check-integrity.c 94.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/*
 * Copyright (C) STRATO AG 2011.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

/*
 * This module can be used to catch cases when the btrfs kernel
 * code executes write requests to the disk that bring the file
 * system in an inconsistent state. In such a state, a power-loss
 * or kernel panic event would cause that the data on disk is
 * lost or at least damaged.
 *
 * Code is added that examines all block write requests during
 * runtime (including writes of the super block). Three rules
 * are verified and an error is printed on violation of the
 * rules:
 * 1. It is not allowed to write a disk block which is
 *    currently referenced by the super block (either directly
 *    or indirectly).
 * 2. When a super block is written, it is verified that all
 *    referenced (directly or indirectly) blocks fulfill the
 *    following requirements:
 *    2a. All referenced blocks have either been present when
 *        the file system was mounted, (i.e., they have been
 *        referenced by the super block) or they have been
 *        written since then and the write completion callback
40 41 42
 *        was called and no write error was indicated and a
 *        FLUSH request to the device where these blocks are
 *        located was received and completed.
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
 *    2b. All referenced blocks need to have a generation
 *        number which is equal to the parent's number.
 *
 * One issue that was found using this module was that the log
 * tree on disk became temporarily corrupted because disk blocks
 * that had been in use for the log tree had been freed and
 * reused too early, while being referenced by the written super
 * block.
 *
 * The search term in the kernel log that can be used to filter
 * on the existence of detected integrity issues is
 * "btrfs: attempt".
 *
 * The integrity check is enabled via mount options. These
 * mount options are only supported if the integrity check
 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
 *
 * Example #1, apply integrity checks to all metadata:
 * mount /dev/sdb1 /mnt -o check_int
 *
 * Example #2, apply integrity checks to all metadata and
 * to data extents:
 * mount /dev/sdb1 /mnt -o check_int_data
 *
 * Example #3, apply integrity checks to all metadata and dump
 * the tree that the super block references to kernel messages
 * each time after a super block was written:
 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
 *
 * If the integrity check tool is included and activated in
 * the mount options, plenty of kernel memory is used, and
 * plenty of additional CPU cycles are spent. Enabling this
 * functionality is not intended for normal use. In most
 * cases, unless you are a btrfs developer who needs to verify
 * the integrity of (super)-block write requests, do not
 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
 * include and compile the integrity check tool.
80 81 82 83 84 85 86 87 88
 *
 * Expect millions of lines of information in the kernel log with an
 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
 * kernel config to at least 26 (which is 64MB). Usually the value is
 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
 * changed like this before LOG_BUF_SHIFT can be set to a high value:
 * config LOG_BUF_SHIFT
 *       int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
 *       range 12 30
89 90 91 92 93 94 95 96
 */

#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/buffer_head.h>
#include <linux/mutex.h>
#include <linux/genhd.h>
#include <linux/blkdev.h>
97
#include <linux/vmalloc.h>
98
#include <linux/string.h>
99 100
#include "ctree.h"
#include "disk-io.h"
101
#include "hash.h"
102 103 104 105 106 107
#include "transaction.h"
#include "extent_io.h"
#include "volumes.h"
#include "print-tree.h"
#include "locking.h"
#include "check-integrity.h"
108
#include "rcu-string.h"
109
#include "compression.h"
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

#define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
#define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
#define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
#define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
#define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
#define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
#define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
#define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6)	/* in characters,
							 * excluding " [...]" */
#define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)

/*
 * The definition of the bitmask fields for the print_mask.
 * They are specified with the mount option check_integrity_print_mask.
 */
#define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE			0x00000001
#define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION		0x00000002
#define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE			0x00000004
#define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE			0x00000008
#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH			0x00000010
#define BTRFSIC_PRINT_MASK_END_IO_BIO_BH			0x00000020
#define BTRFSIC_PRINT_MASK_VERBOSE				0x00000040
#define BTRFSIC_PRINT_MASK_VERY_VERBOSE				0x00000080
#define BTRFSIC_PRINT_MASK_INITIAL_TREE				0x00000100
#define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES			0x00000200
#define BTRFSIC_PRINT_MASK_INITIAL_DATABASE			0x00000400
#define BTRFSIC_PRINT_MASK_NUM_COPIES				0x00000800
#define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS		0x00001000
139
#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE		0x00002000
140 141 142 143 144 145 146 147 148 149 150 151 152

struct btrfsic_dev_state;
struct btrfsic_state;

struct btrfsic_block {
	u32 magic_num;		/* only used for debug purposes */
	unsigned int is_metadata:1;	/* if it is meta-data, not data-data */
	unsigned int is_superblock:1;	/* if it is one of the superblocks */
	unsigned int is_iodone:1;	/* if is done by lower subsystem */
	unsigned int iodone_w_error:1;	/* error was indicated to endio */
	unsigned int never_written:1;	/* block was added because it was
					 * referenced, not because it was
					 * written */
153
	unsigned int mirror_num;	/* large enough to hold
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
					 * BTRFS_SUPER_MIRROR_MAX */
	struct btrfsic_dev_state *dev_state;
	u64 dev_bytenr;		/* key, physical byte num on disk */
	u64 logical_bytenr;	/* logical byte num on disk */
	u64 generation;
	struct btrfs_disk_key disk_key;	/* extra info to print in case of
					 * issues, will not always be correct */
	struct list_head collision_resolving_node;	/* list node */
	struct list_head all_blocks_node;	/* list node */

	/* the following two lists contain block_link items */
	struct list_head ref_to_list;	/* list */
	struct list_head ref_from_list;	/* list */
	struct btrfsic_block *next_in_same_bio;
	void *orig_bio_bh_private;
	union {
		bio_end_io_t *bio;
		bh_end_io_t *bh;
	} orig_bio_bh_end_io;
	int submit_bio_bh_rw;
	u64 flush_gen; /* only valid if !never_written */
};

/*
 * Elements of this type are allocated dynamically and required because
 * each block object can refer to and can be ref from multiple blocks.
 * The key to lookup them in the hashtable is the dev_bytenr of
181
 * the block ref to plus the one from the block referred from.
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
 * The fact that they are searchable via a hashtable and that a
 * ref_cnt is maintained is not required for the btrfs integrity
 * check algorithm itself, it is only used to make the output more
 * beautiful in case that an error is detected (an error is defined
 * as a write operation to a block while that block is still referenced).
 */
struct btrfsic_block_link {
	u32 magic_num;		/* only used for debug purposes */
	u32 ref_cnt;
	struct list_head node_ref_to;	/* list node */
	struct list_head node_ref_from;	/* list node */
	struct list_head collision_resolving_node;	/* list node */
	struct btrfsic_block *block_ref_to;
	struct btrfsic_block *block_ref_from;
	u64 parent_generation;
};

struct btrfsic_dev_state {
	u32 magic_num;		/* only used for debug purposes */
	struct block_device *bdev;
	struct btrfsic_state *state;
	struct list_head collision_resolving_node;	/* list node */
	struct btrfsic_block dummy_block_for_bio_bh_flush;
	u64 last_flush_gen;
	char name[BDEVNAME_SIZE];
};

struct btrfsic_block_hashtable {
	struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
};

struct btrfsic_block_link_hashtable {
	struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
};

struct btrfsic_dev_state_hashtable {
	struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
};

struct btrfsic_block_data_ctx {
	u64 start;		/* virtual bytenr */
	u64 dev_bytenr;		/* physical bytenr on device */
	u32 len;
	struct btrfsic_dev_state *dev;
226 227 228
	char **datav;
	struct page **pagev;
	void *mem_to_free;
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
};

/* This structure is used to implement recursion without occupying
 * any stack space, refer to btrfsic_process_metablock() */
struct btrfsic_stack_frame {
	u32 magic;
	u32 nr;
	int error;
	int i;
	int limit_nesting;
	int num_copies;
	int mirror_num;
	struct btrfsic_block *block;
	struct btrfsic_block_data_ctx *block_ctx;
	struct btrfsic_block *next_block;
	struct btrfsic_block_data_ctx next_block_ctx;
	struct btrfs_header *hdr;
	struct btrfsic_stack_frame *prev;
};

/* Some state per mounted filesystem */
struct btrfsic_state {
	u32 print_mask;
	int include_extent_data;
	int csum_size;
	struct list_head all_blocks_list;
	struct btrfsic_block_hashtable block_hashtable;
	struct btrfsic_block_link_hashtable block_link_hashtable;
257
	struct btrfs_fs_info *fs_info;
258 259
	u64 max_superblock_generation;
	struct btrfsic_block *latest_superblock;
260 261
	u32 metablock_size;
	u32 datablock_size;
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
};

static void btrfsic_block_init(struct btrfsic_block *b);
static struct btrfsic_block *btrfsic_block_alloc(void);
static void btrfsic_block_free(struct btrfsic_block *b);
static void btrfsic_block_link_init(struct btrfsic_block_link *n);
static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
static void btrfsic_block_link_free(struct btrfsic_block_link *n);
static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
					struct btrfsic_block_hashtable *h);
static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
static struct btrfsic_block *btrfsic_block_hashtable_lookup(
		struct block_device *bdev,
		u64 dev_bytenr,
		struct btrfsic_block_hashtable *h);
static void btrfsic_block_link_hashtable_init(
		struct btrfsic_block_link_hashtable *h);
static void btrfsic_block_link_hashtable_add(
		struct btrfsic_block_link *l,
		struct btrfsic_block_link_hashtable *h);
static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
		struct block_device *bdev_ref_to,
		u64 dev_bytenr_ref_to,
		struct block_device *bdev_ref_from,
		u64 dev_bytenr_ref_from,
		struct btrfsic_block_link_hashtable *h);
static void btrfsic_dev_state_hashtable_init(
		struct btrfsic_dev_state_hashtable *h);
static void btrfsic_dev_state_hashtable_add(
		struct btrfsic_dev_state *ds,
		struct btrfsic_dev_state_hashtable *h);
static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
		struct block_device *bdev,
		struct btrfsic_dev_state_hashtable *h);
static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
static int btrfsic_process_superblock(struct btrfsic_state *state,
				      struct btrfs_fs_devices *fs_devices);
static int btrfsic_process_metablock(struct btrfsic_state *state,
				     struct btrfsic_block *block,
				     struct btrfsic_block_data_ctx *block_ctx,
				     int limit_nesting, int force_iodone_flag);
310 311 312
static void btrfsic_read_from_block_data(
	struct btrfsic_block_data_ctx *block_ctx,
	void *dst, u32 offset, size_t len);
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
static int btrfsic_create_link_to_next_block(
		struct btrfsic_state *state,
		struct btrfsic_block *block,
		struct btrfsic_block_data_ctx
		*block_ctx, u64 next_bytenr,
		int limit_nesting,
		struct btrfsic_block_data_ctx *next_block_ctx,
		struct btrfsic_block **next_blockp,
		int force_iodone_flag,
		int *num_copiesp, int *mirror_nump,
		struct btrfs_disk_key *disk_key,
		u64 parent_generation);
static int btrfsic_handle_extent_data(struct btrfsic_state *state,
				      struct btrfsic_block *block,
				      struct btrfsic_block_data_ctx *block_ctx,
				      u32 item_offset, int force_iodone_flag);
static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
			     struct btrfsic_block_data_ctx *block_ctx_out,
			     int mirror_num);
static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
static int btrfsic_read_block(struct btrfsic_state *state,
			      struct btrfsic_block_data_ctx *block_ctx);
static void btrfsic_dump_database(struct btrfsic_state *state);
static int btrfsic_test_for_metadata(struct btrfsic_state *state,
337
				     char **datav, unsigned int num_pages);
338
static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
339 340 341
					  u64 dev_bytenr, char **mapped_datav,
					  unsigned int num_pages,
					  struct bio *bio, int *bio_is_patched,
342 343 344 345 346 347
					  struct buffer_head *bh,
					  int submit_bio_bh_rw);
static int btrfsic_process_written_superblock(
		struct btrfsic_state *state,
		struct btrfsic_block *const block,
		struct btrfs_super_block *const super_hdr);
348
static void btrfsic_bio_end_io(struct bio *bp);
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
					      const struct btrfsic_block *block,
					      int recursion_level);
static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
					struct btrfsic_block *const block,
					int recursion_level);
static void btrfsic_print_add_link(const struct btrfsic_state *state,
				   const struct btrfsic_block_link *l);
static void btrfsic_print_rem_link(const struct btrfsic_state *state,
				   const struct btrfsic_block_link *l);
static char btrfsic_get_block_type(const struct btrfsic_state *state,
				   const struct btrfsic_block *block);
static void btrfsic_dump_tree(const struct btrfsic_state *state);
static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
				  const struct btrfsic_block *block,
				  int indent_level);
static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
		struct btrfsic_state *state,
		struct btrfsic_block_data_ctx *next_block_ctx,
		struct btrfsic_block *next_block,
		struct btrfsic_block *from_block,
		u64 parent_generation);
static struct btrfsic_block *btrfsic_block_lookup_or_add(
		struct btrfsic_state *state,
		struct btrfsic_block_data_ctx *block_ctx,
		const char *additional_string,
		int is_metadata,
		int is_iodone,
		int never_written,
		int mirror_num,
		int *was_created);
static int btrfsic_process_superblock_dev_mirror(
		struct btrfsic_state *state,
		struct btrfsic_dev_state *dev_state,
		struct btrfs_device *device,
		int superblock_mirror_num,
		struct btrfsic_dev_state **selected_dev_state,
		struct btrfs_super_block *selected_super);
static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
		struct block_device *bdev);
static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
					   u64 bytenr,
					   struct btrfsic_dev_state *dev_state,
393
					   u64 dev_bytenr);
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535

static struct mutex btrfsic_mutex;
static int btrfsic_is_initialized;
static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;


static void btrfsic_block_init(struct btrfsic_block *b)
{
	b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
	b->dev_state = NULL;
	b->dev_bytenr = 0;
	b->logical_bytenr = 0;
	b->generation = BTRFSIC_GENERATION_UNKNOWN;
	b->disk_key.objectid = 0;
	b->disk_key.type = 0;
	b->disk_key.offset = 0;
	b->is_metadata = 0;
	b->is_superblock = 0;
	b->is_iodone = 0;
	b->iodone_w_error = 0;
	b->never_written = 0;
	b->mirror_num = 0;
	b->next_in_same_bio = NULL;
	b->orig_bio_bh_private = NULL;
	b->orig_bio_bh_end_io.bio = NULL;
	INIT_LIST_HEAD(&b->collision_resolving_node);
	INIT_LIST_HEAD(&b->all_blocks_node);
	INIT_LIST_HEAD(&b->ref_to_list);
	INIT_LIST_HEAD(&b->ref_from_list);
	b->submit_bio_bh_rw = 0;
	b->flush_gen = 0;
}

static struct btrfsic_block *btrfsic_block_alloc(void)
{
	struct btrfsic_block *b;

	b = kzalloc(sizeof(*b), GFP_NOFS);
	if (NULL != b)
		btrfsic_block_init(b);

	return b;
}

static void btrfsic_block_free(struct btrfsic_block *b)
{
	BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
	kfree(b);
}

static void btrfsic_block_link_init(struct btrfsic_block_link *l)
{
	l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
	l->ref_cnt = 1;
	INIT_LIST_HEAD(&l->node_ref_to);
	INIT_LIST_HEAD(&l->node_ref_from);
	INIT_LIST_HEAD(&l->collision_resolving_node);
	l->block_ref_to = NULL;
	l->block_ref_from = NULL;
}

static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
{
	struct btrfsic_block_link *l;

	l = kzalloc(sizeof(*l), GFP_NOFS);
	if (NULL != l)
		btrfsic_block_link_init(l);

	return l;
}

static void btrfsic_block_link_free(struct btrfsic_block_link *l)
{
	BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
	kfree(l);
}

static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
{
	ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
	ds->bdev = NULL;
	ds->state = NULL;
	ds->name[0] = '\0';
	INIT_LIST_HEAD(&ds->collision_resolving_node);
	ds->last_flush_gen = 0;
	btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
	ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
	ds->dummy_block_for_bio_bh_flush.dev_state = ds;
}

static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
{
	struct btrfsic_dev_state *ds;

	ds = kzalloc(sizeof(*ds), GFP_NOFS);
	if (NULL != ds)
		btrfsic_dev_state_init(ds);

	return ds;
}

static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
{
	BUG_ON(!(NULL == ds ||
		 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
	kfree(ds);
}

static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
{
	int i;

	for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
		INIT_LIST_HEAD(h->table + i);
}

static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
					struct btrfsic_block_hashtable *h)
{
	const unsigned int hashval =
	    (((unsigned int)(b->dev_bytenr >> 16)) ^
	     ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);

	list_add(&b->collision_resolving_node, h->table + hashval);
}

static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
{
	list_del(&b->collision_resolving_node);
}

static struct btrfsic_block *btrfsic_block_hashtable_lookup(
		struct block_device *bdev,
		u64 dev_bytenr,
		struct btrfsic_block_hashtable *h)
{
	const unsigned int hashval =
	    (((unsigned int)(dev_bytenr >> 16)) ^
	     ((unsigned int)((uintptr_t)bdev))) &
	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
536
	struct btrfsic_block *b;
537

538
	list_for_each_entry(b, h->table + hashval, collision_resolving_node) {
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
		if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
			return b;
	}

	return NULL;
}

static void btrfsic_block_link_hashtable_init(
		struct btrfsic_block_link_hashtable *h)
{
	int i;

	for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
		INIT_LIST_HEAD(h->table + i);
}

static void btrfsic_block_link_hashtable_add(
		struct btrfsic_block_link *l,
		struct btrfsic_block_link_hashtable *h)
{
	const unsigned int hashval =
	    (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
	     ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
	     ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
	     ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
	     & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);

	BUG_ON(NULL == l->block_ref_to);
	BUG_ON(NULL == l->block_ref_from);
	list_add(&l->collision_resolving_node, h->table + hashval);
}

static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
{
	list_del(&l->collision_resolving_node);
}

static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
		struct block_device *bdev_ref_to,
		u64 dev_bytenr_ref_to,
		struct block_device *bdev_ref_from,
		u64 dev_bytenr_ref_from,
		struct btrfsic_block_link_hashtable *h)
{
	const unsigned int hashval =
	    (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
	     ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
	     ((unsigned int)((uintptr_t)bdev_ref_to)) ^
	     ((unsigned int)((uintptr_t)bdev_ref_from))) &
	     (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
589
	struct btrfsic_block_link *l;
590

591
	list_for_each_entry(l, h->table + hashval, collision_resolving_node) {
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
		BUG_ON(NULL == l->block_ref_to);
		BUG_ON(NULL == l->block_ref_from);
		if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
		    l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
		    l->block_ref_from->dev_state->bdev == bdev_ref_from &&
		    l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
			return l;
	}

	return NULL;
}

static void btrfsic_dev_state_hashtable_init(
		struct btrfsic_dev_state_hashtable *h)
{
	int i;

	for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
		INIT_LIST_HEAD(h->table + i);
}

static void btrfsic_dev_state_hashtable_add(
		struct btrfsic_dev_state *ds,
		struct btrfsic_dev_state_hashtable *h)
{
	const unsigned int hashval =
	    (((unsigned int)((uintptr_t)ds->bdev)) &
	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));

	list_add(&ds->collision_resolving_node, h->table + hashval);
}

static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
{
	list_del(&ds->collision_resolving_node);
}

static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
		struct block_device *bdev,
		struct btrfsic_dev_state_hashtable *h)
{
	const unsigned int hashval =
	    (((unsigned int)((uintptr_t)bdev)) &
	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
636
	struct btrfsic_dev_state *ds;
637

638
	list_for_each_entry(ds, h->table + hashval, collision_resolving_node) {
639 640 641 642 643 644 645 646 647 648
		if (ds->bdev == bdev)
			return ds;
	}

	return NULL;
}

static int btrfsic_process_superblock(struct btrfsic_state *state,
				      struct btrfs_fs_devices *fs_devices)
{
649
	int ret = 0;
650 651 652 653 654 655 656
	struct btrfs_super_block *selected_super;
	struct list_head *dev_head = &fs_devices->devices;
	struct btrfs_device *device;
	struct btrfsic_dev_state *selected_dev_state = NULL;
	int pass;

	BUG_ON(NULL == state);
657
	selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
658
	if (NULL == selected_super) {
659
		pr_info("btrfsic: error, kmalloc failed!\n");
660
		return -ENOMEM;
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	}

	list_for_each_entry(device, dev_head, dev_list) {
		int i;
		struct btrfsic_dev_state *dev_state;

		if (!device->bdev || !device->name)
			continue;

		dev_state = btrfsic_dev_state_lookup(device->bdev);
		BUG_ON(NULL == dev_state);
		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
			ret = btrfsic_process_superblock_dev_mirror(
					state, dev_state, device, i,
					&selected_dev_state, selected_super);
			if (0 != ret && 0 == i) {
				kfree(selected_super);
				return ret;
			}
		}
	}

	if (NULL == state->latest_superblock) {
684
		pr_info("btrfsic: no superblock found!\n");
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
		kfree(selected_super);
		return -1;
	}

	state->csum_size = btrfs_super_csum_size(selected_super);

	for (pass = 0; pass < 3; pass++) {
		int num_copies;
		int mirror_num;
		u64 next_bytenr;

		switch (pass) {
		case 0:
			next_bytenr = btrfs_super_root(selected_super);
			if (state->print_mask &
			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
701
				pr_info("root@%llu\n", next_bytenr);
702 703 704 705 706
			break;
		case 1:
			next_bytenr = btrfs_super_chunk_root(selected_super);
			if (state->print_mask &
			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
707
				pr_info("chunk@%llu\n", next_bytenr);
708 709 710 711 712 713 714
			break;
		case 2:
			next_bytenr = btrfs_super_log_root(selected_super);
			if (0 == next_bytenr)
				continue;
			if (state->print_mask &
			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
715
				pr_info("log@%llu\n", next_bytenr);
716 717 718 719
			break;
		}

		num_copies =
720
		    btrfs_num_copies(state->fs_info,
721
				     next_bytenr, state->metablock_size);
722
		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
723
			pr_info("num_copies(log_bytenr=%llu) = %d\n",
724
			       next_bytenr, num_copies);
725 726 727 728 729 730

		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
			struct btrfsic_block *next_block;
			struct btrfsic_block_data_ctx tmp_next_block_ctx;
			struct btrfsic_block_link *l;

731 732
			ret = btrfsic_map_block(state, next_bytenr,
						state->metablock_size,
733 734 735
						&tmp_next_block_ctx,
						mirror_num);
			if (ret) {
736
				pr_info("btrfsic: btrfsic_map_block(root @%llu, mirror %d) failed!\n",
737
				       next_bytenr, mirror_num);
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
				kfree(selected_super);
				return -1;
			}

			next_block = btrfsic_block_hashtable_lookup(
					tmp_next_block_ctx.dev->bdev,
					tmp_next_block_ctx.dev_bytenr,
					&state->block_hashtable);
			BUG_ON(NULL == next_block);

			l = btrfsic_block_link_hashtable_lookup(
					tmp_next_block_ctx.dev->bdev,
					tmp_next_block_ctx.dev_bytenr,
					state->latest_superblock->dev_state->
					bdev,
					state->latest_superblock->dev_bytenr,
					&state->block_link_hashtable);
			BUG_ON(NULL == l);

			ret = btrfsic_read_block(state, &tmp_next_block_ctx);
758
			if (ret < (int)PAGE_SIZE) {
759
				pr_info("btrfsic: read @logical %llu failed!\n",
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
				       tmp_next_block_ctx.start);
				btrfsic_release_block_ctx(&tmp_next_block_ctx);
				kfree(selected_super);
				return -1;
			}

			ret = btrfsic_process_metablock(state,
							next_block,
							&tmp_next_block_ctx,
							BTRFS_MAX_LEVEL + 3, 1);
			btrfsic_release_block_ctx(&tmp_next_block_ctx);
		}
	}

	kfree(selected_super);
	return ret;
}

static int btrfsic_process_superblock_dev_mirror(
		struct btrfsic_state *state,
		struct btrfsic_dev_state *dev_state,
		struct btrfs_device *device,
		int superblock_mirror_num,
		struct btrfsic_dev_state **selected_dev_state,
		struct btrfs_super_block *selected_super)
{
	struct btrfs_super_block *super_tmp;
	u64 dev_bytenr;
	struct buffer_head *bh;
	struct btrfsic_block *superblock_tmp;
	int pass;
	struct block_device *const superblock_bdev = device->bdev;

	/* super block bytenr is always the unmapped device bytenr */
	dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
795
	if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes)
796 797 798
		return -1;
	bh = __bread(superblock_bdev, dev_bytenr / 4096,
		     BTRFS_SUPER_INFO_SIZE);
799 800 801 802 803 804
	if (NULL == bh)
		return -1;
	super_tmp = (struct btrfs_super_block *)
	    (bh->b_data + (dev_bytenr & 4095));

	if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
805
	    btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
806 807 808
	    memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
	    btrfs_super_nodesize(super_tmp) != state->metablock_size ||
	    btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
809 810 811 812 813 814 815 816 817 818 819
		brelse(bh);
		return 0;
	}

	superblock_tmp =
	    btrfsic_block_hashtable_lookup(superblock_bdev,
					   dev_bytenr,
					   &state->block_hashtable);
	if (NULL == superblock_tmp) {
		superblock_tmp = btrfsic_block_alloc();
		if (NULL == superblock_tmp) {
820
			pr_info("btrfsic: error, kmalloc failed!\n");
821 822 823 824 825 826 827 828 829 830 831 832 833 834
			brelse(bh);
			return -1;
		}
		/* for superblock, only the dev_bytenr makes sense */
		superblock_tmp->dev_bytenr = dev_bytenr;
		superblock_tmp->dev_state = dev_state;
		superblock_tmp->logical_bytenr = dev_bytenr;
		superblock_tmp->generation = btrfs_super_generation(super_tmp);
		superblock_tmp->is_metadata = 1;
		superblock_tmp->is_superblock = 1;
		superblock_tmp->is_iodone = 1;
		superblock_tmp->never_written = 0;
		superblock_tmp->mirror_num = 1 + superblock_mirror_num;
		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
835
			btrfs_info_in_rcu(device->fs_info,
836
				"new initial S-block (bdev %p, %s) @%llu (%s/%llu/%d)",
837
				     superblock_bdev,
838 839
				     rcu_str_deref(device->name), dev_bytenr,
				     dev_state->name, dev_bytenr,
840
				     superblock_mirror_num);
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
		list_add(&superblock_tmp->all_blocks_node,
			 &state->all_blocks_list);
		btrfsic_block_hashtable_add(superblock_tmp,
					    &state->block_hashtable);
	}

	/* select the one with the highest generation field */
	if (btrfs_super_generation(super_tmp) >
	    state->max_superblock_generation ||
	    0 == state->max_superblock_generation) {
		memcpy(selected_super, super_tmp, sizeof(*selected_super));
		*selected_dev_state = dev_state;
		state->max_superblock_generation =
		    btrfs_super_generation(super_tmp);
		state->latest_superblock = superblock_tmp;
	}

	for (pass = 0; pass < 3; pass++) {
		u64 next_bytenr;
		int num_copies;
		int mirror_num;
		const char *additional_string = NULL;
		struct btrfs_disk_key tmp_disk_key;

		tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
		tmp_disk_key.offset = 0;
		switch (pass) {
		case 0:
869 870
			btrfs_set_disk_key_objectid(&tmp_disk_key,
						    BTRFS_ROOT_TREE_OBJECTID);
871 872 873 874
			additional_string = "initial root ";
			next_bytenr = btrfs_super_root(super_tmp);
			break;
		case 1:
875 876
			btrfs_set_disk_key_objectid(&tmp_disk_key,
						    BTRFS_CHUNK_TREE_OBJECTID);
877 878 879 880
			additional_string = "initial chunk ";
			next_bytenr = btrfs_super_chunk_root(super_tmp);
			break;
		case 2:
881 882
			btrfs_set_disk_key_objectid(&tmp_disk_key,
						    BTRFS_TREE_LOG_OBJECTID);
883 884 885 886 887 888 889 890
			additional_string = "initial log ";
			next_bytenr = btrfs_super_log_root(super_tmp);
			if (0 == next_bytenr)
				continue;
			break;
		}

		num_copies =
891
		    btrfs_num_copies(state->fs_info,
892
				     next_bytenr, state->metablock_size);
893
		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
894
			pr_info("num_copies(log_bytenr=%llu) = %d\n",
895
			       next_bytenr, num_copies);
896 897 898 899 900
		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
			struct btrfsic_block *next_block;
			struct btrfsic_block_data_ctx tmp_next_block_ctx;
			struct btrfsic_block_link *l;

901 902
			if (btrfsic_map_block(state, next_bytenr,
					      state->metablock_size,
903 904
					      &tmp_next_block_ctx,
					      mirror_num)) {
905
				pr_info("btrfsic: btrfsic_map_block(bytenr @%llu, mirror %d) failed!\n",
906
				       next_bytenr, mirror_num);
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
				brelse(bh);
				return -1;
			}

			next_block = btrfsic_block_lookup_or_add(
					state, &tmp_next_block_ctx,
					additional_string, 1, 1, 0,
					mirror_num, NULL);
			if (NULL == next_block) {
				btrfsic_release_block_ctx(&tmp_next_block_ctx);
				brelse(bh);
				return -1;
			}

			next_block->disk_key = tmp_disk_key;
			next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
			l = btrfsic_block_link_lookup_or_add(
					state, &tmp_next_block_ctx,
					next_block, superblock_tmp,
					BTRFSIC_GENERATION_UNKNOWN);
			btrfsic_release_block_ctx(&tmp_next_block_ctx);
			if (NULL == l) {
				brelse(bh);
				return -1;
			}
		}
	}
	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
		btrfsic_dump_tree_sub(state, superblock_tmp, 0);

	brelse(bh);
	return 0;
}

static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
{
	struct btrfsic_stack_frame *sf;

	sf = kzalloc(sizeof(*sf), GFP_NOFS);
	if (NULL == sf)
947
		pr_info("btrfsic: alloc memory failed!\n");
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
	else
		sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
	return sf;
}

static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
{
	BUG_ON(!(NULL == sf ||
		 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
	kfree(sf);
}

static int btrfsic_process_metablock(
		struct btrfsic_state *state,
		struct btrfsic_block *const first_block,
		struct btrfsic_block_data_ctx *const first_block_ctx,
		int first_limit_nesting, int force_iodone_flag)
{
	struct btrfsic_stack_frame initial_stack_frame = { 0 };
	struct btrfsic_stack_frame *sf;
	struct btrfsic_stack_frame *next_stack;
969 970
	struct btrfs_header *const first_hdr =
		(struct btrfs_header *)first_block_ctx->datav[0];
971

972
	BUG_ON(!first_hdr);
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
	sf = &initial_stack_frame;
	sf->error = 0;
	sf->i = -1;
	sf->limit_nesting = first_limit_nesting;
	sf->block = first_block;
	sf->block_ctx = first_block_ctx;
	sf->next_block = NULL;
	sf->hdr = first_hdr;
	sf->prev = NULL;

continue_with_new_stack_frame:
	sf->block->generation = le64_to_cpu(sf->hdr->generation);
	if (0 == sf->hdr->level) {
		struct btrfs_leaf *const leafhdr =
		    (struct btrfs_leaf *)sf->hdr;

		if (-1 == sf->i) {
990
			sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
991 992

			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
993
				pr_info("leaf %llu items %d generation %llu owner %llu\n",
994
				       sf->block_ctx->start, sf->nr,
995 996 997 998
				       btrfs_stack_header_generation(
					       &leafhdr->header),
				       btrfs_stack_header_owner(
					       &leafhdr->header));
999 1000 1001 1002 1003 1004 1005 1006 1007
		}

continue_with_current_leaf_stack_frame:
		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
			sf->i++;
			sf->num_copies = 0;
		}

		if (sf->i < sf->nr) {
1008 1009 1010 1011 1012
			struct btrfs_item disk_item;
			u32 disk_item_offset =
				(uintptr_t)(leafhdr->items + sf->i) -
				(uintptr_t)leafhdr;
			struct btrfs_disk_key *disk_key;
1013
			u8 type;
1014
			u32 item_offset;
1015
			u32 item_size;
1016

1017 1018 1019
			if (disk_item_offset + sizeof(struct btrfs_item) >
			    sf->block_ctx->len) {
leaf_item_out_of_bounce_error:
1020
				pr_info("btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1021 1022 1023 1024 1025 1026 1027 1028
				       sf->block_ctx->start,
				       sf->block_ctx->dev->name);
				goto one_stack_frame_backwards;
			}
			btrfsic_read_from_block_data(sf->block_ctx,
						     &disk_item,
						     disk_item_offset,
						     sizeof(struct btrfs_item));
1029
			item_offset = btrfs_stack_item_offset(&disk_item);
1030
			item_size = btrfs_stack_item_size(&disk_item);
1031
			disk_key = &disk_item.key;
1032
			type = btrfs_disk_key_type(disk_key);
1033 1034

			if (BTRFS_ROOT_ITEM_KEY == type) {
1035 1036 1037 1038 1039 1040
				struct btrfs_root_item root_item;
				u32 root_item_offset;
				u64 next_bytenr;

				root_item_offset = item_offset +
					offsetof(struct btrfs_leaf, items);
1041
				if (root_item_offset + item_size >
1042 1043 1044 1045 1046
				    sf->block_ctx->len)
					goto leaf_item_out_of_bounce_error;
				btrfsic_read_from_block_data(
					sf->block_ctx, &root_item,
					root_item_offset,
1047
					item_size);
1048
				next_bytenr = btrfs_root_bytenr(&root_item);
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062

				sf->error =
				    btrfsic_create_link_to_next_block(
						state,
						sf->block,
						sf->block_ctx,
						next_bytenr,
						sf->limit_nesting,
						&sf->next_block_ctx,
						&sf->next_block,
						force_iodone_flag,
						&sf->num_copies,
						&sf->mirror_num,
						disk_key,
1063 1064
						btrfs_root_generation(
						&root_item));
1065 1066 1067 1068 1069 1070
				if (sf->error)
					goto one_stack_frame_backwards;

				if (NULL != sf->next_block) {
					struct btrfs_header *const next_hdr =
					    (struct btrfs_header *)
1071
					    sf->next_block_ctx.datav[0];
1072 1073 1074 1075

					next_stack =
					    btrfsic_stack_frame_alloc();
					if (NULL == next_stack) {
1076
						sf->error = -1;
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
						btrfsic_release_block_ctx(
								&sf->
								next_block_ctx);
						goto one_stack_frame_backwards;
					}

					next_stack->i = -1;
					next_stack->block = sf->next_block;
					next_stack->block_ctx =
					    &sf->next_block_ctx;
					next_stack->next_block = NULL;
					next_stack->hdr = next_hdr;
					next_stack->limit_nesting =
					    sf->limit_nesting - 1;
					next_stack->prev = sf;
					sf = next_stack;
					goto continue_with_new_stack_frame;
				}
			} else if (BTRFS_EXTENT_DATA_KEY == type &&
				   state->include_extent_data) {
				sf->error = btrfsic_handle_extent_data(
						state,
						sf->block,
						sf->block_ctx,
						item_offset,
						force_iodone_flag);
				if (sf->error)
					goto one_stack_frame_backwards;
			}

			goto continue_with_current_leaf_stack_frame;
		}
	} else {
		struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;

		if (-1 == sf->i) {
1113
			sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1114 1115

			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1116
				pr_info("node %llu level %d items %d generation %llu owner %llu\n",
1117 1118
				       sf->block_ctx->start,
				       nodehdr->header.level, sf->nr,
1119 1120 1121 1122
				       btrfs_stack_header_generation(
				       &nodehdr->header),
				       btrfs_stack_header_owner(
				       &nodehdr->header));
1123 1124 1125 1126 1127 1128 1129 1130 1131
		}

continue_with_current_node_stack_frame:
		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
			sf->i++;
			sf->num_copies = 0;
		}

		if (sf->i < sf->nr) {
1132 1133 1134 1135 1136 1137 1138 1139
			struct btrfs_key_ptr key_ptr;
			u32 key_ptr_offset;
			u64 next_bytenr;

			key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
					  (uintptr_t)nodehdr;
			if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
			    sf->block_ctx->len) {
1140
				pr_info("btrfsic: node item out of bounce at logical %llu, dev %s\n",
1141 1142 1143 1144 1145 1146 1147
				       sf->block_ctx->start,
				       sf->block_ctx->dev->name);
				goto one_stack_frame_backwards;
			}
			btrfsic_read_from_block_data(
				sf->block_ctx, &key_ptr, key_ptr_offset,
				sizeof(struct btrfs_key_ptr));
1148
			next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

			sf->error = btrfsic_create_link_to_next_block(
					state,
					sf->block,
					sf->block_ctx,
					next_bytenr,
					sf->limit_nesting,
					&sf->next_block_ctx,
					&sf->next_block,
					force_iodone_flag,
					&sf->num_copies,
					&sf->mirror_num,
1161
					&key_ptr.key,
1162
					btrfs_stack_key_generation(&key_ptr));
1163 1164 1165 1166 1167 1168
			if (sf->error)
				goto one_stack_frame_backwards;

			if (NULL != sf->next_block) {
				struct btrfs_header *const next_hdr =
				    (struct btrfs_header *)
1169
				    sf->next_block_ctx.datav[0];
1170 1171

				next_stack = btrfsic_stack_frame_alloc();
1172 1173
				if (NULL == next_stack) {
					sf->error = -1;
1174
					goto one_stack_frame_backwards;
1175
				}
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216

				next_stack->i = -1;
				next_stack->block = sf->next_block;
				next_stack->block_ctx = &sf->next_block_ctx;
				next_stack->next_block = NULL;
				next_stack->hdr = next_hdr;
				next_stack->limit_nesting =
				    sf->limit_nesting - 1;
				next_stack->prev = sf;
				sf = next_stack;
				goto continue_with_new_stack_frame;
			}

			goto continue_with_current_node_stack_frame;
		}
	}

one_stack_frame_backwards:
	if (NULL != sf->prev) {
		struct btrfsic_stack_frame *const prev = sf->prev;

		/* the one for the initial block is freed in the caller */
		btrfsic_release_block_ctx(sf->block_ctx);

		if (sf->error) {
			prev->error = sf->error;
			btrfsic_stack_frame_free(sf);
			sf = prev;
			goto one_stack_frame_backwards;
		}

		btrfsic_stack_frame_free(sf);
		sf = prev;
		goto continue_with_new_stack_frame;
	} else {
		BUG_ON(&initial_stack_frame != sf);
	}

	return sf->error;
}

1217 1218 1219 1220 1221 1222 1223 1224
static void btrfsic_read_from_block_data(
	struct btrfsic_block_data_ctx *block_ctx,
	void *dstv, u32 offset, size_t len)
{
	size_t cur;
	size_t offset_in_page;
	char *kaddr;
	char *dst = (char *)dstv;
1225 1226
	size_t start_offset = block_ctx->start & ((u64)PAGE_SIZE - 1);
	unsigned long i = (start_offset + offset) >> PAGE_SHIFT;
1227 1228

	WARN_ON(offset + len > block_ctx->len);
1229
	offset_in_page = (start_offset + offset) & (PAGE_SIZE - 1);
1230 1231

	while (len > 0) {
1232 1233
		cur = min(len, ((size_t)PAGE_SIZE - offset_in_page));
		BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_SIZE));
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
		kaddr = block_ctx->datav[i];
		memcpy(dst, kaddr + offset_in_page, cur);

		dst += cur;
		len -= cur;
		offset_in_page = 0;
		i++;
	}
}

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
static int btrfsic_create_link_to_next_block(
		struct btrfsic_state *state,
		struct btrfsic_block *block,
		struct btrfsic_block_data_ctx *block_ctx,
		u64 next_bytenr,
		int limit_nesting,
		struct btrfsic_block_data_ctx *next_block_ctx,
		struct btrfsic_block **next_blockp,
		int force_iodone_flag,
		int *num_copiesp, int *mirror_nump,
		struct btrfs_disk_key *disk_key,
		u64 parent_generation)
{
	struct btrfsic_block *next_block = NULL;
	int ret;
	struct btrfsic_block_link *l;
	int did_alloc_block_link;
	int block_was_created;

	*next_blockp = NULL;
	if (0 == *num_copiesp) {
		*num_copiesp =
1266
		    btrfs_num_copies(state->fs_info,
1267
				     next_bytenr, state->metablock_size);
1268
		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1269
			pr_info("num_copies(log_bytenr=%llu) = %d\n",
1270
			       next_bytenr, *num_copiesp);
1271 1272 1273 1274 1275 1276 1277
		*mirror_nump = 1;
	}

	if (*mirror_nump > *num_copiesp)
		return 0;

	if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1278
		pr_info("btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1279 1280
		       *mirror_nump);
	ret = btrfsic_map_block(state, next_bytenr,
1281
				state->metablock_size,
1282 1283
				next_block_ctx, *mirror_nump);
	if (ret) {
1284
		pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1285
		       next_bytenr, *mirror_nump);
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
		btrfsic_release_block_ctx(next_block_ctx);
		*next_blockp = NULL;
		return -1;
	}

	next_block = btrfsic_block_lookup_or_add(state,
						 next_block_ctx, "referenced ",
						 1, force_iodone_flag,
						 !force_iodone_flag,
						 *mirror_nump,
						 &block_was_created);
	if (NULL == next_block) {
		btrfsic_release_block_ctx(next_block_ctx);
		*next_blockp = NULL;
		return -1;
	}
	if (block_was_created) {
		l = NULL;
		next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
	} else {
1306 1307 1308 1309
		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
			if (next_block->logical_bytenr != next_bytenr &&
			    !(!next_block->is_metadata &&
			      0 == next_block->logical_bytenr))
1310
				pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1311 1312 1313 1314 1315 1316
				       next_bytenr, next_block_ctx->dev->name,
				       next_block_ctx->dev_bytenr, *mirror_nump,
				       btrfsic_get_block_type(state,
							      next_block),
				       next_block->logical_bytenr);
			else
1317
				pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1318 1319 1320 1321 1322
				       next_bytenr, next_block_ctx->dev->name,
				       next_block_ctx->dev_bytenr, *mirror_nump,
				       btrfsic_get_block_type(state,
							      next_block));
		}
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
		next_block->logical_bytenr = next_bytenr;

		next_block->mirror_num = *mirror_nump;
		l = btrfsic_block_link_hashtable_lookup(
				next_block_ctx->dev->bdev,
				next_block_ctx->dev_bytenr,
				block_ctx->dev->bdev,
				block_ctx->dev_bytenr,
				&state->block_link_hashtable);
	}

	next_block->disk_key = *disk_key;
	if (NULL == l) {
		l = btrfsic_block_link_alloc();
		if (NULL == l) {
1338
			pr_info("btrfsic: error, kmalloc failed!\n");
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
			btrfsic_release_block_ctx(next_block_ctx);
			*next_blockp = NULL;
			return -1;
		}

		did_alloc_block_link = 1;
		l->block_ref_to = next_block;
		l->block_ref_from = block;
		l->ref_cnt = 1;
		l->parent_generation = parent_generation;

		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
			btrfsic_print_add_link(state, l);

		list_add(&l->node_ref_to, &block->ref_to_list);
		list_add(&l->node_ref_from, &next_block->ref_from_list);

		btrfsic_block_link_hashtable_add(l,
						 &state->block_link_hashtable);
	} else {
		did_alloc_block_link = 0;
		if (0 == limit_nesting) {
			l->ref_cnt++;
			l->parent_generation = parent_generation;
			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
				btrfsic_print_add_link(state, l);
		}
	}

	if (limit_nesting > 0 && did_alloc_block_link) {
		ret = btrfsic_read_block(state, next_block_ctx);
1370
		if (ret < (int)next_block_ctx->len) {
1371
			pr_info("btrfsic: read block @logical %llu failed!\n",
1372
			       next_bytenr);
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
			btrfsic_release_block_ctx(next_block_ctx);
			*next_blockp = NULL;
			return -1;
		}

		*next_blockp = next_block;
	} else {
		*next_blockp = NULL;
	}
	(*mirror_nump)++;

	return 0;
}

static int btrfsic_handle_extent_data(
		struct btrfsic_state *state,
		struct btrfsic_block *block,
		struct btrfsic_block_data_ctx *block_ctx,
		u32 item_offset, int force_iodone_flag)
{
	int ret;
1394 1395 1396 1397 1398
	struct btrfs_file_extent_item file_extent_item;
	u64 file_extent_item_offset;
	u64 next_bytenr;
	u64 num_bytes;
	u64 generation;
1399 1400
	struct btrfsic_block_link *l;

1401 1402
	file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
				  item_offset;
1403 1404 1405
	if (file_extent_item_offset +
	    offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
	    block_ctx->len) {
1406
		pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1407 1408 1409 1410 1411 1412 1413 1414
		       block_ctx->start, block_ctx->dev->name);
		return -1;
	}

	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
		file_extent_item_offset,
		offsetof(struct btrfs_file_extent_item, disk_num_bytes));
	if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1415
	    btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1416
		if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1417
			pr_info("extent_data: type %u, disk_bytenr = %llu\n",
1418
			       file_extent_item.type,
1419 1420
			       btrfs_stack_file_extent_disk_bytenr(
			       &file_extent_item));
1421 1422 1423
		return 0;
	}

1424 1425
	if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
	    block_ctx->len) {
1426
		pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1427 1428 1429 1430 1431 1432
		       block_ctx->start, block_ctx->dev->name);
		return -1;
	}
	btrfsic_read_from_block_data(block_ctx, &file_extent_item,
				     file_extent_item_offset,
				     sizeof(struct btrfs_file_extent_item));
1433 1434 1435 1436 1437 1438 1439 1440
	next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
	if (btrfs_stack_file_extent_compression(&file_extent_item) ==
	    BTRFS_COMPRESS_NONE) {
		next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
		num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
	} else {
		num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
	}
1441
	generation = btrfs_stack_file_extent_generation(&file_extent_item);
1442

1443
	if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1444
		pr_info("extent_data: type %u, disk_bytenr = %llu, offset = %llu, num_bytes = %llu\n",
1445
		       file_extent_item.type,
1446 1447
		       btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
		       btrfs_stack_file_extent_offset(&file_extent_item),
1448
		       num_bytes);
1449 1450 1451 1452 1453
	while (num_bytes > 0) {
		u32 chunk_len;
		int num_copies;
		int mirror_num;

1454 1455
		if (num_bytes > state->datablock_size)
			chunk_len = state->datablock_size;
1456 1457 1458 1459
		else
			chunk_len = num_bytes;

		num_copies =
1460
		    btrfs_num_copies(state->fs_info,
1461
				     next_bytenr, state->datablock_size);
1462
		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1463
			pr_info("num_copies(log_bytenr=%llu) = %d\n",
1464
			       next_bytenr, num_copies);
1465 1466 1467 1468 1469 1470
		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
			struct btrfsic_block_data_ctx next_block_ctx;
			struct btrfsic_block *next_block;
			int block_was_created;

			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1471 1472
				pr_info("btrfsic_handle_extent_data(mirror_num=%d)\n",
					mirror_num);
1473
			if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1474
				pr_info("\tdisk_bytenr = %llu, num_bytes %u\n",
1475
				       next_bytenr, chunk_len);
1476 1477 1478 1479
			ret = btrfsic_map_block(state, next_bytenr,
						chunk_len, &next_block_ctx,
						mirror_num);
			if (ret) {
1480
				pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1481
				       next_bytenr, mirror_num);
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
				return -1;
			}

			next_block = btrfsic_block_lookup_or_add(
					state,
					&next_block_ctx,
					"referenced ",
					0,
					force_iodone_flag,
					!force_iodone_flag,
					mirror_num,
					&block_was_created);
			if (NULL == next_block) {
1495
				pr_info("btrfsic: error, kmalloc failed!\n");
1496 1497 1498 1499
				btrfsic_release_block_ctx(&next_block_ctx);
				return -1;
			}
			if (!block_was_created) {
1500 1501 1502
				if ((state->print_mask &
				     BTRFSIC_PRINT_MASK_VERBOSE) &&
				    next_block->logical_bytenr != next_bytenr &&
1503 1504
				    !(!next_block->is_metadata &&
				      0 == next_block->logical_bytenr)) {
1505
					pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, D, bytenr mismatch (!= stored %llu).\n",
1506
					       next_bytenr,
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
					       next_block_ctx.dev->name,
					       next_block_ctx.dev_bytenr,
					       mirror_num,
					       next_block->logical_bytenr);
				}
				next_block->logical_bytenr = next_bytenr;
				next_block->mirror_num = mirror_num;
			}

			l = btrfsic_block_link_lookup_or_add(state,
							     &next_block_ctx,
							     next_block, block,
							     generation);
			btrfsic_release_block_ctx(&next_block_ctx);
			if (NULL == l)
				return -1;
		}

		next_bytenr += chunk_len;
		num_bytes -= chunk_len;
	}

	return 0;
}

static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
			     struct btrfsic_block_data_ctx *block_ctx_out,
			     int mirror_num)
{
	int ret;
	u64 length;
	struct btrfs_bio *multi = NULL;
	struct btrfs_device *device;

	length = len;
1542
	ret = btrfs_map_block(state->fs_info, BTRFS_MAP_READ,
1543 1544
			      bytenr, &length, &multi, mirror_num);

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	if (ret) {
		block_ctx_out->start = 0;
		block_ctx_out->dev_bytenr = 0;
		block_ctx_out->len = 0;
		block_ctx_out->dev = NULL;
		block_ctx_out->datav = NULL;
		block_ctx_out->pagev = NULL;
		block_ctx_out->mem_to_free = NULL;

		return ret;
	}

1557 1558 1559 1560 1561
	device = multi->stripes[0].dev;
	block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
	block_ctx_out->dev_bytenr = multi->stripes[0].physical;
	block_ctx_out->start = bytenr;
	block_ctx_out->len = len;
1562 1563 1564
	block_ctx_out->datav = NULL;
	block_ctx_out->pagev = NULL;
	block_ctx_out->mem_to_free = NULL;
1565

1566
	kfree(multi);
1567 1568
	if (NULL == block_ctx_out->dev) {
		ret = -ENXIO;
1569
		pr_info("btrfsic: error, cannot lookup dev (#1)!\n");
1570 1571 1572 1573 1574 1575 1576
	}

	return ret;
}

static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
{
1577 1578 1579 1580 1581
	if (block_ctx->mem_to_free) {
		unsigned int num_pages;

		BUG_ON(!block_ctx->datav);
		BUG_ON(!block_ctx->pagev);
1582 1583
		num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
			    PAGE_SHIFT;
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
		while (num_pages > 0) {
			num_pages--;
			if (block_ctx->datav[num_pages]) {
				kunmap(block_ctx->pagev[num_pages]);
				block_ctx->datav[num_pages] = NULL;
			}
			if (block_ctx->pagev[num_pages]) {
				__free_page(block_ctx->pagev[num_pages]);
				block_ctx->pagev[num_pages] = NULL;
			}
		}

		kfree(block_ctx->mem_to_free);
		block_ctx->mem_to_free = NULL;
		block_ctx->pagev = NULL;
		block_ctx->datav = NULL;
1600 1601 1602 1603 1604 1605
	}
}

static int btrfsic_read_block(struct btrfsic_state *state,
			      struct btrfsic_block_data_ctx *block_ctx)
{
1606 1607 1608 1609 1610 1611 1612 1613
	unsigned int num_pages;
	unsigned int i;
	u64 dev_bytenr;
	int ret;

	BUG_ON(block_ctx->datav);
	BUG_ON(block_ctx->pagev);
	BUG_ON(block_ctx->mem_to_free);
1614
	if (block_ctx->dev_bytenr & ((u64)PAGE_SIZE - 1)) {
1615
		pr_info("btrfsic: read_block() with unaligned bytenr %llu\n",
1616
		       block_ctx->dev_bytenr);
1617 1618
		return -1;
	}
1619

1620 1621
	num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
		    PAGE_SHIFT;
1622 1623 1624 1625
	block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
					  sizeof(*block_ctx->pagev)) *
					 num_pages, GFP_NOFS);
	if (!block_ctx->mem_to_free)
1626
		return -ENOMEM;
1627 1628 1629 1630 1631 1632
	block_ctx->datav = block_ctx->mem_to_free;
	block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
	for (i = 0; i < num_pages; i++) {
		block_ctx->pagev[i] = alloc_page(GFP_NOFS);
		if (!block_ctx->pagev[i])
			return -1;
1633 1634
	}

1635 1636 1637 1638 1639
	dev_bytenr = block_ctx->dev_bytenr;
	for (i = 0; i < num_pages;) {
		struct bio *bio;
		unsigned int j;

1640
		bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i);
1641
		if (!bio) {
1642
			pr_info("btrfsic: bio_alloc() for %u pages failed!\n",
1643 1644 1645 1646
			       num_pages - i);
			return -1;
		}
		bio->bi_bdev = block_ctx->dev->bdev;
1647
		bio->bi_iter.bi_sector = dev_bytenr >> 9;
M
Mike Christie 已提交
1648
		bio_set_op_attrs(bio, REQ_OP_READ, 0);
1649 1650 1651

		for (j = i; j < num_pages; j++) {
			ret = bio_add_page(bio, block_ctx->pagev[j],
1652 1653
					   PAGE_SIZE, 0);
			if (PAGE_SIZE != ret)
1654 1655 1656
				break;
		}
		if (j == i) {
1657
			pr_info("btrfsic: error, failed to add a single page!\n");
1658 1659
			return -1;
		}
1660
		if (submit_bio_wait(bio)) {
1661
			pr_info("btrfsic: read error at logical %llu dev %s!\n",
1662 1663 1664 1665 1666
			       block_ctx->start, block_ctx->dev->name);
			bio_put(bio);
			return -1;
		}
		bio_put(bio);
1667
		dev_bytenr += (j - i) * PAGE_SIZE;
1668 1669 1670 1671 1672
		i = j;
	}
	for (i = 0; i < num_pages; i++) {
		block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
		if (!block_ctx->datav[i]) {
1673
			pr_info("btrfsic: kmap() failed (dev %s)!\n",
1674 1675 1676 1677
			       block_ctx->dev->name);
			return -1;
		}
	}
1678 1679 1680 1681 1682 1683

	return block_ctx->len;
}

static void btrfsic_dump_database(struct btrfsic_state *state)
{
1684
	const struct btrfsic_block *b_all;
1685 1686 1687

	BUG_ON(NULL == state);

1688
	pr_info("all_blocks_list:\n");
1689 1690
	list_for_each_entry(b_all, &state->all_blocks_list, all_blocks_node) {
		const struct btrfsic_block_link *l;
1691

1692
		pr_info("%c-block @%llu (%s/%llu/%d)\n",
1693
		       btrfsic_get_block_type(state, b_all),
1694 1695
		       b_all->logical_bytenr, b_all->dev_state->name,
		       b_all->dev_bytenr, b_all->mirror_num);
1696

1697
		list_for_each_entry(l, &b_all->ref_to_list, node_ref_to) {
1698
			pr_info(" %c @%llu (%s/%llu/%d) refers %u* to %c @%llu (%s/%llu/%d)\n",
1699
			       btrfsic_get_block_type(state, b_all),
1700 1701
			       b_all->logical_bytenr, b_all->dev_state->name,
			       b_all->dev_bytenr, b_all->mirror_num,
1702 1703 1704 1705
			       l->ref_cnt,
			       btrfsic_get_block_type(state, l->block_ref_to),
			       l->block_ref_to->logical_bytenr,
			       l->block_ref_to->dev_state->name,
1706
			       l->block_ref_to->dev_bytenr,
1707 1708 1709
			       l->block_ref_to->mirror_num);
		}

1710
		list_for_each_entry(l, &b_all->ref_from_list, node_ref_from) {
1711
			pr_info(" %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
1712
			       btrfsic_get_block_type(state, b_all),
1713 1714
			       b_all->logical_bytenr, b_all->dev_state->name,
			       b_all->dev_bytenr, b_all->mirror_num,
1715 1716 1717 1718 1719 1720 1721 1722
			       l->ref_cnt,
			       btrfsic_get_block_type(state, l->block_ref_from),
			       l->block_ref_from->logical_bytenr,
			       l->block_ref_from->dev_state->name,
			       l->block_ref_from->dev_bytenr,
			       l->block_ref_from->mirror_num);
		}

1723
		pr_info("\n");
1724 1725 1726 1727 1728 1729 1730 1731
	}
}

/*
 * Test whether the disk block contains a tree block (leaf or node)
 * (note that this test fails for the super block)
 */
static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1732
				     char **datav, unsigned int num_pages)
1733 1734 1735 1736
{
	struct btrfs_header *h;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 crc = ~(u32)0;
1737
	unsigned int i;
1738

1739
	if (num_pages * PAGE_SIZE < state->metablock_size)
1740
		return 1; /* not metadata */
1741
	num_pages = state->metablock_size >> PAGE_SHIFT;
1742
	h = (struct btrfs_header *)datav[0];
1743

1744
	if (memcmp(h->fsid, state->fs_info->fsid, BTRFS_UUID_SIZE))
1745
		return 1;
1746

1747 1748
	for (i = 0; i < num_pages; i++) {
		u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1749 1750
		size_t sublen = i ? PAGE_SIZE :
				    (PAGE_SIZE - BTRFS_CSUM_SIZE);
1751

1752
		crc = btrfs_crc32c(crc, data, sublen);
1753
	}
1754 1755
	btrfs_csum_final(crc, csum);
	if (memcmp(csum, h->csum, state->csum_size))
1756
		return 1;
1757

1758
	return 0; /* is metadata */
1759 1760 1761
}

static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1762 1763 1764
					  u64 dev_bytenr, char **mapped_datav,
					  unsigned int num_pages,
					  struct bio *bio, int *bio_is_patched,
1765 1766 1767 1768 1769 1770 1771 1772 1773
					  struct buffer_head *bh,
					  int submit_bio_bh_rw)
{
	int is_metadata;
	struct btrfsic_block *block;
	struct btrfsic_block_data_ctx block_ctx;
	int ret;
	struct btrfsic_state *state = dev_state->state;
	struct block_device *bdev = dev_state->bdev;
1774
	unsigned int processed_len;
1775 1776 1777 1778

	if (NULL != bio_is_patched)
		*bio_is_patched = 0;

1779 1780 1781 1782 1783 1784 1785 1786
again:
	if (num_pages == 0)
		return;

	processed_len = 0;
	is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
						      num_pages));

1787 1788 1789
	block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
					       &state->block_hashtable);
	if (NULL != block) {
1790
		u64 bytenr = 0;
1791
		struct btrfsic_block_link *l, *tmp;
1792 1793

		if (block->is_superblock) {
1794 1795
			bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
						    mapped_datav[0]);
1796
			if (num_pages * PAGE_SIZE <
1797
			    BTRFS_SUPER_INFO_SIZE) {
1798
				pr_info("btrfsic: cannot work with too short bios!\n");
1799 1800
				return;
			}
1801
			is_metadata = 1;
1802
			BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_SIZE - 1));
1803
			processed_len = BTRFS_SUPER_INFO_SIZE;
1804 1805
			if (state->print_mask &
			    BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1806
				pr_info("[before new superblock is written]:\n");
1807 1808 1809 1810 1811
				btrfsic_dump_tree_sub(state, block, 0);
			}
		}
		if (is_metadata) {
			if (!block->is_superblock) {
1812
				if (num_pages * PAGE_SIZE <
1813
				    state->metablock_size) {
1814
					pr_info("btrfsic: cannot work with too short bios!\n");
1815 1816 1817
					return;
				}
				processed_len = state->metablock_size;
1818 1819 1820
				bytenr = btrfs_stack_header_bytenr(
						(struct btrfs_header *)
						mapped_datav[0]);
1821 1822
				btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
							       dev_state,
1823
							       dev_bytenr);
1824
			}
1825 1826 1827 1828
			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
				if (block->logical_bytenr != bytenr &&
				    !(!block->is_metadata &&
				      block->logical_bytenr == 0))
1829
					pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1830 1831 1832 1833 1834 1835 1836
					       bytenr, dev_state->name,
					       dev_bytenr,
					       block->mirror_num,
					       btrfsic_get_block_type(state,
								      block),
					       block->logical_bytenr);
				else
1837
					pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1838 1839 1840 1841 1842
					       bytenr, dev_state->name,
					       dev_bytenr, block->mirror_num,
					       btrfsic_get_block_type(state,
								      block));
			}
1843
			block->logical_bytenr = bytenr;
1844
		} else {
1845
			if (num_pages * PAGE_SIZE <
1846
			    state->datablock_size) {
1847
				pr_info("btrfsic: cannot work with too short bios!\n");
1848 1849 1850
				return;
			}
			processed_len = state->datablock_size;
1851 1852
			bytenr = block->logical_bytenr;
			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1853
				pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1854
				       bytenr, dev_state->name, dev_bytenr,
1855 1856 1857 1858 1859
				       block->mirror_num,
				       btrfsic_get_block_type(state, block));
		}

		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1860
			pr_info("ref_to_list: %cE, ref_from_list: %cE\n",
1861 1862 1863
			       list_empty(&block->ref_to_list) ? ' ' : '!',
			       list_empty(&block->ref_from_list) ? ' ' : '!');
		if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1864
			pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), old(gen=%llu, objectid=%llu, type=%d, offset=%llu), new(gen=%llu), which is referenced by most recent superblock (superblockgen=%llu)!\n",
1865 1866 1867
			       btrfsic_get_block_type(state, block), bytenr,
			       dev_state->name, dev_bytenr, block->mirror_num,
			       block->generation,
1868
			       btrfs_disk_key_objectid(&block->disk_key),
1869
			       block->disk_key.type,
1870 1871 1872
			       btrfs_disk_key_offset(&block->disk_key),
			       btrfs_stack_header_generation(
				       (struct btrfs_header *) mapped_datav[0]),
1873 1874 1875 1876 1877
			       state->max_superblock_generation);
			btrfsic_dump_tree(state);
		}

		if (!block->is_iodone && !block->never_written) {
1878
			pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu, which is not yet iodone!\n",
1879 1880 1881
			       btrfsic_get_block_type(state, block), bytenr,
			       dev_state->name, dev_bytenr, block->mirror_num,
			       block->generation,
1882 1883 1884
			       btrfs_stack_header_generation(
				       (struct btrfs_header *)
				       mapped_datav[0]));
1885 1886
			/* it would not be safe to go on */
			btrfsic_dump_tree(state);
1887
			goto continue_loop;
1888 1889 1890 1891 1892
		}

		/*
		 * Clear all references of this block. Do not free
		 * the block itself even if is not referenced anymore
1893
		 * because it still carries valuable information
1894 1895
		 * like whether it was ever written and IO completed.
		 */
1896 1897
		list_for_each_entry_safe(l, tmp, &block->ref_to_list,
					 node_ref_to) {
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
				btrfsic_print_rem_link(state, l);
			l->ref_cnt--;
			if (0 == l->ref_cnt) {
				list_del(&l->node_ref_to);
				list_del(&l->node_ref_from);
				btrfsic_block_link_hashtable_remove(l);
				btrfsic_block_link_free(l);
			}
		}

		block_ctx.dev = dev_state;
		block_ctx.dev_bytenr = dev_bytenr;
1911 1912 1913 1914 1915
		block_ctx.start = bytenr;
		block_ctx.len = processed_len;
		block_ctx.pagev = NULL;
		block_ctx.mem_to_free = NULL;
		block_ctx.datav = mapped_datav;
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966

		if (is_metadata || state->include_extent_data) {
			block->never_written = 0;
			block->iodone_w_error = 0;
			if (NULL != bio) {
				block->is_iodone = 0;
				BUG_ON(NULL == bio_is_patched);
				if (!*bio_is_patched) {
					block->orig_bio_bh_private =
					    bio->bi_private;
					block->orig_bio_bh_end_io.bio =
					    bio->bi_end_io;
					block->next_in_same_bio = NULL;
					bio->bi_private = block;
					bio->bi_end_io = btrfsic_bio_end_io;
					*bio_is_patched = 1;
				} else {
					struct btrfsic_block *chained_block =
					    (struct btrfsic_block *)
					    bio->bi_private;

					BUG_ON(NULL == chained_block);
					block->orig_bio_bh_private =
					    chained_block->orig_bio_bh_private;
					block->orig_bio_bh_end_io.bio =
					    chained_block->orig_bio_bh_end_io.
					    bio;
					block->next_in_same_bio = chained_block;
					bio->bi_private = block;
				}
			} else if (NULL != bh) {
				block->is_iodone = 0;
				block->orig_bio_bh_private = bh->b_private;
				block->orig_bio_bh_end_io.bh = bh->b_end_io;
				block->next_in_same_bio = NULL;
				bh->b_private = block;
				bh->b_end_io = btrfsic_bh_end_io;
			} else {
				block->is_iodone = 1;
				block->orig_bio_bh_private = NULL;
				block->orig_bio_bh_end_io.bio = NULL;
				block->next_in_same_bio = NULL;
			}
		}

		block->flush_gen = dev_state->last_flush_gen + 1;
		block->submit_bio_bh_rw = submit_bio_bh_rw;
		if (is_metadata) {
			block->logical_bytenr = bytenr;
			block->is_metadata = 1;
			if (block->is_superblock) {
1967
				BUG_ON(PAGE_SIZE !=
1968
				       BTRFS_SUPER_INFO_SIZE);
1969 1970 1971 1972
				ret = btrfsic_process_written_superblock(
						state,
						block,
						(struct btrfs_super_block *)
1973
						mapped_datav[0]);
1974 1975
				if (state->print_mask &
				    BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
1976
					pr_info("[after new superblock is written]:\n");
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
					btrfsic_dump_tree_sub(state, block, 0);
				}
			} else {
				block->mirror_num = 0;	/* unknown */
				ret = btrfsic_process_metablock(
						state,
						block,
						&block_ctx,
						0, 0);
			}
			if (ret)
1988
				pr_info("btrfsic: btrfsic_process_metablock(root @%llu) failed!\n",
1989
				       dev_bytenr);
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
		} else {
			block->is_metadata = 0;
			block->mirror_num = 0;	/* unknown */
			block->generation = BTRFSIC_GENERATION_UNKNOWN;
			if (!state->include_extent_data
			    && list_empty(&block->ref_from_list)) {
				/*
				 * disk block is overwritten with extent
				 * data (not meta data) and we are configured
				 * to not include extent data: take the
				 * chance and free the block's memory
				 */
				btrfsic_block_hashtable_remove(block);
				list_del(&block->all_blocks_node);
				btrfsic_block_free(block);
			}
		}
		btrfsic_release_block_ctx(&block_ctx);
	} else {
		/* block has not been found in hash table */
		u64 bytenr;

		if (!is_metadata) {
2013
			processed_len = state->datablock_size;
2014
			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2015
				pr_info("Written block (%s/%llu/?) !found in hash table, D.\n",
2016
				       dev_state->name, dev_bytenr);
2017 2018 2019 2020
			if (!state->include_extent_data) {
				/* ignore that written D block */
				goto continue_loop;
			}
2021 2022 2023 2024 2025

			/* this is getting ugly for the
			 * include_extent_data case... */
			bytenr = 0;	/* unknown */
		} else {
2026
			processed_len = state->metablock_size;
2027 2028 2029
			bytenr = btrfs_stack_header_bytenr(
					(struct btrfs_header *)
					mapped_datav[0]);
2030
			btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2031
						       dev_bytenr);
2032
			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2033
				pr_info("Written block @%llu (%s/%llu/?) !found in hash table, M.\n",
2034
				       bytenr, dev_state->name, dev_bytenr);
2035
		}
2036

2037 2038
		block_ctx.dev = dev_state;
		block_ctx.dev_bytenr = dev_bytenr;
2039 2040 2041 2042 2043
		block_ctx.start = bytenr;
		block_ctx.len = processed_len;
		block_ctx.pagev = NULL;
		block_ctx.mem_to_free = NULL;
		block_ctx.datav = mapped_datav;
2044 2045 2046

		block = btrfsic_block_alloc();
		if (NULL == block) {
2047
			pr_info("btrfsic: error, kmalloc failed!\n");
2048
			btrfsic_release_block_ctx(&block_ctx);
2049
			goto continue_loop;
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
		}
		block->dev_state = dev_state;
		block->dev_bytenr = dev_bytenr;
		block->logical_bytenr = bytenr;
		block->is_metadata = is_metadata;
		block->never_written = 0;
		block->iodone_w_error = 0;
		block->mirror_num = 0;	/* unknown */
		block->flush_gen = dev_state->last_flush_gen + 1;
		block->submit_bio_bh_rw = submit_bio_bh_rw;
		if (NULL != bio) {
			block->is_iodone = 0;
			BUG_ON(NULL == bio_is_patched);
			if (!*bio_is_patched) {
				block->orig_bio_bh_private = bio->bi_private;
				block->orig_bio_bh_end_io.bio = bio->bi_end_io;
				block->next_in_same_bio = NULL;
				bio->bi_private = block;
				bio->bi_end_io = btrfsic_bio_end_io;
				*bio_is_patched = 1;
			} else {
				struct btrfsic_block *chained_block =
				    (struct btrfsic_block *)
				    bio->bi_private;

				BUG_ON(NULL == chained_block);
				block->orig_bio_bh_private =
				    chained_block->orig_bio_bh_private;
				block->orig_bio_bh_end_io.bio =
				    chained_block->orig_bio_bh_end_io.bio;
				block->next_in_same_bio = chained_block;
				bio->bi_private = block;
			}
		} else if (NULL != bh) {
			block->is_iodone = 0;
			block->orig_bio_bh_private = bh->b_private;
			block->orig_bio_bh_end_io.bh = bh->b_end_io;
			block->next_in_same_bio = NULL;
			bh->b_private = block;
			bh->b_end_io = btrfsic_bh_end_io;
		} else {
			block->is_iodone = 1;
			block->orig_bio_bh_private = NULL;
			block->orig_bio_bh_end_io.bio = NULL;
			block->next_in_same_bio = NULL;
		}
		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2097
			pr_info("New written %c-block @%llu (%s/%llu/%d)\n",
2098
			       is_metadata ? 'M' : 'D',
2099 2100
			       block->logical_bytenr, block->dev_state->name,
			       block->dev_bytenr, block->mirror_num);
2101 2102 2103 2104 2105
		list_add(&block->all_blocks_node, &state->all_blocks_list);
		btrfsic_block_hashtable_add(block, &state->block_hashtable);

		if (is_metadata) {
			ret = btrfsic_process_metablock(state, block,
2106
							&block_ctx, 0, 0);
2107
			if (ret)
2108
				pr_info("btrfsic: process_metablock(root @%llu) failed!\n",
2109
				       dev_bytenr);
2110 2111 2112
		}
		btrfsic_release_block_ctx(&block_ctx);
	}
2113 2114 2115 2116

continue_loop:
	BUG_ON(!processed_len);
	dev_bytenr += processed_len;
2117 2118
	mapped_datav += processed_len >> PAGE_SHIFT;
	num_pages -= processed_len >> PAGE_SHIFT;
2119
	goto again;
2120 2121
}

2122
static void btrfsic_bio_end_io(struct bio *bp)
2123 2124 2125 2126 2127 2128 2129
{
	struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
	int iodone_w_error;

	/* mutex is not held! This is not save if IO is not yet completed
	 * on umount */
	iodone_w_error = 0;
2130
	if (bp->bi_error)
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
		iodone_w_error = 1;

	BUG_ON(NULL == block);
	bp->bi_private = block->orig_bio_bh_private;
	bp->bi_end_io = block->orig_bio_bh_end_io.bio;

	do {
		struct btrfsic_block *next_block;
		struct btrfsic_dev_state *const dev_state = block->dev_state;

		if ((dev_state->state->print_mask &
		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2143
			pr_info("bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2144
			       bp->bi_error,
2145
			       btrfsic_get_block_type(dev_state->state, block),
2146 2147
			       block->logical_bytenr, dev_state->name,
			       block->dev_bytenr, block->mirror_num);
2148 2149
		next_block = block->next_in_same_bio;
		block->iodone_w_error = iodone_w_error;
2150
		if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2151 2152 2153
			dev_state->last_flush_gen++;
			if ((dev_state->state->print_mask &
			     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2154
				pr_info("bio_end_io() new %s flush_gen=%llu\n",
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
				       dev_state->name,
				       dev_state->last_flush_gen);
		}
		if (block->submit_bio_bh_rw & REQ_FUA)
			block->flush_gen = 0; /* FUA completed means block is
					       * on disk */
		block->is_iodone = 1; /* for FLUSH, this releases the block */
		block = next_block;
	} while (NULL != block);

2165
	bp->bi_end_io(bp);
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
}

static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
{
	struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
	int iodone_w_error = !uptodate;
	struct btrfsic_dev_state *dev_state;

	BUG_ON(NULL == block);
	dev_state = block->dev_state;
	if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2177
		pr_info("bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2178 2179
		       iodone_w_error,
		       btrfsic_get_block_type(dev_state->state, block),
2180 2181
		       block->logical_bytenr, block->dev_state->name,
		       block->dev_bytenr, block->mirror_num);
2182 2183

	block->iodone_w_error = iodone_w_error;
2184
	if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2185 2186 2187
		dev_state->last_flush_gen++;
		if ((dev_state->state->print_mask &
		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2188
			pr_info("bh_end_io() new %s flush_gen=%llu\n",
2189
			       dev_state->name, dev_state->last_flush_gen);
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	}
	if (block->submit_bio_bh_rw & REQ_FUA)
		block->flush_gen = 0; /* FUA completed means block is on disk */

	bh->b_private = block->orig_bio_bh_private;
	bh->b_end_io = block->orig_bio_bh_end_io.bh;
	block->is_iodone = 1; /* for FLUSH, this releases the block */
	bh->b_end_io(bh, uptodate);
}

static int btrfsic_process_written_superblock(
		struct btrfsic_state *state,
		struct btrfsic_block *const superblock,
		struct btrfs_super_block *const super_hdr)
{
	int pass;

	superblock->generation = btrfs_super_generation(super_hdr);
	if (!(superblock->generation > state->max_superblock_generation ||
	      0 == state->max_superblock_generation)) {
		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2211
			pr_info("btrfsic: superblock @%llu (%s/%llu/%d) with old gen %llu <= %llu\n",
2212
			       superblock->logical_bytenr,
2213
			       superblock->dev_state->name,
2214
			       superblock->dev_bytenr, superblock->mirror_num,
2215 2216 2217 2218
			       btrfs_super_generation(super_hdr),
			       state->max_superblock_generation);
	} else {
		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2219
			pr_info("btrfsic: got new superblock @%llu (%s/%llu/%d) with new gen %llu > %llu\n",
2220
			       superblock->logical_bytenr,
2221
			       superblock->dev_state->name,
2222
			       superblock->dev_bytenr, superblock->mirror_num,
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
			       btrfs_super_generation(super_hdr),
			       state->max_superblock_generation);

		state->max_superblock_generation =
		    btrfs_super_generation(super_hdr);
		state->latest_superblock = superblock;
	}

	for (pass = 0; pass < 3; pass++) {
		int ret;
		u64 next_bytenr;
		struct btrfsic_block *next_block;
		struct btrfsic_block_data_ctx tmp_next_block_ctx;
		struct btrfsic_block_link *l;
		int num_copies;
		int mirror_num;
		const char *additional_string = NULL;
2240
		struct btrfs_disk_key tmp_disk_key = {0};
2241

2242 2243 2244
		btrfs_set_disk_key_objectid(&tmp_disk_key,
					    BTRFS_ROOT_ITEM_KEY);
		btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2245 2246 2247

		switch (pass) {
		case 0:
2248 2249
			btrfs_set_disk_key_objectid(&tmp_disk_key,
						    BTRFS_ROOT_TREE_OBJECTID);
2250 2251 2252 2253
			additional_string = "root ";
			next_bytenr = btrfs_super_root(super_hdr);
			if (state->print_mask &
			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2254
				pr_info("root@%llu\n", next_bytenr);
2255 2256
			break;
		case 1:
2257 2258
			btrfs_set_disk_key_objectid(&tmp_disk_key,
						    BTRFS_CHUNK_TREE_OBJECTID);
2259 2260 2261 2262
			additional_string = "chunk ";
			next_bytenr = btrfs_super_chunk_root(super_hdr);
			if (state->print_mask &
			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2263
				pr_info("chunk@%llu\n", next_bytenr);
2264 2265
			break;
		case 2:
2266 2267
			btrfs_set_disk_key_objectid(&tmp_disk_key,
						    BTRFS_TREE_LOG_OBJECTID);
2268 2269 2270 2271 2272 2273
			additional_string = "log ";
			next_bytenr = btrfs_super_log_root(super_hdr);
			if (0 == next_bytenr)
				continue;
			if (state->print_mask &
			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2274
				pr_info("log@%llu\n", next_bytenr);
2275 2276 2277 2278
			break;
		}

		num_copies =
2279
		    btrfs_num_copies(state->fs_info,
2280
				     next_bytenr, BTRFS_SUPER_INFO_SIZE);
2281
		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2282
			pr_info("num_copies(log_bytenr=%llu) = %d\n",
2283
			       next_bytenr, num_copies);
2284 2285 2286 2287
		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
			int was_created;

			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2288
				pr_info("btrfsic_process_written_superblock(mirror_num=%d)\n", mirror_num);
2289 2290
			ret = btrfsic_map_block(state, next_bytenr,
						BTRFS_SUPER_INFO_SIZE,
2291 2292 2293
						&tmp_next_block_ctx,
						mirror_num);
			if (ret) {
2294
				pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
2295
				       next_bytenr, mirror_num);
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
				return -1;
			}

			next_block = btrfsic_block_lookup_or_add(
					state,
					&tmp_next_block_ctx,
					additional_string,
					1, 0, 1,
					mirror_num,
					&was_created);
			if (NULL == next_block) {
2307
				pr_info("btrfsic: error, kmalloc failed!\n");
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
				btrfsic_release_block_ctx(&tmp_next_block_ctx);
				return -1;
			}

			next_block->disk_key = tmp_disk_key;
			if (was_created)
				next_block->generation =
				    BTRFSIC_GENERATION_UNKNOWN;
			l = btrfsic_block_link_lookup_or_add(
					state,
					&tmp_next_block_ctx,
					next_block,
					superblock,
					BTRFSIC_GENERATION_UNKNOWN);
			btrfsic_release_block_ctx(&tmp_next_block_ctx);
			if (NULL == l)
				return -1;
		}
	}

2328
	if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2329 2330 2331 2332 2333 2334 2335 2336 2337
		btrfsic_dump_tree(state);

	return 0;
}

static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
					struct btrfsic_block *const block,
					int recursion_level)
{
2338
	const struct btrfsic_block_link *l;
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
	int ret = 0;

	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
		/*
		 * Note that this situation can happen and does not
		 * indicate an error in regular cases. It happens
		 * when disk blocks are freed and later reused.
		 * The check-integrity module is not aware of any
		 * block free operations, it just recognizes block
		 * write operations. Therefore it keeps the linkage
		 * information for a block until a block is
		 * rewritten. This can temporarily cause incorrect
		 * and even circular linkage informations. This
		 * causes no harm unless such blocks are referenced
		 * by the most recent super block.
		 */
		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2356
			pr_info("btrfsic: abort cyclic linkage (case 1).\n");
2357 2358 2359 2360 2361 2362 2363 2364

		return ret;
	}

	/*
	 * This algorithm is recursive because the amount of used stack
	 * space is very small and the max recursion depth is limited.
	 */
2365
	list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2366
		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2367
			pr_info("rl=%d, %c @%llu (%s/%llu/%d) %u* refers to %c @%llu (%s/%llu/%d)\n",
2368 2369
			       recursion_level,
			       btrfsic_get_block_type(state, block),
2370 2371
			       block->logical_bytenr, block->dev_state->name,
			       block->dev_bytenr, block->mirror_num,
2372 2373 2374 2375
			       l->ref_cnt,
			       btrfsic_get_block_type(state, l->block_ref_to),
			       l->block_ref_to->logical_bytenr,
			       l->block_ref_to->dev_state->name,
2376
			       l->block_ref_to->dev_bytenr,
2377 2378
			       l->block_ref_to->mirror_num);
		if (l->block_ref_to->never_written) {
2379
			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is never written!\n",
2380 2381 2382
			       btrfsic_get_block_type(state, l->block_ref_to),
			       l->block_ref_to->logical_bytenr,
			       l->block_ref_to->dev_state->name,
2383
			       l->block_ref_to->dev_bytenr,
2384 2385 2386
			       l->block_ref_to->mirror_num);
			ret = -1;
		} else if (!l->block_ref_to->is_iodone) {
2387
			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not yet iodone!\n",
2388 2389 2390
			       btrfsic_get_block_type(state, l->block_ref_to),
			       l->block_ref_to->logical_bytenr,
			       l->block_ref_to->dev_state->name,
2391
			       l->block_ref_to->dev_bytenr,
2392 2393
			       l->block_ref_to->mirror_num);
			ret = -1;
2394
		} else if (l->block_ref_to->iodone_w_error) {
2395
			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which has write error!\n",
2396 2397 2398
			       btrfsic_get_block_type(state, l->block_ref_to),
			       l->block_ref_to->logical_bytenr,
			       l->block_ref_to->dev_state->name,
2399
			       l->block_ref_to->dev_bytenr,
2400 2401
			       l->block_ref_to->mirror_num);
			ret = -1;
2402 2403 2404 2405 2406 2407
		} else if (l->parent_generation !=
			   l->block_ref_to->generation &&
			   BTRFSIC_GENERATION_UNKNOWN !=
			   l->parent_generation &&
			   BTRFSIC_GENERATION_UNKNOWN !=
			   l->block_ref_to->generation) {
2408
			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) with generation %llu != parent generation %llu!\n",
2409 2410 2411
			       btrfsic_get_block_type(state, l->block_ref_to),
			       l->block_ref_to->logical_bytenr,
			       l->block_ref_to->dev_state->name,
2412
			       l->block_ref_to->dev_bytenr,
2413
			       l->block_ref_to->mirror_num,
2414 2415
			       l->block_ref_to->generation,
			       l->parent_generation);
2416 2417 2418
			ret = -1;
		} else if (l->block_ref_to->flush_gen >
			   l->block_ref_to->dev_state->last_flush_gen) {
2419
			pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not flushed out of disk's write cache (block flush_gen=%llu, dev->flush_gen=%llu)!\n",
2420 2421 2422
			       btrfsic_get_block_type(state, l->block_ref_to),
			       l->block_ref_to->logical_bytenr,
			       l->block_ref_to->dev_state->name,
2423 2424
			       l->block_ref_to->dev_bytenr,
			       l->block_ref_to->mirror_num, block->flush_gen,
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
			       l->block_ref_to->dev_state->last_flush_gen);
			ret = -1;
		} else if (-1 == btrfsic_check_all_ref_blocks(state,
							      l->block_ref_to,
							      recursion_level +
							      1)) {
			ret = -1;
		}
	}

	return ret;
}

static int btrfsic_is_block_ref_by_superblock(
		const struct btrfsic_state *state,
		const struct btrfsic_block *block,
		int recursion_level)
{
2443
	const struct btrfsic_block_link *l;
2444 2445 2446 2447

	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
		/* refer to comment at "abort cyclic linkage (case 1)" */
		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2448
			pr_info("btrfsic: abort cyclic linkage (case 2).\n");
2449 2450 2451 2452 2453 2454 2455 2456

		return 0;
	}

	/*
	 * This algorithm is recursive because the amount of used stack space
	 * is very small and the max recursion depth is limited.
	 */
2457
	list_for_each_entry(l, &block->ref_from_list, node_ref_from) {
2458
		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2459
			pr_info("rl=%d, %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
2460 2461
			       recursion_level,
			       btrfsic_get_block_type(state, block),
2462 2463
			       block->logical_bytenr, block->dev_state->name,
			       block->dev_bytenr, block->mirror_num,
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
			       l->ref_cnt,
			       btrfsic_get_block_type(state, l->block_ref_from),
			       l->block_ref_from->logical_bytenr,
			       l->block_ref_from->dev_state->name,
			       l->block_ref_from->dev_bytenr,
			       l->block_ref_from->mirror_num);
		if (l->block_ref_from->is_superblock &&
		    state->latest_superblock->dev_bytenr ==
		    l->block_ref_from->dev_bytenr &&
		    state->latest_superblock->dev_state->bdev ==
		    l->block_ref_from->dev_state->bdev)
			return 1;
		else if (btrfsic_is_block_ref_by_superblock(state,
							    l->block_ref_from,
							    recursion_level +
							    1))
			return 1;
	}

	return 0;
}

static void btrfsic_print_add_link(const struct btrfsic_state *state,
				   const struct btrfsic_block_link *l)
{
2489
	pr_info("Add %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2490 2491
	       l->ref_cnt,
	       btrfsic_get_block_type(state, l->block_ref_from),
2492
	       l->block_ref_from->logical_bytenr,
2493
	       l->block_ref_from->dev_state->name,
2494
	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2495
	       btrfsic_get_block_type(state, l->block_ref_to),
2496 2497
	       l->block_ref_to->logical_bytenr,
	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2498 2499 2500 2501 2502 2503
	       l->block_ref_to->mirror_num);
}

static void btrfsic_print_rem_link(const struct btrfsic_state *state,
				   const struct btrfsic_block_link *l)
{
2504
	pr_info("Rem %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2505 2506
	       l->ref_cnt,
	       btrfsic_get_block_type(state, l->block_ref_from),
2507
	       l->block_ref_from->logical_bytenr,
2508
	       l->block_ref_from->dev_state->name,
2509
	       l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2510
	       btrfsic_get_block_type(state, l->block_ref_to),
2511 2512
	       l->block_ref_to->logical_bytenr,
	       l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
	       l->block_ref_to->mirror_num);
}

static char btrfsic_get_block_type(const struct btrfsic_state *state,
				   const struct btrfsic_block *block)
{
	if (block->is_superblock &&
	    state->latest_superblock->dev_bytenr == block->dev_bytenr &&
	    state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
		return 'S';
	else if (block->is_superblock)
		return 's';
	else if (block->is_metadata)
		return 'M';
	else
		return 'D';
}

static void btrfsic_dump_tree(const struct btrfsic_state *state)
{
	btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
}

static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
				  const struct btrfsic_block *block,
				  int indent_level)
{
2540
	const struct btrfsic_block_link *l;
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
	int indent_add;
	static char buf[80];
	int cursor_position;

	/*
	 * Should better fill an on-stack buffer with a complete line and
	 * dump it at once when it is time to print a newline character.
	 */

	/*
	 * This algorithm is recursive because the amount of used stack space
	 * is very small and the max recursion depth is limited.
	 */
2554
	indent_add = sprintf(buf, "%c-%llu(%s/%llu/%u)",
2555
			     btrfsic_get_block_type(state, block),
2556 2557
			     block->logical_bytenr, block->dev_state->name,
			     block->dev_bytenr, block->mirror_num);
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
	if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
		printk("[...]\n");
		return;
	}
	printk(buf);
	indent_level += indent_add;
	if (list_empty(&block->ref_to_list)) {
		printk("\n");
		return;
	}
	if (block->mirror_num > 1 &&
	    !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
		printk(" [...]\n");
		return;
	}

	cursor_position = indent_level;
2575
	list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
		while (cursor_position < indent_level) {
			printk(" ");
			cursor_position++;
		}
		if (l->ref_cnt > 1)
			indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
		else
			indent_add = sprintf(buf, " --> ");
		if (indent_level + indent_add >
		    BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
			printk("[...]\n");
			cursor_position = 0;
			continue;
		}

		printk(buf);

		btrfsic_dump_tree_sub(state, l->block_ref_to,
				      indent_level + indent_add);
		cursor_position = 0;
	}
}

static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
		struct btrfsic_state *state,
		struct btrfsic_block_data_ctx *next_block_ctx,
		struct btrfsic_block *next_block,
		struct btrfsic_block *from_block,
		u64 parent_generation)
{
	struct btrfsic_block_link *l;

	l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
						next_block_ctx->dev_bytenr,
						from_block->dev_state->bdev,
						from_block->dev_bytenr,
						&state->block_link_hashtable);
	if (NULL == l) {
		l = btrfsic_block_link_alloc();
		if (NULL == l) {
2616
			pr_info("btrfsic: error, kmalloc failed!\n");
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
			return NULL;
		}

		l->block_ref_to = next_block;
		l->block_ref_from = from_block;
		l->ref_cnt = 1;
		l->parent_generation = parent_generation;

		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
			btrfsic_print_add_link(state, l);

		list_add(&l->node_ref_to, &from_block->ref_to_list);
		list_add(&l->node_ref_from, &next_block->ref_from_list);

		btrfsic_block_link_hashtable_add(l,
						 &state->block_link_hashtable);
	} else {
		l->ref_cnt++;
		l->parent_generation = parent_generation;
		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
			btrfsic_print_add_link(state, l);
	}

	return l;
}

static struct btrfsic_block *btrfsic_block_lookup_or_add(
		struct btrfsic_state *state,
		struct btrfsic_block_data_ctx *block_ctx,
		const char *additional_string,
		int is_metadata,
		int is_iodone,
		int never_written,
		int mirror_num,
		int *was_created)
{
	struct btrfsic_block *block;

	block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
					       block_ctx->dev_bytenr,
					       &state->block_hashtable);
	if (NULL == block) {
		struct btrfsic_dev_state *dev_state;

		block = btrfsic_block_alloc();
		if (NULL == block) {
2663
			pr_info("btrfsic: error, kmalloc failed!\n");
2664 2665 2666 2667
			return NULL;
		}
		dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
		if (NULL == dev_state) {
2668
			pr_info("btrfsic: error, lookup dev_state failed!\n");
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
			btrfsic_block_free(block);
			return NULL;
		}
		block->dev_state = dev_state;
		block->dev_bytenr = block_ctx->dev_bytenr;
		block->logical_bytenr = block_ctx->start;
		block->is_metadata = is_metadata;
		block->is_iodone = is_iodone;
		block->never_written = never_written;
		block->mirror_num = mirror_num;
		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2680
			pr_info("New %s%c-block @%llu (%s/%llu/%d)\n",
2681 2682
			       additional_string,
			       btrfsic_get_block_type(state, block),
2683 2684
			       block->logical_bytenr, dev_state->name,
			       block->dev_bytenr, mirror_num);
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
		list_add(&block->all_blocks_node, &state->all_blocks_list);
		btrfsic_block_hashtable_add(block, &state->block_hashtable);
		if (NULL != was_created)
			*was_created = 1;
	} else {
		if (NULL != was_created)
			*was_created = 0;
	}

	return block;
}

static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
					   u64 bytenr,
					   struct btrfsic_dev_state *dev_state,
2700
					   u64 dev_bytenr)
2701 2702 2703 2704 2705 2706 2707
{
	int num_copies;
	int mirror_num;
	int ret;
	struct btrfsic_block_data_ctx block_ctx;
	int match = 0;

2708
	num_copies = btrfs_num_copies(state->fs_info,
2709
				      bytenr, state->metablock_size);
2710 2711

	for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2712
		ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2713 2714
					&block_ctx, mirror_num);
		if (ret) {
2715
			pr_info("btrfsic: btrfsic_map_block(logical @%llu, mirror %d) failed!\n",
2716
			       bytenr, mirror_num);
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
			continue;
		}

		if (dev_state->bdev == block_ctx.dev->bdev &&
		    dev_bytenr == block_ctx.dev_bytenr) {
			match++;
			btrfsic_release_block_ctx(&block_ctx);
			break;
		}
		btrfsic_release_block_ctx(&block_ctx);
	}

2729
	if (WARN_ON(!match)) {
2730
		pr_info("btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio, buffer->log_bytenr=%llu, submit_bio(bdev=%s, phys_bytenr=%llu)!\n",
2731
		       bytenr, dev_state->name, dev_bytenr);
2732
		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2733 2734
			ret = btrfsic_map_block(state, bytenr,
						state->metablock_size,
2735 2736 2737 2738
						&block_ctx, mirror_num);
			if (ret)
				continue;

2739
			pr_info("Read logical bytenr @%llu maps to (%s/%llu/%d)\n",
2740 2741
			       bytenr, block_ctx.dev->name,
			       block_ctx.dev_bytenr, mirror_num);
2742 2743 2744 2745 2746 2747 2748
		}
	}
}

static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
		struct block_device *bdev)
{
2749 2750
	return btrfsic_dev_state_hashtable_lookup(bdev,
						  &btrfsic_dev_state_hashtable);
2751 2752
}

2753
int btrfsic_submit_bh(int op, int op_flags, struct buffer_head *bh)
2754 2755 2756 2757
{
	struct btrfsic_dev_state *dev_state;

	if (!btrfsic_is_initialized)
2758
		return submit_bh(op, op_flags, bh);
2759 2760 2761 2762 2763 2764 2765 2766

	mutex_lock(&btrfsic_mutex);
	/* since btrfsic_submit_bh() might also be called before
	 * btrfsic_mount(), this might return NULL */
	dev_state = btrfsic_dev_state_lookup(bh->b_bdev);

	/* Only called to write the superblock (incl. FLUSH/FUA) */
	if (NULL != dev_state &&
2767
	    (op == REQ_OP_WRITE) && bh->b_size > 0) {
2768 2769 2770 2771 2772
		u64 dev_bytenr;

		dev_bytenr = 4096 * bh->b_blocknr;
		if (dev_state->state->print_mask &
		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2773
			pr_info("submit_bh(op=0x%x,0x%x, blocknr=%llu (bytenr %llu), size=%zu, data=%p, bdev=%p)\n",
2774
			       op, op_flags, (unsigned long long)bh->b_blocknr,
2775
			       dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
2776
		btrfsic_process_written_block(dev_state, dev_bytenr,
2777
					      &bh->b_data, 1, NULL,
2778
					      NULL, bh, op_flags);
2779
	} else if (NULL != dev_state && (op_flags & REQ_PREFLUSH)) {
2780 2781
		if (dev_state->state->print_mask &
		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2782
			pr_info("submit_bh(op=0x%x,0x%x FLUSH, bdev=%p)\n",
2783
			       op, op_flags, bh->b_bdev);
2784 2785 2786 2787
		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
			if ((dev_state->state->print_mask &
			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
			      BTRFSIC_PRINT_MASK_VERBOSE)))
2788
				pr_info("btrfsic_submit_bh(%s) with FLUSH but dummy block already in use (ignored)!\n",
2789 2790 2791 2792 2793 2794 2795 2796 2797
				       dev_state->name);
		} else {
			struct btrfsic_block *const block =
				&dev_state->dummy_block_for_bio_bh_flush;

			block->is_iodone = 0;
			block->never_written = 0;
			block->iodone_w_error = 0;
			block->flush_gen = dev_state->last_flush_gen + 1;
2798
			block->submit_bio_bh_rw = op_flags;
2799 2800 2801 2802 2803 2804 2805 2806
			block->orig_bio_bh_private = bh->b_private;
			block->orig_bio_bh_end_io.bh = bh->b_end_io;
			block->next_in_same_bio = NULL;
			bh->b_private = block;
			bh->b_end_io = btrfsic_bh_end_io;
		}
	}
	mutex_unlock(&btrfsic_mutex);
2807
	return submit_bh(op, op_flags, bh);
2808 2809
}

2810
static void __btrfsic_submit_bio(struct bio *bio)
2811 2812 2813
{
	struct btrfsic_dev_state *dev_state;

2814
	if (!btrfsic_is_initialized)
2815 2816 2817 2818 2819 2820 2821
		return;

	mutex_lock(&btrfsic_mutex);
	/* since btrfsic_submit_bio() is also called before
	 * btrfsic_mount(), this might return NULL */
	dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
	if (NULL != dev_state &&
2822
	    (bio_op(bio) == REQ_OP_WRITE) && bio_has_data(bio)) {
2823 2824
		unsigned int i;
		u64 dev_bytenr;
2825
		u64 cur_bytenr;
2826
		struct bio_vec *bvec;
2827
		int bio_is_patched;
2828
		char **mapped_datav;
2829

2830
		dev_bytenr = 512 * bio->bi_iter.bi_sector;
2831 2832 2833
		bio_is_patched = 0;
		if (dev_state->state->print_mask &
		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2834
			pr_info("submit_bio(rw=%d,0x%x, bi_vcnt=%u, bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
J
Jens Axboe 已提交
2835
			       bio_op(bio), bio->bi_opf, bio->bi_vcnt,
2836 2837
			       (unsigned long long)bio->bi_iter.bi_sector,
			       dev_bytenr, bio->bi_bdev);
2838

2839 2840
		mapped_datav = kmalloc_array(bio->bi_vcnt,
					     sizeof(*mapped_datav), GFP_NOFS);
2841 2842
		if (!mapped_datav)
			goto leave;
2843
		cur_bytenr = dev_bytenr;
2844 2845 2846 2847 2848

		bio_for_each_segment_all(bvec, bio, i) {
			BUG_ON(bvec->bv_len != PAGE_SIZE);
			mapped_datav[i] = kmap(bvec->bv_page);

2849 2850
			if (dev_state->state->print_mask &
			    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
2851
				pr_info("#%u: bytenr=%llu, len=%u, offset=%u\n",
2852 2853
				       i, cur_bytenr, bvec->bv_len, bvec->bv_offset);
			cur_bytenr += bvec->bv_len;
2854 2855 2856 2857
		}
		btrfsic_process_written_block(dev_state, dev_bytenr,
					      mapped_datav, bio->bi_vcnt,
					      bio, &bio_is_patched,
J
Jens Axboe 已提交
2858
					      NULL, bio->bi_opf);
2859 2860
		bio_for_each_segment_all(bvec, bio, i)
			kunmap(bvec->bv_page);
2861
		kfree(mapped_datav);
J
Jens Axboe 已提交
2862
	} else if (NULL != dev_state && (bio->bi_opf & REQ_PREFLUSH)) {
2863 2864
		if (dev_state->state->print_mask &
		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2865
			pr_info("submit_bio(rw=%d,0x%x FLUSH, bdev=%p)\n",
J
Jens Axboe 已提交
2866
			       bio_op(bio), bio->bi_opf, bio->bi_bdev);
2867 2868 2869 2870
		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
			if ((dev_state->state->print_mask &
			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
			      BTRFSIC_PRINT_MASK_VERBOSE)))
2871
				pr_info("btrfsic_submit_bio(%s) with FLUSH but dummy block already in use (ignored)!\n",
2872 2873 2874 2875 2876 2877 2878 2879 2880
				       dev_state->name);
		} else {
			struct btrfsic_block *const block =
				&dev_state->dummy_block_for_bio_bh_flush;

			block->is_iodone = 0;
			block->never_written = 0;
			block->iodone_w_error = 0;
			block->flush_gen = dev_state->last_flush_gen + 1;
J
Jens Axboe 已提交
2881
			block->submit_bio_bh_rw = bio->bi_opf;
2882 2883 2884 2885 2886 2887 2888
			block->orig_bio_bh_private = bio->bi_private;
			block->orig_bio_bh_end_io.bio = bio->bi_end_io;
			block->next_in_same_bio = NULL;
			bio->bi_private = block;
			bio->bi_end_io = btrfsic_bio_end_io;
		}
	}
2889
leave:
2890
	mutex_unlock(&btrfsic_mutex);
2891
}
2892

2893
void btrfsic_submit_bio(struct bio *bio)
2894
{
2895 2896
	__btrfsic_submit_bio(bio);
	submit_bio(bio);
2897 2898
}

2899
int btrfsic_submit_bio_wait(struct bio *bio)
2900
{
2901 2902
	__btrfsic_submit_bio(bio);
	return submit_bio_wait(bio);
2903 2904
}

2905 2906 2907 2908 2909 2910 2911 2912 2913
int btrfsic_mount(struct btrfs_root *root,
		  struct btrfs_fs_devices *fs_devices,
		  int including_extent_data, u32 print_mask)
{
	int ret;
	struct btrfsic_state *state;
	struct list_head *dev_head = &fs_devices->devices;
	struct btrfs_device *device;

2914
	if (root->fs_info->nodesize & ((u64)PAGE_SIZE - 1)) {
2915
		pr_info("btrfsic: cannot handle nodesize %d not being a multiple of PAGE_SIZE %ld!\n",
2916
		       root->fs_info->nodesize, PAGE_SIZE);
2917 2918
		return -1;
	}
2919
	if (root->fs_info->sectorsize & ((u64)PAGE_SIZE - 1)) {
2920
		pr_info("btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_SIZE %ld!\n",
2921
		       root->fs_info->sectorsize, PAGE_SIZE);
2922 2923
		return -1;
	}
2924 2925 2926 2927
	state = kzalloc(sizeof(*state), GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
	if (!state) {
		state = vzalloc(sizeof(*state));
		if (!state) {
2928
			pr_info("btrfs check-integrity: vzalloc() failed!\n");
2929 2930
			return -1;
		}
2931 2932 2933 2934 2935 2936 2937 2938
	}

	if (!btrfsic_is_initialized) {
		mutex_init(&btrfsic_mutex);
		btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
		btrfsic_is_initialized = 1;
	}
	mutex_lock(&btrfsic_mutex);
2939
	state->fs_info = root->fs_info;
2940 2941 2942
	state->print_mask = print_mask;
	state->include_extent_data = including_extent_data;
	state->csum_size = 0;
2943 2944
	state->metablock_size = root->fs_info->nodesize;
	state->datablock_size = root->fs_info->sectorsize;
2945 2946 2947 2948 2949 2950 2951 2952
	INIT_LIST_HEAD(&state->all_blocks_list);
	btrfsic_block_hashtable_init(&state->block_hashtable);
	btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
	state->max_superblock_generation = 0;
	state->latest_superblock = NULL;

	list_for_each_entry(device, dev_head, dev_list) {
		struct btrfsic_dev_state *ds;
2953
		const char *p;
2954 2955 2956 2957 2958 2959

		if (!device->bdev || !device->name)
			continue;

		ds = btrfsic_dev_state_alloc();
		if (NULL == ds) {
2960
			pr_info("btrfs check-integrity: kmalloc() failed!\n");
2961 2962 2963 2964 2965 2966 2967
			mutex_unlock(&btrfsic_mutex);
			return -1;
		}
		ds->bdev = device->bdev;
		ds->state = state;
		bdevname(ds->bdev, ds->name);
		ds->name[BDEVNAME_SIZE - 1] = '\0';
2968
		p = kbasename(ds->name);
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
		strlcpy(ds->name, p, sizeof(ds->name));
		btrfsic_dev_state_hashtable_add(ds,
						&btrfsic_dev_state_hashtable);
	}

	ret = btrfsic_process_superblock(state, fs_devices);
	if (0 != ret) {
		mutex_unlock(&btrfsic_mutex);
		btrfsic_unmount(root, fs_devices);
		return ret;
	}

	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
		btrfsic_dump_database(state);
	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
		btrfsic_dump_tree(state);

	mutex_unlock(&btrfsic_mutex);
	return 0;
}

void btrfsic_unmount(struct btrfs_root *root,
		     struct btrfs_fs_devices *fs_devices)
{
2993
	struct btrfsic_block *b_all, *tmp_all;
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
	struct btrfsic_state *state;
	struct list_head *dev_head = &fs_devices->devices;
	struct btrfs_device *device;

	if (!btrfsic_is_initialized)
		return;

	mutex_lock(&btrfsic_mutex);

	state = NULL;
	list_for_each_entry(device, dev_head, dev_list) {
		struct btrfsic_dev_state *ds;

		if (!device->bdev || !device->name)
			continue;

		ds = btrfsic_dev_state_hashtable_lookup(
				device->bdev,
				&btrfsic_dev_state_hashtable);
		if (NULL != ds) {
			state = ds->state;
			btrfsic_dev_state_hashtable_remove(ds);
			btrfsic_dev_state_free(ds);
		}
	}

	if (NULL == state) {
3021
		pr_info("btrfsic: error, cannot find state information on umount!\n");
3022 3023 3024 3025 3026 3027 3028 3029 3030
		mutex_unlock(&btrfsic_mutex);
		return;
	}

	/*
	 * Don't care about keeping the lists' state up to date,
	 * just free all memory that was allocated dynamically.
	 * Free the blocks and the block_links.
	 */
3031 3032 3033
	list_for_each_entry_safe(b_all, tmp_all, &state->all_blocks_list,
				 all_blocks_node) {
		struct btrfsic_block_link *l, *tmp;
3034

3035 3036
		list_for_each_entry_safe(l, tmp, &b_all->ref_to_list,
					 node_ref_to) {
3037 3038 3039 3040 3041 3042 3043 3044
			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
				btrfsic_print_rem_link(state, l);

			l->ref_cnt--;
			if (0 == l->ref_cnt)
				btrfsic_block_link_free(l);
		}

3045
		if (b_all->is_iodone || b_all->never_written)
3046 3047
			btrfsic_block_free(b_all);
		else
3048
			pr_info("btrfs: attempt to free %c-block @%llu (%s/%llu/%d) on umount which is not yet iodone!\n",
3049
			       btrfsic_get_block_type(state, b_all),
3050 3051
			       b_all->logical_bytenr, b_all->dev_state->name,
			       b_all->dev_bytenr, b_all->mirror_num);
3052 3053 3054 3055
	}

	mutex_unlock(&btrfsic_mutex);

W
Wang Shilong 已提交
3056
	kvfree(state);
3057
}