			additional_string = "initial root ";
			next_bytenr = btrfs_super_root(super_tmp);
			break;
		case 1:
878 879
			btrfs_set_disk_key_objectid(&tmp_disk_key,
						    BTRFS_CHUNK_TREE_OBJECTID);
880 881 882 883
			additional_string = "initial chunk ";
			next_bytenr = btrfs_super_chunk_root(super_tmp);
			break;
		case 2:
884 885
			btrfs_set_disk_key_objectid(&tmp_disk_key,
						    BTRFS_TREE_LOG_OBJECTID);
886 887 888 889 890 891 892 893
			additional_string = "initial log ";
			next_bytenr = btrfs_super_log_root(super_tmp);
			if (0 == next_bytenr)
				continue;
			break;
		}

		num_copies =
894
		    btrfs_num_copies(state->root->fs_info,
895
				     next_bytenr, state->metablock_size);
896 897
		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
898
			       next_bytenr, num_copies);
899 900 901 902 903
		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
			struct btrfsic_block *next_block;
			struct btrfsic_block_data_ctx tmp_next_block_ctx;
			struct btrfsic_block_link *l;

904 905
			if (btrfsic_map_block(state, next_bytenr,
					      state->metablock_size,
906 907 908 909
					      &tmp_next_block_ctx,
					      mirror_num)) {
				printk(KERN_INFO "btrfsic: btrfsic_map_block("
				       "bytenr @%llu, mirror %d) failed!\n",
910
				       next_bytenr, mirror_num);
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
				brelse(bh);
				return -1;
			}

			next_block = btrfsic_block_lookup_or_add(
					state, &tmp_next_block_ctx,
					additional_string, 1, 1, 0,
					mirror_num, NULL);
			if (NULL == next_block) {
				btrfsic_release_block_ctx(&tmp_next_block_ctx);
				brelse(bh);
				return -1;
			}

			next_block->disk_key = tmp_disk_key;
			next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
			l = btrfsic_block_link_lookup_or_add(
					state, &tmp_next_block_ctx,
					next_block, superblock_tmp,
					BTRFSIC_GENERATION_UNKNOWN);
			btrfsic_release_block_ctx(&tmp_next_block_ctx);
			if (NULL == l) {
				brelse(bh);
				return -1;
			}
		}
	}
	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
		btrfsic_dump_tree_sub(state, superblock_tmp, 0);

	brelse(bh);
	return 0;
}

static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
{
	struct btrfsic_stack_frame *sf;

	sf = kzalloc(sizeof(*sf), GFP_NOFS);
	if (NULL == sf)
		printk(KERN_INFO "btrfsic: alloc memory failed!\n");
	else
		sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
	return sf;
}

static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
{
	BUG_ON(!(NULL == sf ||
		 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
	kfree(sf);
}

static int btrfsic_process_metablock(
		struct btrfsic_state *state,
		struct btrfsic_block *const first_block,
		struct btrfsic_block_data_ctx *const first_block_ctx,
		int first_limit_nesting, int force_iodone_flag)
{
	struct btrfsic_stack_frame initial_stack_frame = { 0 };
	struct btrfsic_stack_frame *sf;
	struct btrfsic_stack_frame *next_stack;
973 974
	struct btrfs_header *const first_hdr =
		(struct btrfs_header *)first_block_ctx->datav[0];
975

976
	BUG_ON(!first_hdr);
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
	sf = &initial_stack_frame;
	sf->error = 0;
	sf->i = -1;
	sf->limit_nesting = first_limit_nesting;
	sf->block = first_block;
	sf->block_ctx = first_block_ctx;
	sf->next_block = NULL;
	sf->hdr = first_hdr;
	sf->prev = NULL;

continue_with_new_stack_frame:
	sf->block->generation = le64_to_cpu(sf->hdr->generation);
	if (0 == sf->hdr->level) {
		struct btrfs_leaf *const leafhdr =
		    (struct btrfs_leaf *)sf->hdr;

		if (-1 == sf->i) {
994
			sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
995 996 997 998 999

			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
				printk(KERN_INFO
				       "leaf %llu items %d generation %llu"
				       " owner %llu\n",
1000
				       sf->block_ctx->start, sf->nr,
1001 1002 1003 1004
				       btrfs_stack_header_generation(
					       &leafhdr->header),
				       btrfs_stack_header_owner(
					       &leafhdr->header));
1005 1006 1007 1008 1009 1010 1011 1012 1013
		}

continue_with_current_leaf_stack_frame:
		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
			sf->i++;
			sf->num_copies = 0;
		}

		if (sf->i < sf->nr) {
1014 1015 1016 1017 1018
			struct btrfs_item disk_item;
			u32 disk_item_offset =
				(uintptr_t)(leafhdr->items + sf->i) -
				(uintptr_t)leafhdr;
			struct btrfs_disk_key *disk_key;
1019
			u8 type;
1020
			u32 item_offset;
1021
			u32 item_size;
1022

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
			if (disk_item_offset + sizeof(struct btrfs_item) >
			    sf->block_ctx->len) {
leaf_item_out_of_bounce_error:
				printk(KERN_INFO
				       "btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
				       sf->block_ctx->start,
				       sf->block_ctx->dev->name);
				goto one_stack_frame_backwards;
			}
			btrfsic_read_from_block_data(sf->block_ctx,
						     &disk_item,
						     disk_item_offset,
						     sizeof(struct btrfs_item));
1036
			item_offset = btrfs_stack_item_offset(&disk_item);
1037
			item_size = btrfs_stack_item_size(&disk_item);
1038
			disk_key = &disk_item.key;
1039
			type = btrfs_disk_key_type(disk_key);
1040 1041

			if (BTRFS_ROOT_ITEM_KEY == type) {
1042 1043 1044 1045 1046 1047
				struct btrfs_root_item root_item;
				u32 root_item_offset;
				u64 next_bytenr;

				root_item_offset = item_offset +
					offsetof(struct btrfs_leaf, items);
1048
				if (root_item_offset + item_size >
1049 1050 1051 1052 1053
				    sf->block_ctx->len)
					goto leaf_item_out_of_bounce_error;
				btrfsic_read_from_block_data(
					sf->block_ctx, &root_item,
					root_item_offset,
1054
					item_size);
1055
				next_bytenr = btrfs_root_bytenr(&root_item);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

				sf->error =
				    btrfsic_create_link_to_next_block(
						state,
						sf->block,
						sf->block_ctx,
						next_bytenr,
						sf->limit_nesting,
						&sf->next_block_ctx,
						&sf->next_block,
						force_iodone_flag,
						&sf->num_copies,
						&sf->mirror_num,
						disk_key,
1070 1071
						btrfs_root_generation(
						&root_item));
1072 1073 1074 1075 1076 1077
				if (sf->error)
					goto one_stack_frame_backwards;

				if (NULL != sf->next_block) {
					struct btrfs_header *const next_hdr =
					    (struct btrfs_header *)
1078
					    sf->next_block_ctx.datav[0];
1079 1080 1081 1082

					next_stack =
					    btrfsic_stack_frame_alloc();
					if (NULL == next_stack) {
1083
						sf->error = -1;
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
						btrfsic_release_block_ctx(
								&sf->
								next_block_ctx);
						goto one_stack_frame_backwards;
					}

					next_stack->i = -1;
					next_stack->block = sf->next_block;
					next_stack->block_ctx =
					    &sf->next_block_ctx;
					next_stack->next_block = NULL;
					next_stack->hdr = next_hdr;
					next_stack->limit_nesting =
					    sf->limit_nesting - 1;
					next_stack->prev = sf;
					sf = next_stack;
					goto continue_with_new_stack_frame;
				}
			} else if (BTRFS_EXTENT_DATA_KEY == type &&
				   state->include_extent_data) {
				sf->error = btrfsic_handle_extent_data(
						state,
						sf->block,
						sf->block_ctx,
						item_offset,
						force_iodone_flag);
				if (sf->error)
					goto one_stack_frame_backwards;
			}

			goto continue_with_current_leaf_stack_frame;
		}
	} else {
		struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;

		if (-1 == sf->i) {
1120
			sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1121 1122 1123 1124 1125 1126

			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
				printk(KERN_INFO "node %llu level %d items %d"
				       " generation %llu owner %llu\n",
				       sf->block_ctx->start,
				       nodehdr->header.level, sf->nr,
1127 1128 1129 1130
				       btrfs_stack_header_generation(
				       &nodehdr->header),
				       btrfs_stack_header_owner(
				       &nodehdr->header));
1131 1132 1133 1134 1135 1136 1137 1138 1139
		}

continue_with_current_node_stack_frame:
		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
			sf->i++;
			sf->num_copies = 0;
		}

		if (sf->i < sf->nr) {
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
			struct btrfs_key_ptr key_ptr;
			u32 key_ptr_offset;
			u64 next_bytenr;

			key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
					  (uintptr_t)nodehdr;
			if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
			    sf->block_ctx->len) {
				printk(KERN_INFO
				       "btrfsic: node item out of bounce at logical %llu, dev %s\n",
				       sf->block_ctx->start,
				       sf->block_ctx->dev->name);
				goto one_stack_frame_backwards;
			}
			btrfsic_read_from_block_data(
				sf->block_ctx, &key_ptr, key_ptr_offset,
				sizeof(struct btrfs_key_ptr));
1157
			next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

			sf->error = btrfsic_create_link_to_next_block(
					state,
					sf->block,
					sf->block_ctx,
					next_bytenr,
					sf->limit_nesting,
					&sf->next_block_ctx,
					&sf->next_block,
					force_iodone_flag,
					&sf->num_copies,
					&sf->mirror_num,
1170
					&key_ptr.key,
1171
					btrfs_stack_key_generation(&key_ptr));
1172 1173 1174 1175 1176 1177
			if (sf->error)
				goto one_stack_frame_backwards;

			if (NULL != sf->next_block) {
				struct btrfs_header *const next_hdr =
				    (struct btrfs_header *)
1178
				    sf->next_block_ctx.datav[0];
1179 1180

				next_stack = btrfsic_stack_frame_alloc();
1181 1182
				if (NULL == next_stack) {
					sf->error = -1;
1183
					goto one_stack_frame_backwards;
1184
				}
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

				next_stack->i = -1;
				next_stack->block = sf->next_block;
				next_stack->block_ctx = &sf->next_block_ctx;
				next_stack->next_block = NULL;
				next_stack->hdr = next_hdr;
				next_stack->limit_nesting =
				    sf->limit_nesting - 1;
				next_stack->prev = sf;
				sf = next_stack;
				goto continue_with_new_stack_frame;
			}

			goto continue_with_current_node_stack_frame;
		}
	}

one_stack_frame_backwards:
	if (NULL != sf->prev) {
		struct btrfsic_stack_frame *const prev = sf->prev;

		/* the one for the initial block is freed in the caller */
		btrfsic_release_block_ctx(sf->block_ctx);

		if (sf->error) {
			prev->error = sf->error;
			btrfsic_stack_frame_free(sf);
			sf = prev;
			goto one_stack_frame_backwards;
		}

		btrfsic_stack_frame_free(sf);
		sf = prev;
		goto continue_with_new_stack_frame;
	} else {
		BUG_ON(&initial_stack_frame != sf);
	}

	return sf->error;
}

1226 1227 1228 1229 1230 1231 1232 1233
static void btrfsic_read_from_block_data(
	struct btrfsic_block_data_ctx *block_ctx,
	void *dstv, u32 offset, size_t len)
{
	size_t cur;
	size_t offset_in_page;
	char *kaddr;
	char *dst = (char *)dstv;
1234 1235
	size_t start_offset = block_ctx->start & ((u64)PAGE_SIZE - 1);
	unsigned long i = (start_offset + offset) >> PAGE_SHIFT;
1236 1237

	WARN_ON(offset + len > block_ctx->len);
1238
	offset_in_page = (start_offset + offset) & (PAGE_SIZE - 1);
1239 1240

	while (len > 0) {
1241 1242
		cur = min(len, ((size_t)PAGE_SIZE - offset_in_page));
		BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_SIZE));
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
		kaddr = block_ctx->datav[i];
		memcpy(dst, kaddr + offset_in_page, cur);

		dst += cur;
		len -= cur;
		offset_in_page = 0;
		i++;
	}
}

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
static int btrfsic_create_link_to_next_block(
		struct btrfsic_state *state,
		struct btrfsic_block *block,
		struct btrfsic_block_data_ctx *block_ctx,
		u64 next_bytenr,
		int limit_nesting,
		struct btrfsic_block_data_ctx *next_block_ctx,
		struct btrfsic_block **next_blockp,
		int force_iodone_flag,
		int *num_copiesp, int *mirror_nump,
		struct btrfs_disk_key *disk_key,
		u64 parent_generation)
{
	struct btrfsic_block *next_block = NULL;
	int ret;
	struct btrfsic_block_link *l;
	int did_alloc_block_link;
	int block_was_created;

	*next_blockp = NULL;
	if (0 == *num_copiesp) {
		*num_copiesp =
1275
		    btrfs_num_copies(state->root->fs_info,
1276
				     next_bytenr, state->metablock_size);
1277 1278
		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1279
			       next_bytenr, *num_copiesp);
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
		*mirror_nump = 1;
	}

	if (*mirror_nump > *num_copiesp)
		return 0;

	if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
		printk(KERN_INFO
		       "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
		       *mirror_nump);
	ret = btrfsic_map_block(state, next_bytenr,
1291
				state->metablock_size,
1292 1293 1294 1295
				next_block_ctx, *mirror_nump);
	if (ret) {
		printk(KERN_INFO
		       "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1296
		       next_bytenr, *mirror_nump);
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
		btrfsic_release_block_ctx(next_block_ctx);
		*next_blockp = NULL;
		return -1;
	}

	next_block = btrfsic_block_lookup_or_add(state,
						 next_block_ctx, "referenced ",
						 1, force_iodone_flag,
						 !force_iodone_flag,
						 *mirror_nump,
						 &block_was_created);
	if (NULL == next_block) {
		btrfsic_release_block_ctx(next_block_ctx);
		*next_blockp = NULL;
		return -1;
	}
	if (block_was_created) {
		l = NULL;
		next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
	} else {
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
			if (next_block->logical_bytenr != next_bytenr &&
			    !(!next_block->is_metadata &&
			      0 == next_block->logical_bytenr))
				printk(KERN_INFO
				       "Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
				       next_bytenr, next_block_ctx->dev->name,
				       next_block_ctx->dev_bytenr, *mirror_nump,
				       btrfsic_get_block_type(state,
							      next_block),
				       next_block->logical_bytenr);
			else
				printk(KERN_INFO
				       "Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n",
				       next_bytenr, next_block_ctx->dev->name,
				       next_block_ctx->dev_bytenr, *mirror_nump,
				       btrfsic_get_block_type(state,
							      next_block));
		}
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
		next_block->logical_bytenr = next_bytenr;

		next_block->mirror_num = *mirror_nump;
		l = btrfsic_block_link_hashtable_lookup(
				next_block_ctx->dev->bdev,
				next_block_ctx->dev_bytenr,
				block_ctx->dev->bdev,
				block_ctx->dev_bytenr,
				&state->block_link_hashtable);
	}

	next_block->disk_key = *disk_key;
	if (NULL == l) {
		l = btrfsic_block_link_alloc();
		if (NULL == l) {
			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
			btrfsic_release_block_ctx(next_block_ctx);
			*next_blockp = NULL;
			return -1;
		}

		did_alloc_block_link = 1;
		l->block_ref_to = next_block;
		l->block_ref_from = block;
		l->ref_cnt = 1;
		l->parent_generation = parent_generation;

		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
			btrfsic_print_add_link(state, l);

		list_add(&l->node_ref_to, &block->ref_to_list);
		list_add(&l->node_ref_from, &next_block->ref_from_list);

		btrfsic_block_link_hashtable_add(l,
						 &state->block_link_hashtable);
	} else {
		did_alloc_block_link = 0;
		if (0 == limit_nesting) {
			l->ref_cnt++;
			l->parent_generation = parent_generation;
			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
				btrfsic_print_add_link(state, l);
		}
	}

	if (limit_nesting > 0 && did_alloc_block_link) {
		ret = btrfsic_read_block(state, next_block_ctx);
1383
		if (ret < (int)next_block_ctx->len) {
1384 1385
			printk(KERN_INFO
			       "btrfsic: read block @logical %llu failed!\n",
1386
			       next_bytenr);
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
			btrfsic_release_block_ctx(next_block_ctx);
			*next_blockp = NULL;
			return -1;
		}

		*next_blockp = next_block;
	} else {
		*next_blockp = NULL;
	}
	(*mirror_nump)++;

	return 0;
}

static int btrfsic_handle_extent_data(
		struct btrfsic_state *state,
		struct btrfsic_block *block,
		struct btrfsic_block_data_ctx *block_ctx,
		u32 item_offset, int force_iodone_flag)
{
	int ret;
1408 1409 1410 1411 1412
	struct btrfs_file_extent_item file_extent_item;
	u64 file_extent_item_offset;
	u64 next_bytenr;
	u64 num_bytes;
	u64 generation;
1413 1414
	struct btrfsic_block_link *l;

1415 1416
	file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
				  item_offset;
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
	if (file_extent_item_offset +
	    offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
	    block_ctx->len) {
		printk(KERN_INFO
		       "btrfsic: file item out of bounce at logical %llu, dev %s\n",
		       block_ctx->start, block_ctx->dev->name);
		return -1;
	}

	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
		file_extent_item_offset,
		offsetof(struct btrfs_file_extent_item, disk_num_bytes));
	if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1430
	    btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1431 1432 1433
		if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
			printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n",
			       file_extent_item.type,
1434 1435
			       btrfs_stack_file_extent_disk_bytenr(
			       &file_extent_item));
1436 1437 1438
		return 0;
	}

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
	if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
	    block_ctx->len) {
		printk(KERN_INFO
		       "btrfsic: file item out of bounce at logical %llu, dev %s\n",
		       block_ctx->start, block_ctx->dev->name);
		return -1;
	}
	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
				     file_extent_item_offset,
				     sizeof(struct btrfs_file_extent_item));
1449 1450 1451 1452 1453 1454 1455 1456
	next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
	if (btrfs_stack_file_extent_compression(&file_extent_item) ==
	    BTRFS_COMPRESS_NONE) {
		next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
		num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
	} else {
		num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
	}
1457
	generation = btrfs_stack_file_extent_generation(&file_extent_item);
1458

1459 1460 1461
	if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
		printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
		       " offset = %llu, num_bytes = %llu\n",
1462
		       file_extent_item.type,
1463 1464
		       btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
		       btrfs_stack_file_extent_offset(&file_extent_item),
1465
		       num_bytes);
1466 1467 1468 1469 1470
	while (num_bytes > 0) {
		u32 chunk_len;
		int num_copies;
		int mirror_num;

1471 1472
		if (num_bytes > state->datablock_size)
			chunk_len = state->datablock_size;
1473 1474 1475 1476
		else
			chunk_len = num_bytes;

		num_copies =
1477
		    btrfs_num_copies(state->root->fs_info,
1478
				     next_bytenr, state->datablock_size);
1479 1480
		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1481
			       next_bytenr, num_copies);
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
			struct btrfsic_block_data_ctx next_block_ctx;
			struct btrfsic_block *next_block;
			int block_was_created;

			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
				printk(KERN_INFO "btrfsic_handle_extent_data("
				       "mirror_num=%d)\n", mirror_num);
			if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
				printk(KERN_INFO
				       "\tdisk_bytenr = %llu, num_bytes %u\n",
1493
				       next_bytenr, chunk_len);
1494 1495 1496 1497 1498 1499 1500
			ret = btrfsic_map_block(state, next_bytenr,
						chunk_len, &next_block_ctx,
						mirror_num);
			if (ret) {
				printk(KERN_INFO
				       "btrfsic: btrfsic_map_block(@%llu,"
				       " mirror=%d) failed!\n",
1501
				       next_bytenr, mirror_num);
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
				return -1;
			}

			next_block = btrfsic_block_lookup_or_add(
					state,
					&next_block_ctx,
					"referenced ",
					0,
					force_iodone_flag,
					!force_iodone_flag,
					mirror_num,
					&block_was_created);
			if (NULL == next_block) {
				printk(KERN_INFO
				       "btrfsic: error, kmalloc failed!\n");
				btrfsic_release_block_ctx(&next_block_ctx);
				return -1;
			}
			if (!block_was_created) {
1521 1522 1523
				if ((state->print_mask &
				     BTRFSIC_PRINT_MASK_VERBOSE) &&
				    next_block->logical_bytenr != next_bytenr &&
1524 1525 1526 1527 1528 1529 1530 1531
				    !(!next_block->is_metadata &&
				      0 == next_block->logical_bytenr)) {
					printk(KERN_INFO
					       "Referenced block"
					       " @%llu (%s/%llu/%d)"
					       " found in hash table, D,"
					       " bytenr mismatch"
					       " (!= stored %llu).\n",
1532
					       next_bytenr,
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
					       next_block_ctx.dev->name,
					       next_block_ctx.dev_bytenr,
					       mirror_num,
					       next_block->logical_bytenr);
				}
				next_block->logical_bytenr = next_bytenr;
				next_block->mirror_num = mirror_num;
			}

			l = btrfsic_block_link_lookup_or_add(state,
							     &next_block_ctx,
							     next_block, block,
							     generation);
			btrfsic_release_block_ctx(&next_block_ctx);
			if (NULL == l)
				return -1;
		}

		next_bytenr += chunk_len;
		num_bytes -= chunk_len;
	}

	return 0;
}

static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
			     struct btrfsic_block_data_ctx *block_ctx_out,
			     int mirror_num)
{
	int ret;
	u64 length;
	struct btrfs_bio *multi = NULL;
	struct btrfs_device *device;

	length = len;
1568
	ret = btrfs_map_block(state->root->fs_info, READ,
1569 1570
			      bytenr, &length, &multi, mirror_num);

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
	if (ret) {
		block_ctx_out->start = 0;
		block_ctx_out->dev_bytenr = 0;
		block_ctx_out->len = 0;
		block_ctx_out->dev = NULL;
		block_ctx_out->datav = NULL;
		block_ctx_out->pagev = NULL;
		block_ctx_out->mem_to_free = NULL;

		return ret;
	}

1583 1584 1585 1586 1587
	device = multi->stripes[0].dev;
	block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
	block_ctx_out->dev_bytenr = multi->stripes[0].physical;
	block_ctx_out->start = bytenr;
	block_ctx_out->len = len;
1588 1589 1590
	block_ctx_out->datav = NULL;
	block_ctx_out->pagev = NULL;
	block_ctx_out->mem_to_free = NULL;
1591

1592
	kfree(multi);
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
	if (NULL == block_ctx_out->dev) {
		ret = -ENXIO;
		printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
	}

	return ret;
}

static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
{
1603 1604 1605 1606 1607
	if (block_ctx->mem_to_free) {
		unsigned int num_pages;

		BUG_ON(!block_ctx->datav);
		BUG_ON(!block_ctx->pagev);
1608 1609
		num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
			    PAGE_SHIFT;
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
		while (num_pages > 0) {
			num_pages--;
			if (block_ctx->datav[num_pages]) {
				kunmap(block_ctx->pagev[num_pages]);
				block_ctx->datav[num_pages] = NULL;
			}
			if (block_ctx->pagev[num_pages]) {
				__free_page(block_ctx->pagev[num_pages]);
				block_ctx->pagev[num_pages] = NULL;
			}
		}

		kfree(block_ctx->mem_to_free);
		block_ctx->mem_to_free = NULL;
		block_ctx->pagev = NULL;
		block_ctx->datav = NULL;
1626 1627 1628 1629 1630 1631
	}
}

static int btrfsic_read_block(struct btrfsic_state *state,
			      struct btrfsic_block_data_ctx *block_ctx)
{
1632 1633 1634 1635 1636 1637 1638 1639
	unsigned int num_pages;
	unsigned int i;
	u64 dev_bytenr;
	int ret;

	BUG_ON(block_ctx->datav);
	BUG_ON(block_ctx->pagev);
	BUG_ON(block_ctx->mem_to_free);
1640
	if (block_ctx->dev_bytenr & ((u64)PAGE_SIZE - 1)) {
1641 1642
		printk(KERN_INFO
		       "btrfsic: read_block() with unaligned bytenr %llu\n",
1643
		       block_ctx->dev_bytenr);
1644 1645
		return -1;
	}
1646

1647 1648
	num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
		    PAGE_SHIFT;
1649 1650 1651 1652
	block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
					  sizeof(*block_ctx->pagev)) *
					 num_pages, GFP_NOFS);
	if (!block_ctx->mem_to_free)
1653
		return -ENOMEM;
1654 1655 1656 1657 1658 1659
	block_ctx->datav = block_ctx->mem_to_free;
	block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
	for (i = 0; i < num_pages; i++) {
		block_ctx->pagev[i] = alloc_page(GFP_NOFS);
		if (!block_ctx->pagev[i])
			return -1;
1660 1661
	}

1662 1663 1664 1665 1666
	dev_bytenr = block_ctx->dev_bytenr;
	for (i = 0; i < num_pages;) {
		struct bio *bio;
		unsigned int j;

1667
		bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i);
1668 1669 1670 1671 1672 1673 1674
		if (!bio) {
			printk(KERN_INFO
			       "btrfsic: bio_alloc() for %u pages failed!\n",
			       num_pages - i);
			return -1;
		}
		bio->bi_bdev = block_ctx->dev->bdev;
1675
		bio->bi_iter.bi_sector = dev_bytenr >> 9;
M
Mike Christie 已提交
1676
		bio_set_op_attrs(bio, REQ_OP_READ, 0);
1677 1678 1679

		for (j = i; j < num_pages; j++) {
			ret = bio_add_page(bio, block_ctx->pagev[j],
1680 1681
					   PAGE_SIZE, 0);
			if (PAGE_SIZE != ret)
1682 1683 1684 1685 1686 1687 1688
				break;
		}
		if (j == i) {
			printk(KERN_INFO
			       "btrfsic: error, failed to add a single page!\n");
			return -1;
		}
1689
		if (submit_bio_wait(bio)) {
1690 1691 1692 1693 1694 1695 1696
			printk(KERN_INFO
			       "btrfsic: read error at logical %llu dev %s!\n",
			       block_ctx->start, block_ctx->dev->name);
			bio_put(bio);
			return -1;
		}
		bio_put(bio);
1697
		dev_bytenr += (j - i) * PAGE_SIZE;
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
		i = j;
	}
	for (i = 0; i < num_pages; i++) {
		block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
		if (!block_ctx->datav[i]) {
			printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n",
			       block_ctx->dev->name);
			return -1;
		}
	}
1708 1709 1710 1711 1712 1713

	return block_ctx->len;
}

static void btrfsic_dump_database(struct btrfsic_state *state)
{
1714
	const struct btrfsic_block *b_all;
1715 1716 1717 1718

	BUG_ON(NULL == state);

	printk(KERN_INFO "all_blocks_list:\n");
1719 1720
	list_for_each_entry(b_all, &state->all_blocks_list, all_blocks_node) {
		const struct btrfsic_block_link *l;
1721 1722 1723

		printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
		       btrfsic_get_block_type(state, b_all),
1724 1725
		       b_all->logical_bytenr, b_all->dev_state->name,
		       b_all->dev_bytenr, b_all->mirror_num);
1726

1727
		list_for_each_entry(l, &b_all->ref_to_list, node_ref_to) {
1728 1729 1730 1731
			printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
			       " refers %u* to"
			       " %c @%llu (%s/%llu/%d)\n",
			       btrfsic_get_block_type(state, b_all),
1732 1733
			       b_all->logical_bytenr, b_all->dev_state->name,
			       b_all->dev_bytenr, b_all->mirror_num,
1734 1735 1736 1737
			       l->ref_cnt,
			       btrfsic_get_block_type(state, l->block_ref_to),
			       l->block_ref_to->logical_bytenr,
			       l->block_ref_to->dev_state->name,
1738
			       l->block_ref_to->dev_bytenr,
1739 1740 1741
			       l->block_ref_to->mirror_num);
		}

1742
		list_for_each_entry(l, &b_all->ref_from_list, node_ref_from) {
1743 1744 1745 1746
			printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
			       " is ref %u* from"
			       " %c @%llu (%s/%llu/%d)\n",
			       btrfsic_get_block_type(state, b_all),
1747 1748
			       b_all->logical_bytenr, b_all->dev_state->name,
			       b_all->dev_bytenr, b_all->mirror_num,
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
			       l->ref_cnt,
			       btrfsic_get_block_type(state, l->block_ref_from),
			       l->block_ref_from->logical_bytenr,
			       l->block_ref_from->dev_state->name,
			       l->block_ref_from->dev_bytenr,
			       l->block_ref_from->mirror_num);
		}

		printk(KERN_INFO "\n");
	}
}

/*
 * Test whether the disk block contains a tree block (leaf or node)
 * (note that this test fails for the super block)
 */
static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1766
				     char **datav, unsigned int num_pages)
1767 1768 1769 1770
{
	struct btrfs_header *h;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 crc = ~(u32)0;
1771
	unsigned int i;
1772

1773
	if (num_pages * PAGE_SIZE < state->metablock_size)
1774
		return 1; /* not metadata */
1775
	num_pages = state->metablock_size >> PAGE_SHIFT;
1776
	h = (struct btrfs_header *)datav[0];
1777 1778

	if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
1779
		return 1;
1780

1781 1782
	for (i = 0; i < num_pages; i++) {
		u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1783 1784
		size_t sublen = i ? PAGE_SIZE :
				    (PAGE_SIZE - BTRFS_CSUM_SIZE);
1785

1786
		crc = btrfs_crc32c(crc, data, sublen);
1787
	}
1788 1789
	btrfs_csum_final(crc, csum);
	if (memcmp(csum, h->csum, state->csum_size))
1790
		return 1;
1791

1792
	return 0; /* is metadata */
1793 1794 1795
}

static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1796 1797 1798
					  u64 dev_bytenr, char **mapped_datav,
					  unsigned int num_pages,
					  struct bio *bio, int *bio_is_patched,
1799 1800 1801 1802 1803 1804 1805 1806 1807
					  struct buffer_head *bh,
					  int submit_bio_bh_rw)
{
	int is_metadata;
	struct btrfsic_block *block;
	struct btrfsic_block_data_ctx block_ctx;
	int ret;
	struct btrfsic_state *state = dev_state->state;
	struct block_device *bdev = dev_state->bdev;
1808
	unsigned int processed_len;
1809 1810 1811 1812

	if (NULL != bio_is_patched)
		*bio_is_patched = 0;

1813 1814 1815 1816 1817 1818 1819 1820
again:
	if (num_pages == 0)
		return;

	processed_len = 0;
	is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
						      num_pages));

1821 1822 1823
	block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
					       &state->block_hashtable);
	if (NULL != block) {
1824
		u64 bytenr = 0;
1825
		struct btrfsic_block_link *l, *tmp;
1826 1827

		if (block->is_superblock) {
1828 1829
			bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
						    mapped_datav[0]);
1830
			if (num_pages * PAGE_SIZE <
1831 1832 1833 1834 1835
			    BTRFS_SUPER_INFO_SIZE) {
				printk(KERN_INFO
				       "btrfsic: cannot work with too short bios!\n");
				return;
			}
1836
			is_metadata = 1;
1837
			BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_SIZE - 1));
1838
			processed_len = BTRFS_SUPER_INFO_SIZE;
1839 1840 1841 1842 1843 1844 1845 1846 1847
			if (state->print_mask &
			    BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
				printk(KERN_INFO
				       "[before new superblock is written]:\n");
				btrfsic_dump_tree_sub(state, block, 0);
			}
		}
		if (is_metadata) {
			if (!block->is_superblock) {
1848
				if (num_pages * PAGE_SIZE <
1849 1850 1851 1852 1853 1854
				    state->metablock_size) {
					printk(KERN_INFO
					       "btrfsic: cannot work with too short bios!\n");
					return;
				}
				processed_len = state->metablock_size;
1855 1856 1857
				bytenr = btrfs_stack_header_bytenr(
						(struct btrfs_header *)
						mapped_datav[0]);
1858 1859
				btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
							       dev_state,
1860
							       dev_bytenr);
1861
			}
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
				if (block->logical_bytenr != bytenr &&
				    !(!block->is_metadata &&
				      block->logical_bytenr == 0))
					printk(KERN_INFO
					       "Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
					       bytenr, dev_state->name,
					       dev_bytenr,
					       block->mirror_num,
					       btrfsic_get_block_type(state,
								      block),
					       block->logical_bytenr);
				else
					printk(KERN_INFO
					       "Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
					       bytenr, dev_state->name,
					       dev_bytenr, block->mirror_num,
					       btrfsic_get_block_type(state,
								      block));
			}
1882
			block->logical_bytenr = bytenr;
1883
		} else {
1884
			if (num_pages * PAGE_SIZE <
1885 1886 1887 1888 1889 1890
			    state->datablock_size) {
				printk(KERN_INFO
				       "btrfsic: cannot work with too short bios!\n");
				return;
			}
			processed_len = state->datablock_size;
1891 1892 1893 1894 1895
			bytenr = block->logical_bytenr;
			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
				printk(KERN_INFO
				       "Written block @%llu (%s/%llu/%d)"
				       " found in hash table, %c.\n",
1896
				       bytenr, dev_state->name, dev_bytenr,
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
				       block->mirror_num,
				       btrfsic_get_block_type(state, block));
		}

		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
			printk(KERN_INFO
			       "ref_to_list: %cE, ref_from_list: %cE\n",
			       list_empty(&block->ref_to_list) ? ' ' : '!',
			       list_empty(&block->ref_from_list) ? ' ' : '!');
		if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
			printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
			       " @%llu (%s/%llu/%d), old(gen=%llu,"
			       " objectid=%llu, type=%d, offset=%llu),"
			       " new(gen=%llu),"
			       " which is referenced by most recent superblock"
			       " (superblockgen=%llu)!\n",
1913 1914 1915
			       btrfsic_get_block_type(state, block), bytenr,
			       dev_state->name, dev_bytenr, block->mirror_num,
			       block->generation,
1916
			       btrfs_disk_key_objectid(&block->disk_key),
1917
			       block->disk_key.type,
1918 1919 1920
			       btrfs_disk_key_offset(&block->disk_key),
			       btrfs_stack_header_generation(
				       (struct btrfs_header *) mapped_datav[0]),
1921 1922 1923 1924 1925 1926 1927 1928
			       state->max_superblock_generation);
			btrfsic_dump_tree(state);
		}

		if (!block->is_iodone && !block->never_written) {
			printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
			       " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
			       " which is not yet iodone!\n",
1929 1930 1931
			       btrfsic_get_block_type(state, block), bytenr,
			       dev_state->name, dev_bytenr, block->mirror_num,
			       block->generation,
1932 1933 1934
			       btrfs_stack_header_generation(
				       (struct btrfs_header *)
				       mapped_datav[0]));
1935 1936
			/* it would not be safe to go on */
			btrfsic_dump_tree(state);
1937
			goto continue_loop;
1938 1939 1940 1941 1942
		}

		/*
		 * Clear all references of this block. Do not free
		 * the block itself even if is not referenced anymore
1943
		 * because it still carries valuable information
1944 1945
		 * like whether it was ever written and IO completed.
		 */
1946 1947
		list_for_each_entry_safe(l, tmp, &block->ref_to_list,
					 node_ref_to) {
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
				btrfsic_print_rem_link(state, l);
			l->ref_cnt--;
			if (0 == l->ref_cnt) {
				list_del(&l->node_ref_to);
				list_del(&l->node_ref_from);
				btrfsic_block_link_hashtable_remove(l);
				btrfsic_block_link_free(l);
			}
		}

		block_ctx.dev = dev_state;
		block_ctx.dev_bytenr = dev_bytenr;
1961 1962 1963 1964 1965
		block_ctx.start = bytenr;
		block_ctx.len = processed_len;
		block_ctx.pagev = NULL;
		block_ctx.mem_to_free = NULL;
		block_ctx.datav = mapped_datav;
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

		if (is_metadata || state->include_extent_data) {
			block->never_written = 0;
			block->iodone_w_error = 0;
			if (NULL != bio) {
				block->is_iodone = 0;
				BUG_ON(NULL == bio_is_patched);
				if (!*bio_is_patched) {
					block->orig_bio_bh_private =
					    bio->bi_private;
					block->orig_bio_bh_end_io.bio =
					    bio->bi_end_io;
					block->next_in_same_bio = NULL;
					bio->bi_private = block;
					bio->bi_end_io = btrfsic_bio_end_io;
					*bio_is_patched = 1;
				} else {
					struct btrfsic_block *chained_block =
					    (struct btrfsic_block *)
					    bio->bi_private;

					BUG_ON(NULL == chained_block);
					block->orig_bio_bh_private =
					    chained_block->orig_bio_bh_private;
					block->orig_bio_bh_end_io.bio =
					    chained_block->orig_bio_bh_end_io.
					    bio;
					block->next_in_same_bio = chained_block;
					bio->bi_private = block;
				}
			} else if (NULL != bh) {
				block->is_iodone = 0;
				block->orig_bio_bh_private = bh->b_private;
				block->orig_bio_bh_end_io.bh = bh->b_end_io;
				block->next_in_same_bio = NULL;
				bh->b_private = block;
				bh->b_end_io = btrfsic_bh_end_io;
			} else {
				block->is_iodone = 1;
				block->orig_bio_bh_private = NULL;
				block->orig_bio_bh_end_io.bio = NULL;
				block->next_in_same_bio = NULL;
			}
		}

		block->flush_gen = dev_state->last_flush_gen + 1;
		block->submit_bio_bh_rw = submit_bio_bh_rw;
		if (is_metadata) {
			block->logical_bytenr = bytenr;
			block->is_metadata = 1;
			if (block->is_superblock) {
2017
				BUG_ON(PAGE_SIZE !=
2018
				       BTRFS_SUPER_INFO_SIZE);
2019 2020 2021 2022
				ret = btrfsic_process_written_superblock(
						state,
						block,
						(struct btrfs_super_block *)
2023
						mapped_datav[0]);
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
				if (state->print_mask &
				    BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
					printk(KERN_INFO
					"[after new superblock is written]:\n");
					btrfsic_dump_tree_sub(state, block, 0);
				}
			} else {
				block->mirror_num = 0;	/* unknown */
				ret = btrfsic_process_metablock(
						state,
						block,
						&block_ctx,
						0, 0);
			}
			if (ret)
				printk(KERN_INFO
				       "btrfsic: btrfsic_process_metablock"
				       "(root @%llu) failed!\n",
2042
				       dev_bytenr);
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
		} else {
			block->is_metadata = 0;
			block->mirror_num = 0;	/* unknown */
			block->generation = BTRFSIC_GENERATION_UNKNOWN;
			if (!state->include_extent_data
			    && list_empty(&block->ref_from_list)) {
				/*
				 * disk block is overwritten with extent
				 * data (not meta data) and we are configured
				 * to not include extent data: take the
				 * chance and free the block's memory
				 */
				btrfsic_block_hashtable_remove(block);
				list_del(&block->all_blocks_node);
				btrfsic_block_free(block);
			}
		}
		btrfsic_release_block_ctx(&block_ctx);
	} else {
		/* block has not been found in hash table */
		u64 bytenr;

		if (!is_metadata) {
2066
			processed_len = state->datablock_size;
2067 2068 2069
			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
				printk(KERN_INFO "Written block (%s/%llu/?)"
				       " !found in hash table, D.\n",
2070
				       dev_state->name, dev_bytenr);
2071 2072 2073 2074
			if (!state->include_extent_data) {
				/* ignore that written D block */
				goto continue_loop;
			}
2075 2076 2077 2078 2079

			/* this is getting ugly for the
			 * include_extent_data case... */
			bytenr = 0;	/* unknown */
		} else {
2080
			processed_len = state->metablock_size;
2081 2082 2083
			bytenr = btrfs_stack_header_bytenr(
					(struct btrfs_header *)
					mapped_datav[0]);
2084
			btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2085
						       dev_bytenr);
2086 2087 2088 2089
			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
				printk(KERN_INFO
				       "Written block @%llu (%s/%llu/?)"
				       " !found in hash table, M.\n",
2090
				       bytenr, dev_state->name, dev_bytenr);
2091
		}
2092

2093 2094
		block_ctx.dev = dev_state;
		block_ctx.dev_bytenr = dev_bytenr;
2095 2096 2097 2098 2099
		block_ctx.start = bytenr;
		block_ctx.len = processed_len;
		block_ctx.pagev = NULL;
		block_ctx.mem_to_free = NULL;
		block_ctx.datav = mapped_datav;
2100 2101 2102 2103 2104

		block = btrfsic_block_alloc();
		if (NULL == block) {
			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
			btrfsic_release_block_ctx(&block_ctx);
2105
			goto continue_loop;
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
		}
		block->dev_state = dev_state;
		block->dev_bytenr = dev_bytenr;
		block->logical_bytenr = bytenr;
		block->is_metadata = is_metadata;
		block->never_written = 0;
		block->iodone_w_error = 0;
		block->mirror_num = 0;	/* unknown */
		block->flush_gen = dev_state->last_flush_gen + 1;
		block->submit_bio_bh_rw = submit_bio_bh_rw;
		if (NULL != bio) {
			block->is_iodone = 0;
			BUG_ON(NULL == bio_is_patched);
			if (!*bio_is_patched) {
				block->orig_bio_bh_private = bio->bi_private;
				block->orig_bio_bh_end_io.bio = bio->bi_end_io;
				block->next_in_same_bio = NULL;
				bio->bi_private = block;
				bio->bi_end_io = btrfsic_bio_end_io;
				*bio_is_patched = 1;
			} else {
				struct btrfsic_block *chained_block =
				    (struct btrfsic_block *)
				    bio->bi_private;

				BUG_ON(NULL == chained_block);
				block->orig_bio_bh_private =
				    chained_block->orig_bio_bh_private;
				block->orig_bio_bh_end_io.bio =
				    chained_block->orig_bio_bh_end_io.bio;
				block->next_in_same_bio = chained_block;
				bio->bi_private = block;
			}
		} else if (NULL != bh) {
			block->is_iodone = 0;
			block->orig_bio_bh_private = bh->b_private;
			block->orig_bio_bh_end_io.bh = bh->b_end_io;
			block->next_in_same_bio = NULL;
			bh->b_private = block;
			bh->b_end_io = btrfsic_bh_end_io;
		} else {
			block->is_iodone = 1;
			block->orig_bio_bh_private = NULL;
			block->orig_bio_bh_end_io.bio = NULL;
			block->next_in_same_bio = NULL;
		}
		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
			printk(KERN_INFO
			       "New written %c-block @%llu (%s/%llu/%d)\n",
			       is_metadata ? 'M' : 'D',
2156 2157
			       block->logical_bytenr, block->dev_state->name,
			       block->dev_bytenr, block->mirror_num);
2158 2159 2160 2161 2162
		list_add(&block->all_blocks_node, &state->all_blocks_list);
		btrfsic_block_hashtable_add(block, &state->block_hashtable);

		if (is_metadata) {
			ret = btrfsic_process_metablock(state, block,
2163
							&block_ctx, 0, 0);
2164 2165 2166 2167
			if (ret)
				printk(KERN_INFO
				       "btrfsic: process_metablock(root @%llu)"
				       " failed!\n",
2168
				       dev_bytenr);
2169 2170 2171
		}
		btrfsic_release_block_ctx(&block_ctx);
	}
2172 2173 2174 2175

continue_loop:
	BUG_ON(!processed_len);
	dev_bytenr += processed_len;
2176 2177
	mapped_datav += processed_len >> PAGE_SHIFT;
	num_pages -= processed_len >> PAGE_SHIFT;
2178
	goto again;
2179 2180
}

2181
static void btrfsic_bio_end_io(struct bio *bp)
2182 2183 2184 2185 2186 2187 2188
{
	struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
	int iodone_w_error;

	/* mutex is not held! This is not save if IO is not yet completed
	 * on umount */
	iodone_w_error = 0;
2189
	if (bp->bi_error)
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
		iodone_w_error = 1;

	BUG_ON(NULL == block);
	bp->bi_private = block->orig_bio_bh_private;
	bp->bi_end_io = block->orig_bio_bh_end_io.bio;

	do {
		struct btrfsic_block *next_block;
		struct btrfsic_dev_state *const dev_state = block->dev_state;

		if ((dev_state->state->print_mask &
		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
			printk(KERN_INFO
			       "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2204
			       bp->bi_error,
2205
			       btrfsic_get_block_type(dev_state->state, block),
2206 2207
			       block->logical_bytenr, dev_state->name,
			       block->dev_bytenr, block->mirror_num);
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
		next_block = block->next_in_same_bio;
		block->iodone_w_error = iodone_w_error;
		if (block->submit_bio_bh_rw & REQ_FLUSH) {
			dev_state->last_flush_gen++;
			if ((dev_state->state->print_mask &
			     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
				printk(KERN_INFO
				       "bio_end_io() new %s flush_gen=%llu\n",
				       dev_state->name,
				       dev_state->last_flush_gen);
		}
		if (block->submit_bio_bh_rw & REQ_FUA)
			block->flush_gen = 0; /* FUA completed means block is
					       * on disk */
		block->is_iodone = 1; /* for FLUSH, this releases the block */
		block = next_block;
	} while (NULL != block);

2226
	bp->bi_end_io(bp);
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
}

static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
{
	struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
	int iodone_w_error = !uptodate;
	struct btrfsic_dev_state *dev_state;

	BUG_ON(NULL == block);
	dev_state = block->dev_state;
	if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
		printk(KERN_INFO
		       "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
		       iodone_w_error,
		       btrfsic_get_block_type(dev_state->state, block),
2242 2243
		       block->logical_bytenr, block->dev_state->name,
		       block->dev_bytenr, block->mirror_num);
2244 2245 2246 2247 2248 2249 2250 2251

	block->iodone_w_error = iodone_w_error;
	if (block->submit_bio_bh_rw & REQ_FLUSH) {
		dev_state->last_flush_gen++;
		if ((dev_state->state->print_mask &
		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
			printk(KERN_INFO
			       "bh_end_io() new %s flush_gen=%llu\n",
2252
			       dev_state->name, dev_state->last_flush_gen);
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
	}
	if (block->submit_bio_bh_rw & REQ_FUA)
		block->flush_gen = 0; /* FUA completed means block is on disk */

	bh->b_private = block->orig_bio_bh_private;
	bh->b_end_io = block->orig_bio_bh_end_io.bh;
	block->is_iodone = 1; /* for FLUSH, this releases the block */
	bh->b_end_io(bh, uptodate);
}

static int btrfsic_process_written_superblock(
		struct btrfsic_state *state,
		struct btrfsic_block *const superblock,
		struct btrfs_super_block *const super_hdr)
{
	int pass;

	superblock->generation = btrfs_super_generation(super_hdr);
	if (!(superblock->generation > state->max_superblock_generation ||
	      0 == state->max_superblock_generation)) {
		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
			printk(KERN_INFO
			       "btrfsic: superblock @%llu (%s/%llu/%d)"
			       " with old gen %llu <= %llu\n",
2277
			       superblock->logical_bytenr,
2278
			       superblock->dev_state->name,
2279
			       superblock->dev_bytenr, superblock->mirror_num,
2280 2281 2282 2283 2284 2285 2286
			       btrfs_super_generation(super_hdr),
			       state->max_superblock_generation);
	} else {
		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
			printk(KERN_INFO
			       "btrfsic: got new superblock @%llu (%s/%llu/%d)"
			       " with new gen %llu > %llu\n",
2287
			       superblock->logical_bytenr,
2288
			       superblock->dev_state->name,
2289
			       superblock->dev_bytenr, superblock->mirror_num,
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
			       btrfs_super_generation(super_hdr),
			       state->max_superblock_generation);

		state->max_superblock_generation =
		    btrfs_super_generation(super_hdr);
		state->latest_superblock = superblock;
	}

	for (pass = 0; pass < 3; pass++) {
		int ret;
		u64 next_bytenr;
		struct btrfsic_block *next_block;
		struct btrfsic_block_data_ctx tmp_next_block_ctx;
		struct btrfsic_block_link *l;
		int num_copies;
		int mirror_num;
		const char *additional_string = NULL;
2307
		struct btrfs_disk_key tmp_disk_key = {0};
2308

2309 2310 2311
		btrfs_set_disk_key_objectid(&tmp_disk_key,
					    BTRFS_ROOT_ITEM_KEY);
		btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2312 2313 2314

		switch (pass) {
		case 0:
2315 2316
			btrfs_set_disk_key_objectid(&tmp_disk_key,
						    BTRFS_ROOT_TREE_OBJECTID);
2317 2318 2319 2320
			additional_string = "root ";
			next_bytenr = btrfs_super_root(super_hdr);
			if (state->print_mask &
			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2321
				printk(KERN_INFO "root@%llu\n", next_bytenr);
2322 2323
			break;
		case 1:
2324 2325
			btrfs_set_disk_key_objectid(&tmp_disk_key,
						    BTRFS_CHUNK_TREE_OBJECTID);
2326 2327 2328 2329
			additional_string = "chunk ";
			next_bytenr = btrfs_super_chunk_root(super_hdr);
			if (state->print_mask &
			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2330
				printk(KERN_INFO "chunk@%llu\n", next_bytenr);
2331 2332
			break;
		case 2:
2333 2334
			btrfs_set_disk_key_objectid(&tmp_disk_key,
						    BTRFS_TREE_LOG_OBJECTID);
2335 2336 2337 2338 2339 2340
			additional_string = "log ";
			next_bytenr = btrfs_super_log_root(super_hdr);
			if (0 == next_bytenr)
				continue;
			if (state->print_mask &
			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2341
				printk(KERN_INFO "log@%llu\n", next_bytenr);
2342 2343 2344 2345
			break;
		}

		num_copies =
2346
		    btrfs_num_copies(state->root->fs_info,
2347
				     next_bytenr, BTRFS_SUPER_INFO_SIZE);
2348 2349
		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
2350
			       next_bytenr, num_copies);
2351 2352 2353 2354 2355 2356 2357
		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
			int was_created;

			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
				printk(KERN_INFO
				       "btrfsic_process_written_superblock("
				       "mirror_num=%d)\n", mirror_num);
2358 2359
			ret = btrfsic_map_block(state, next_bytenr,
						BTRFS_SUPER_INFO_SIZE,
2360 2361 2362 2363 2364 2365
						&tmp_next_block_ctx,
						mirror_num);
			if (ret) {
				printk(KERN_INFO
				       "btrfsic: btrfsic_map_block(@%llu,"
				       " mirror=%d) failed!\n",
2366
				       next_bytenr, mirror_num);
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
				return -1;
			}

			next_block = btrfsic_block_lookup_or_add(
					state,
					&tmp_next_block_ctx,
					additional_string,
					1, 0, 1,
					mirror_num,
					&was_created);
			if (NULL == next_block) {
				printk(KERN_INFO
				       "btrfsic: error, kmalloc failed!\n");
				btrfsic_release_block_ctx(&tmp_next_block_ctx);
				return -1;
			}

			next_block->disk_key = tmp_disk_key;
			if (was_created)
				next_block->generation =
				    BTRFSIC_GENERATION_UNKNOWN;
			l = btrfsic_block_link_lookup_or_add(
					state,
					&tmp_next_block_ctx,
					next_block,
					superblock,
					BTRFSIC_GENERATION_UNKNOWN);
			btrfsic_release_block_ctx(&tmp_next_block_ctx);
			if (NULL == l)
				return -1;
		}
	}

2400
	if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2401 2402 2403 2404 2405 2406 2407 2408 2409
		btrfsic_dump_tree(state);

	return 0;
}

static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
					struct btrfsic_block *const block,
					int recursion_level)
{
2410
	const struct btrfsic_block_link *l;
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
	int ret = 0;

	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
		/*
		 * Note that this situation can happen and does not
		 * indicate an error in regular cases. It happens
		 * when disk blocks are freed and later reused.
		 * The check-integrity module is not aware of any
		 * block free operations, it just recognizes block
		 * write operations. Therefore it keeps the linkage
		 * information for a block until a block is
		 * rewritten. This can temporarily cause incorrect
		 * and even circular linkage informations. This
		 * causes no harm unless such blocks are referenced
		 * by the most recent super block.
		 */
		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
			printk(KERN_INFO
			       "btrfsic: abort cyclic linkage (case 1).\n");

		return ret;
	}

	/*
	 * This algorithm is recursive because the amount of used stack
	 * space is very small and the max recursion depth is limited.
	 */
2438
	list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2439 2440 2441 2442 2443 2444
		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
			printk(KERN_INFO
			       "rl=%d, %c @%llu (%s/%llu/%d)"
			       " %u* refers to %c @%llu (%s/%llu/%d)\n",
			       recursion_level,
			       btrfsic_get_block_type(state, block),
2445 2446
			       block->logical_bytenr, block->dev_state->name,
			       block->dev_bytenr, block->mirror_num,
2447 2448 2449 2450
			       l->ref_cnt,
			       btrfsic_get_block_type(state, l->block_ref_to),
			       l->block_ref_to->logical_bytenr,
			       l->block_ref_to->dev_state->name,
2451
			       l->block_ref_to->dev_bytenr,
2452 2453 2454 2455 2456 2457 2458 2459
			       l->block_ref_to->mirror_num);
		if (l->block_ref_to->never_written) {
			printk(KERN_INFO "btrfs: attempt to write superblock"
			       " which references block %c @%llu (%s/%llu/%d)"
			       " which is never written!\n",
			       btrfsic_get_block_type(state, l->block_ref_to),
			       l->block_ref_to->logical_bytenr,
			       l->block_ref_to->dev_state->name,
2460
			       l->block_ref_to->dev_bytenr,
2461 2462 2463 2464 2465 2466 2467 2468 2469
			       l->block_ref_to->mirror_num);
			ret = -1;
		} else if (!l->block_ref_to->is_iodone) {
			printk(KERN_INFO "btrfs: attempt to write superblock"
			       " which references block %c @%llu (%s/%llu/%d)"
			       " which is not yet iodone!\n",
			       btrfsic_get_block_type(state, l->block_ref_to),
			       l->block_ref_to->logical_bytenr,
			       l->block_ref_to->dev_state->name,
2470
			       l->block_ref_to->dev_bytenr,
2471 2472
			       l->block_ref_to->mirror_num);
			ret = -1;
2473 2474 2475 2476 2477 2478 2479
		} else if (l->block_ref_to->iodone_w_error) {
			printk(KERN_INFO "btrfs: attempt to write superblock"
			       " which references block %c @%llu (%s/%llu/%d)"
			       " which has write error!\n",
			       btrfsic_get_block_type(state, l->block_ref_to),
			       l->block_ref_to->logical_bytenr,
			       l->block_ref_to->dev_state->name,
2480
			       l->block_ref_to->dev_bytenr,
2481 2482
			       l->block_ref_to->mirror_num);
			ret = -1;
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
		} else if (l->parent_generation !=
			   l->block_ref_to->generation &&
			   BTRFSIC_GENERATION_UNKNOWN !=
			   l->parent_generation &&
			   BTRFSIC_GENERATION_UNKNOWN !=
			   l->block_ref_to->generation) {
			printk(KERN_INFO "btrfs: attempt to write superblock"
			       " which references block %c @%llu (%s/%llu/%d)"
			       " with generation %llu !="
			       " parent generation %llu!\n",
			       btrfsic_get_block_type(state, l->block_ref_to),
			       l->block_ref_to->logical_bytenr,
			       l->block_ref_to->dev_state->name,
2496
			       l->block_ref_to->dev_bytenr,
2497
			       l->block_ref_to->mirror_num,
2498 2499
			       l->block_ref_to->generation,
			       l->parent_generation);
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
			ret = -1;
		} else if (l->block_ref_to->flush_gen >
			   l->block_ref_to->dev_state->last_flush_gen) {
			printk(KERN_INFO "btrfs: attempt to write superblock"
			       " which references block %c @%llu (%s/%llu/%d)"
			       " which is not flushed out of disk's write cache"
			       " (block flush_gen=%llu,"
			       " dev->flush_gen=%llu)!\n",
			       btrfsic_get_block_type(state, l->block_ref_to),
			       l->block_ref_to->logical_bytenr,
			       l->block_ref_to->dev_state->name,
2511 2512
			       l->block_ref_to->dev_bytenr,
			       l->block_ref_to->mirror_num, block->flush_gen,
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
			       l->block_ref_to->dev_state->last_flush_gen);
			ret = -1;
		} else if (-1 == btrfsic_check_all_ref_blocks(state,
							      l->block_ref_to,
							      recursion_level +
							      1)) {
			ret = -1;
		}
	}

	return ret;
}

static int btrfsic_is_block_ref_by_superblock(
		const struct btrfsic_state *state,
		const struct btrfsic_block *block,
		int recursion_level)
{
2531
	const struct btrfsic_block_link *l;
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545

	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
		/* refer to comment at "abort cyclic linkage (case 1)" */
		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
			printk(KERN_INFO
			       "btrfsic: abort cyclic linkage (case 2).\n");

		return 0;
	}

	/*
	 * This algorithm is recursive because the amount of used stack space
	 * is very small and the max recursion depth is limited.
	 */
2546
	list_for_each_entry(l, &block->ref_from_list, node_ref_from) {
2547 2548 2549 2550 2551 2552
		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
			printk(KERN_INFO
			       "rl=%d, %c @%llu (%s/%llu/%d)"
			       " is ref %u* from %c @%llu (%s/%llu/%d)\n",
			       recursion_level,
			       btrfsic_get_block_type(state, block),
2553 2554
			       block->logical_bytenr, block->dev_state->name,
			       block->dev_bytenr, block->mirror_num,
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
			       l->ref_cnt,
			       btrfsic_get_block_type(state, l->block_ref_from),
			       l->block_ref_from->logical_bytenr,
			       l->block_ref_from->dev_state->name,
			       l->block_ref_from->dev_bytenr,
			       l->block_ref_from->mirror_num);
		if (l->block_ref_from->is_superblock &&
		    state->latest_superblock->dev_bytenr ==
		    l->block_ref_from->dev_bytenr &&
		    state->latest_superblock->dev_state->bdev ==
		    l->block_ref_from->dev_state->bdev)
			return 1;
		else if (btrfsic_is_block_ref_by_superblock(state,
							    l->block_ref_from,
							    recursion_level +
							    1))
			return 1;
	}

	return 0;
}

static void btrfsic_print_add_link(const struct btrfsic_state *state,
				   const struct btrfsic_block_link *l)
{
	printk(KERN_INFO
	       "Add %u* link from %c @%llu (%s/%llu/%d)"
	       " to %c @%llu (%s/%llu/%d).\n",
	       l->ref_cnt,
	       btrfsic_get_block_type(state, l->block_ref_from),
2585
	       l->block_ref_from->logical_bytenr,
2586
	       l->block_ref_from->dev_state->name,
2587
	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2588
	       btrfsic_get_block_type(state, l->block_ref_to),
2589 2590
	       l->block_ref_to->logical_bytenr,
	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
	       l->block_ref_to->mirror_num);
}

static void btrfsic_print_rem_link(const struct btrfsic_state *state,
				   const struct btrfsic_block_link *l)
{
	printk(KERN_INFO
	       "Rem %u* link from %c @%llu (%s/%llu/%d)"
	       " to %c @%llu (%s/%llu/%d).\n",
	       l->ref_cnt,
	       btrfsic_get_block_type(state, l->block_ref_from),
2602
	       l->block_ref_from->logical_bytenr,
2603
	       l->block_ref_from->dev_state->name,
2604
	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2605
	       btrfsic_get_block_type(state, l->block_ref_to),
2606 2607
	       l->block_ref_to->logical_bytenr,
	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
	       l->block_ref_to->mirror_num);
}

static char btrfsic_get_block_type(const struct btrfsic_state *state,
				   const struct btrfsic_block *block)
{
	if (block->is_superblock &&
	    state->latest_superblock->dev_bytenr == block->dev_bytenr &&
	    state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
		return 'S';
	else if (block->is_superblock)
		return 's';
	else if (block->is_metadata)
		return 'M';
	else
		return 'D';
}

static void btrfsic_dump_tree(const struct btrfsic_state *state)
{
	btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
}

static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
				  const struct btrfsic_block *block,
				  int indent_level)
{
2635
	const struct btrfsic_block_link *l;
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
	int indent_add;
	static char buf[80];
	int cursor_position;

	/*
	 * Should better fill an on-stack buffer with a complete line and
	 * dump it at once when it is time to print a newline character.
	 */

	/*
	 * This algorithm is recursive because the amount of used stack space
	 * is very small and the max recursion depth is limited.
	 */
	indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
			     btrfsic_get_block_type(state, block),
2651 2652
			     block->logical_bytenr, block->dev_state->name,
			     block->dev_bytenr, block->mirror_num);
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
	if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
		printk("[...]\n");
		return;
	}
	printk(buf);
	indent_level += indent_add;
	if (list_empty(&block->ref_to_list)) {
		printk("\n");
		return;
	}
	if (block->mirror_num > 1 &&
	    !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
		printk(" [...]\n");
		return;
	}

	cursor_position = indent_level;
2670
	list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
		while (cursor_position < indent_level) {
			printk(" ");
			cursor_position++;
		}
		if (l->ref_cnt > 1)
			indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
		else
			indent_add = sprintf(buf, " --> ");
		if (indent_level + indent_add >
		    BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
			printk("[...]\n");
			cursor_position = 0;
			continue;
		}

		printk(buf);

		btrfsic_dump_tree_sub(state, l->block_ref_to,
				      indent_level + indent_add);
		cursor_position = 0;
	}
}

static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
		struct btrfsic_state *state,
		struct btrfsic_block_data_ctx *next_block_ctx,
		struct btrfsic_block *next_block,
		struct btrfsic_block *from_block,
		u64 parent_generation)
{
	struct btrfsic_block_link *l;

	l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
						next_block_ctx->dev_bytenr,
						from_block->dev_state->bdev,
						from_block->dev_bytenr,
						&state->block_link_hashtable);
	if (NULL == l) {
		l = btrfsic_block_link_alloc();
		if (NULL == l) {
			printk(KERN_INFO
			       "btrfsic: error, kmalloc" " failed!\n");
			return NULL;
		}

		l->block_ref_to = next_block;
		l->block_ref_from = from_block;
		l->ref_cnt = 1;
		l->parent_generation = parent_generation;

		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
			btrfsic_print_add_link(state, l);

		list_add(&l->node_ref_to, &from_block->ref_to_list);
		list_add(&l->node_ref_from, &next_block->ref_from_list);

		btrfsic_block_link_hashtable_add(l,
						 &state->block_link_hashtable);
	} else {
		l->ref_cnt++;
		l->parent_generation = parent_generation;
		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
			btrfsic_print_add_link(state, l);
	}

	return l;
}

static struct btrfsic_block *btrfsic_block_lookup_or_add(
		struct btrfsic_state *state,
		struct btrfsic_block_data_ctx *block_ctx,
		const char *additional_string,
		int is_metadata,
		int is_iodone,
		int never_written,
		int mirror_num,
		int *was_created)
{
	struct btrfsic_block *block;

	block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
					       block_ctx->dev_bytenr,
					       &state->block_hashtable);
	if (NULL == block) {
		struct btrfsic_dev_state *dev_state;

		block = btrfsic_block_alloc();
		if (NULL == block) {
			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
			return NULL;
		}
		dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
		if (NULL == dev_state) {
			printk(KERN_INFO
			       "btrfsic: error, lookup dev_state failed!\n");
			btrfsic_block_free(block);
			return NULL;
		}
		block->dev_state = dev_state;
		block->dev_bytenr = block_ctx->dev_bytenr;
		block->logical_bytenr = block_ctx->start;
		block->is_metadata = is_metadata;
		block->is_iodone = is_iodone;
		block->never_written = never_written;
		block->mirror_num = mirror_num;
		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
			printk(KERN_INFO
			       "New %s%c-block @%llu (%s/%llu/%d)\n",
			       additional_string,
			       btrfsic_get_block_type(state, block),
2781 2782
			       block->logical_bytenr, dev_state->name,
			       block->dev_bytenr, mirror_num);
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
		list_add(&block->all_blocks_node, &state->all_blocks_list);
		btrfsic_block_hashtable_add(block, &state->block_hashtable);
		if (NULL != was_created)
			*was_created = 1;
	} else {
		if (NULL != was_created)
			*was_created = 0;
	}

	return block;
}

static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
					   u64 bytenr,
					   struct btrfsic_dev_state *dev_state,
2798
					   u64 dev_bytenr)
2799 2800 2801 2802 2803 2804 2805
{
	int num_copies;
	int mirror_num;
	int ret;
	struct btrfsic_block_data_ctx block_ctx;
	int match = 0;

2806
	num_copies = btrfs_num_copies(state->root->fs_info,
2807
				      bytenr, state->metablock_size);
2808 2809

	for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2810
		ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2811 2812 2813 2814 2815
					&block_ctx, mirror_num);
		if (ret) {
			printk(KERN_INFO "btrfsic:"
			       " btrfsic_map_block(logical @%llu,"
			       " mirror %d) failed!\n",
2816
			       bytenr, mirror_num);
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
			continue;
		}

		if (dev_state->bdev == block_ctx.dev->bdev &&
		    dev_bytenr == block_ctx.dev_bytenr) {
			match++;
			btrfsic_release_block_ctx(&block_ctx);
			break;
		}
		btrfsic_release_block_ctx(&block_ctx);
	}

2829
	if (WARN_ON(!match)) {
2830 2831 2832
		printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
		       " buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
		       " phys_bytenr=%llu)!\n",
2833
		       bytenr, dev_state->name, dev_bytenr);
2834
		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2835 2836
			ret = btrfsic_map_block(state, bytenr,
						state->metablock_size,
2837 2838 2839 2840 2841 2842
						&block_ctx, mirror_num);
			if (ret)
				continue;

			printk(KERN_INFO "Read logical bytenr @%llu maps to"
			       " (%s/%llu/%d)\n",
2843 2844
			       bytenr, block_ctx.dev->name,
			       block_ctx.dev_bytenr, mirror_num);
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
		}
	}
}

static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
		struct block_device *bdev)
{
	struct btrfsic_dev_state *ds;

	ds = btrfsic_dev_state_hashtable_lookup(bdev,
						&btrfsic_dev_state_hashtable);
	return ds;
}

2859
int btrfsic_submit_bh(int op, int op_flags, struct buffer_head *bh)
2860 2861 2862 2863
{
	struct btrfsic_dev_state *dev_state;

	if (!btrfsic_is_initialized)
2864
		return submit_bh(op, op_flags, bh);
2865 2866 2867 2868 2869 2870 2871 2872

	mutex_lock(&btrfsic_mutex);
	/* since btrfsic_submit_bh() might also be called before
	 * btrfsic_mount(), this might return NULL */
	dev_state = btrfsic_dev_state_lookup(bh->b_bdev);

	/* Only called to write the superblock (incl. FLUSH/FUA) */
	if (NULL != dev_state &&
2873
	    (op == REQ_OP_WRITE) && bh->b_size > 0) {
2874 2875 2876 2877 2878 2879
		u64 dev_bytenr;

		dev_bytenr = 4096 * bh->b_blocknr;
		if (dev_state->state->print_mask &
		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
			printk(KERN_INFO
2880 2881 2882
			       "submit_bh(op=0x%x,0x%x, blocknr=%llu "
			       "(bytenr %llu), size=%zu, data=%p, bdev=%p)\n",
			       op, op_flags, (unsigned long long)bh->b_blocknr,
2883
			       dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
2884
		btrfsic_process_written_block(dev_state, dev_bytenr,
2885
					      &bh->b_data, 1, NULL,
2886 2887
					      NULL, bh, op_flags);
	} else if (NULL != dev_state && (op_flags & REQ_FLUSH)) {
2888 2889 2890
		if (dev_state->state->print_mask &
		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
			printk(KERN_INFO
2891 2892
			       "submit_bh(op=0x%x,0x%x FLUSH, bdev=%p)\n",
			       op, op_flags, bh->b_bdev);
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
			if ((dev_state->state->print_mask &
			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
			      BTRFSIC_PRINT_MASK_VERBOSE)))
				printk(KERN_INFO
				       "btrfsic_submit_bh(%s) with FLUSH"
				       " but dummy block already in use"
				       " (ignored)!\n",
				       dev_state->name);
		} else {
			struct btrfsic_block *const block =
				&dev_state->dummy_block_for_bio_bh_flush;

			block->is_iodone = 0;
			block->never_written = 0;
			block->iodone_w_error = 0;
			block->flush_gen = dev_state->last_flush_gen + 1;
2910
			block->submit_bio_bh_rw = op_flags;
2911 2912 2913 2914 2915 2916 2917 2918
			block->orig_bio_bh_private = bh->b_private;
			block->orig_bio_bh_end_io.bh = bh->b_end_io;
			block->next_in_same_bio = NULL;
			bh->b_private = block;
			bh->b_end_io = btrfsic_bh_end_io;
		}
	}
	mutex_unlock(&btrfsic_mutex);
2919
	return submit_bh(op, op_flags, bh);
2920 2921
}

2922
static void __btrfsic_submit_bio(struct bio *bio)
2923 2924 2925
{
	struct btrfsic_dev_state *dev_state;

2926
	if (!btrfsic_is_initialized)
2927 2928 2929 2930 2931 2932 2933
		return;

	mutex_lock(&btrfsic_mutex);
	/* since btrfsic_submit_bio() is also called before
	 * btrfsic_mount(), this might return NULL */
	dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
	if (NULL != dev_state &&
M
Mike Christie 已提交
2934
	    (bio_op(bio) == REQ_OP_WRITE) && NULL != bio->bi_io_vec) {
2935 2936
		unsigned int i;
		u64 dev_bytenr;
2937
		u64 cur_bytenr;
2938
		int bio_is_patched;
2939
		char **mapped_datav;
2940

2941
		dev_bytenr = 512 * bio->bi_iter.bi_sector;
2942 2943 2944 2945
		bio_is_patched = 0;
		if (dev_state->state->print_mask &
		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
			printk(KERN_INFO
2946
			       "submit_bio(rw=%d,0x%x, bi_vcnt=%u,"
2947
			       " bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
M
Mike Christie 已提交
2948
			       bio_op(bio), bio->bi_rw, bio->bi_vcnt,
2949 2950
			       (unsigned long long)bio->bi_iter.bi_sector,
			       dev_bytenr, bio->bi_bdev);
2951

2952 2953
		mapped_datav = kmalloc_array(bio->bi_vcnt,
					     sizeof(*mapped_datav), GFP_NOFS);
2954 2955
		if (!mapped_datav)
			goto leave;
2956
		cur_bytenr = dev_bytenr;
2957
		for (i = 0; i < bio->bi_vcnt; i++) {
2958
			BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_SIZE);
2959 2960 2961 2962 2963 2964 2965 2966 2967
			mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page);
			if (!mapped_datav[i]) {
				while (i > 0) {
					i--;
					kunmap(bio->bi_io_vec[i].bv_page);
				}
				kfree(mapped_datav);
				goto leave;
			}
2968 2969
			if (dev_state->state->print_mask &
			    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
2970
				printk(KERN_INFO
2971 2972
				       "#%u: bytenr=%llu, len=%u, offset=%u\n",
				       i, cur_bytenr, bio->bi_io_vec[i].bv_len,
2973
				       bio->bi_io_vec[i].bv_offset);
2974
			cur_bytenr += bio->bi_io_vec[i].bv_len;
2975 2976 2977 2978
		}
		btrfsic_process_written_block(dev_state, dev_bytenr,
					      mapped_datav, bio->bi_vcnt,
					      bio, &bio_is_patched,
M
Mike Christie 已提交
2979
					      NULL, bio->bi_rw);
2980 2981
		while (i > 0) {
			i--;
2982 2983
			kunmap(bio->bi_io_vec[i].bv_page);
		}
2984
		kfree(mapped_datav);
M
Mike Christie 已提交
2985
	} else if (NULL != dev_state && (bio->bi_rw & REQ_FLUSH)) {
2986 2987 2988
		if (dev_state->state->print_mask &
		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
			printk(KERN_INFO
2989
			       "submit_bio(rw=%d,0x%x FLUSH, bdev=%p)\n",
M
Mike Christie 已提交
2990
			       bio_op(bio), bio->bi_rw, bio->bi_bdev);
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
			if ((dev_state->state->print_mask &
			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
			      BTRFSIC_PRINT_MASK_VERBOSE)))
				printk(KERN_INFO
				       "btrfsic_submit_bio(%s) with FLUSH"
				       " but dummy block already in use"
				       " (ignored)!\n",
				       dev_state->name);
		} else {
			struct btrfsic_block *const block =
				&dev_state->dummy_block_for_bio_bh_flush;

			block->is_iodone = 0;
			block->never_written = 0;
			block->iodone_w_error = 0;
			block->flush_gen = dev_state->last_flush_gen + 1;
M
Mike Christie 已提交
3008
			block->submit_bio_bh_rw = bio->bi_rw;
3009 3010 3011 3012 3013 3014 3015
			block->orig_bio_bh_private = bio->bi_private;
			block->orig_bio_bh_end_io.bio = bio->bi_end_io;
			block->next_in_same_bio = NULL;
			bio->bi_private = block;
			bio->bi_end_io = btrfsic_bio_end_io;
		}
	}
3016
leave:
3017
	mutex_unlock(&btrfsic_mutex);
3018
}
3019

3020
void btrfsic_submit_bio(struct bio *bio)
3021
{
3022 3023
	__btrfsic_submit_bio(bio);
	submit_bio(bio);
3024 3025
}

3026
int btrfsic_submit_bio_wait(struct bio *bio)
3027
{
3028 3029
	__btrfsic_submit_bio(bio);
	return submit_bio_wait(bio);
3030 3031
}

3032 3033 3034 3035 3036 3037 3038 3039 3040
int btrfsic_mount(struct btrfs_root *root,
		  struct btrfs_fs_devices *fs_devices,
		  int including_extent_data, u32 print_mask)
{
	int ret;
	struct btrfsic_state *state;
	struct list_head *dev_head = &fs_devices->devices;
	struct btrfs_device *device;

3041
	if (root->nodesize & ((u64)PAGE_SIZE - 1)) {
3042
		printk(KERN_INFO
3043
		       "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_SIZE %ld!\n",
3044
		       root->nodesize, PAGE_SIZE);
3045 3046
		return -1;
	}
3047
	if (root->sectorsize & ((u64)PAGE_SIZE - 1)) {
3048
		printk(KERN_INFO
3049
		       "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_SIZE %ld!\n",
3050
		       root->sectorsize, PAGE_SIZE);
3051 3052
		return -1;
	}
3053 3054 3055 3056 3057 3058 3059
	state = kzalloc(sizeof(*state), GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
	if (!state) {
		state = vzalloc(sizeof(*state));
		if (!state) {
			printk(KERN_INFO "btrfs check-integrity: vzalloc() failed!\n");
			return -1;
		}
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
	}

	if (!btrfsic_is_initialized) {
		mutex_init(&btrfsic_mutex);
		btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
		btrfsic_is_initialized = 1;
	}
	mutex_lock(&btrfsic_mutex);
	state->root = root;
	state->print_mask = print_mask;
	state->include_extent_data = including_extent_data;
	state->csum_size = 0;
3072 3073
	state->metablock_size = root->nodesize;
	state->datablock_size = root->sectorsize;
3074 3075 3076 3077 3078 3079 3080 3081
	INIT_LIST_HEAD(&state->all_blocks_list);
	btrfsic_block_hashtable_init(&state->block_hashtable);
	btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
	state->max_superblock_generation = 0;
	state->latest_superblock = NULL;

	list_for_each_entry(device, dev_head, dev_list) {
		struct btrfsic_dev_state *ds;
3082
		const char *p;
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097

		if (!device->bdev || !device->name)
			continue;

		ds = btrfsic_dev_state_alloc();
		if (NULL == ds) {
			printk(KERN_INFO
			       "btrfs check-integrity: kmalloc() failed!\n");
			mutex_unlock(&btrfsic_mutex);
			return -1;
		}
		ds->bdev = device->bdev;
		ds->state = state;
		bdevname(ds->bdev, ds->name);
		ds->name[BDEVNAME_SIZE - 1] = '\0';
3098
		p = kbasename(ds->name);
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
		strlcpy(ds->name, p, sizeof(ds->name));
		btrfsic_dev_state_hashtable_add(ds,
						&btrfsic_dev_state_hashtable);
	}

	ret = btrfsic_process_superblock(state, fs_devices);
	if (0 != ret) {
		mutex_unlock(&btrfsic_mutex);
		btrfsic_unmount(root, fs_devices);
		return ret;
	}

	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
		btrfsic_dump_database(state);
	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
		btrfsic_dump_tree(state);

	mutex_unlock(&btrfsic_mutex);
	return 0;
}

void btrfsic_unmount(struct btrfs_root *root,
		     struct btrfs_fs_devices *fs_devices)
{
3123
	struct btrfsic_block *b_all, *tmp_all;
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
	struct btrfsic_state *state;
	struct list_head *dev_head = &fs_devices->devices;
	struct btrfs_device *device;

	if (!btrfsic_is_initialized)
		return;

	mutex_lock(&btrfsic_mutex);

	state = NULL;
	list_for_each_entry(device, dev_head, dev_list) {
		struct btrfsic_dev_state *ds;

		if (!device->bdev || !device->name)
			continue;

		ds = btrfsic_dev_state_hashtable_lookup(
				device->bdev,
				&btrfsic_dev_state_hashtable);
		if (NULL != ds) {
			state = ds->state;
			btrfsic_dev_state_hashtable_remove(ds);
			btrfsic_dev_state_free(ds);
		}
	}

	if (NULL == state) {
		printk(KERN_INFO
		       "btrfsic: error, cannot find state information"
		       " on umount!\n");
		mutex_unlock(&btrfsic_mutex);
		return;
	}

	/*
	 * Don't care about keeping the lists' state up to date,
	 * just free all memory that was allocated dynamically.
	 * Free the blocks and the block_links.
	 */
3163 3164 3165
	list_for_each_entry_safe(b_all, tmp_all, &state->all_blocks_list,
				 all_blocks_node) {
		struct btrfsic_block_link *l, *tmp;
3166

3167 3168
		list_for_each_entry_safe(l, tmp, &b_all->ref_to_list,
					 node_ref_to) {
3169 3170 3171 3172 3173 3174 3175 3176
			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
				btrfsic_print_rem_link(state, l);

			l->ref_cnt--;
			if (0 == l->ref_cnt)
				btrfsic_block_link_free(l);
		}

3177
		if (b_all->is_iodone || b_all->never_written)
3178 3179 3180 3181 3182 3183
			btrfsic_block_free(b_all);
		else
			printk(KERN_INFO "btrfs: attempt to free %c-block"
			       " @%llu (%s/%llu/%d) on umount which is"
			       " not yet iodone!\n",
			       btrfsic_get_block_type(state, b_all),
3184 3185
			       b_all->logical_bytenr, b_all->dev_state->name,
			       b_all->dev_bytenr, b_all->mirror_num);
3186 3187 3188 3189
	}

	mutex_unlock(&btrfsic_mutex);

W
Wang Shilong 已提交
3190
	kvfree(state);
3191
}