ptp.c 56.7 KB
Newer Older
1
/****************************************************************************
B
Ben Hutchings 已提交
2 3
 * Driver for Solarflare network controllers and boards
 * Copyright 2011-2013 Solarflare Communications Inc.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

/* Theory of operation:
 *
 * PTP support is assisted by firmware running on the MC, which provides
 * the hardware timestamping capabilities.  Both transmitted and received
 * PTP event packets are queued onto internal queues for subsequent processing;
 * this is because the MC operations are relatively long and would block
 * block NAPI/interrupt operation.
 *
 * Receive event processing:
 *	The event contains the packet's UUID and sequence number, together
 *	with the hardware timestamp.  The PTP receive packet queue is searched
 *	for this UUID/sequence number and, if found, put on a pending queue.
 *	Packets not matching are delivered without timestamps (MCDI events will
 *	always arrive after the actual packet).
 *	It is important for the operation of the PTP protocol that the ordering
 *	of packets between the event and general port is maintained.
 *
 * Work queue processing:
 *	If work waiting, synchronise host/hardware time
 *
 *	Transmit: send packet through MC, which returns the transmission time
 *	that is converted to an appropriate timestamp.
 *
 *	Receive: the packet's reception time is converted to an appropriate
 *	timestamp.
 */
#include <linux/ip.h>
#include <linux/udp.h>
#include <linux/time.h>
#include <linux/ktime.h>
#include <linux/module.h>
#include <linux/net_tstamp.h>
#include <linux/pps_kernel.h>
#include <linux/ptp_clock_kernel.h>
#include "net_driver.h"
#include "efx.h"
#include "mcdi.h"
#include "mcdi_pcol.h"
#include "io.h"
49
#include "farch_regs.h"
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
#include "nic.h"

/* Maximum number of events expected to make up a PTP event */
#define	MAX_EVENT_FRAGS			3

/* Maximum delay, ms, to begin synchronisation */
#define	MAX_SYNCHRONISE_WAIT_MS		2

/* How long, at most, to spend synchronising */
#define	SYNCHRONISE_PERIOD_NS		250000

/* How often to update the shared memory time */
#define	SYNCHRONISATION_GRANULARITY_NS	200

/* Minimum permitted length of a (corrected) synchronisation time */
65
#define	DEFAULT_MIN_SYNCHRONISATION_NS	120
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

/* Maximum permitted length of a (corrected) synchronisation time */
#define	MAX_SYNCHRONISATION_NS		1000

/* How many (MC) receive events that can be queued */
#define	MAX_RECEIVE_EVENTS		8

/* Length of (modified) moving average. */
#define	AVERAGE_LENGTH			16

/* How long an unmatched event or packet can be held */
#define PKT_EVENT_LIFETIME_MS		10

/* Offsets into PTP packet for identification.  These offsets are from the
 * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
 * PTP V2 permit the use of IPV4 options.
 */
#define PTP_DPORT_OFFSET	22

#define PTP_V1_VERSION_LENGTH	2
#define PTP_V1_VERSION_OFFSET	28

#define PTP_V1_UUID_LENGTH	6
#define PTP_V1_UUID_OFFSET	50

#define PTP_V1_SEQUENCE_LENGTH	2
#define PTP_V1_SEQUENCE_OFFSET	58

/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
 * includes IP header.
 */
#define	PTP_V1_MIN_LENGTH	64

#define PTP_V2_VERSION_LENGTH	1
#define PTP_V2_VERSION_OFFSET	29

102 103 104
#define PTP_V2_UUID_LENGTH	8
#define PTP_V2_UUID_OFFSET	48

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
 * the MC only captures the last six bytes of the clock identity. These values
 * reflect those, not the ones used in the standard.  The standard permits
 * mapping of V1 UUIDs to V2 UUIDs with these same values.
 */
#define PTP_V2_MC_UUID_LENGTH	6
#define PTP_V2_MC_UUID_OFFSET	50

#define PTP_V2_SEQUENCE_LENGTH	2
#define PTP_V2_SEQUENCE_OFFSET	58

/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
 * includes IP header.
 */
#define	PTP_V2_MIN_LENGTH	63

#define	PTP_MIN_LENGTH		63

#define PTP_ADDRESS		0xe0000181	/* 224.0.1.129 */
#define PTP_EVENT_PORT		319
#define PTP_GENERAL_PORT	320

/* Annoyingly the format of the version numbers are different between
 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
 */
#define	PTP_VERSION_V1		1

#define	PTP_VERSION_V2		2
#define	PTP_VERSION_V2_MASK	0x0f

enum ptp_packet_state {
	PTP_PACKET_STATE_UNMATCHED = 0,
	PTP_PACKET_STATE_MATCHED,
	PTP_PACKET_STATE_TIMED_OUT,
	PTP_PACKET_STATE_MATCH_UNWANTED
};

/* NIC synchronised with single word of time only comprising
 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
 */
#define	MC_NANOSECOND_BITS	30
#define	MC_NANOSECOND_MASK	((1 << MC_NANOSECOND_BITS) - 1)
#define	MC_SECOND_MASK		((1 << (32 - MC_NANOSECOND_BITS)) - 1)

/* Maximum parts-per-billion adjustment that is acceptable */
#define MAX_PPB			1000000

/* Number of bits required to hold the above */
#define	MAX_PPB_BITS		20

/* Number of extra bits allowed when calculating fractional ns.
 * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should
 * be less than 63.
 */
#define	PPB_EXTRA_BITS		2

/* Precalculate scale word to avoid long long division at runtime */
#define	PPB_SCALE_WORD	((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\
			MAX_PPB_BITS)) / 1000000000LL)

#define PTP_SYNC_ATTEMPTS	4

/**
 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
 * @words: UUID and (partial) sequence number
 * @expiry: Time after which the packet should be delivered irrespective of
 *            event arrival.
 * @state: The state of the packet - whether it is ready for processing or
 *         whether that is of no interest.
 */
struct efx_ptp_match {
	u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
	unsigned long expiry;
	enum ptp_packet_state state;
};

/**
 * struct efx_ptp_event_rx - A PTP receive event (from MC)
 * @seq0: First part of (PTP) UUID
 * @seq1: Second part of (PTP) UUID and sequence number
 * @hwtimestamp: Event timestamp
 */
struct efx_ptp_event_rx {
	struct list_head link;
	u32 seq0;
	u32 seq1;
	ktime_t hwtimestamp;
	unsigned long expiry;
};

/**
 * struct efx_ptp_timeset - Synchronisation between host and MC
 * @host_start: Host time immediately before hardware timestamp taken
198 199
 * @major: Hardware timestamp, major
 * @minor: Hardware timestamp, minor
200
 * @host_end: Host time immediately after hardware timestamp taken
201
 * @wait: Number of NIC clock ticks between hardware timestamp being read and
202 203 204 205 206 207
 *          host end time being seen
 * @window: Difference of host_end and host_start
 * @valid: Whether this timeset is valid
 */
struct efx_ptp_timeset {
	u32 host_start;
208 209
	u32 major;
	u32 minor;
210
	u32 host_end;
211
	u32 wait;
212 213 214 215 216
	u32 window;	/* Derived: end - start, allowing for wrap */
};

/**
 * struct efx_ptp_data - Precision Time Protocol (PTP) state
217 218
 * @efx: The NIC context
 * @channel: The PTP channel (Siena only)
219 220
 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
 *	separate events)
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
 * @rxq: Receive queue (awaiting timestamps)
 * @txq: Transmit queue
 * @evt_list: List of MC receive events awaiting packets
 * @evt_free_list: List of free events
 * @evt_lock: Lock for manipulating evt_list and evt_free_list
 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
 * @workwq: Work queue for processing pending PTP operations
 * @work: Work task
 * @reset_required: A serious error has occurred and the PTP task needs to be
 *                  reset (disable, enable).
 * @rxfilter_event: Receive filter when operating
 * @rxfilter_general: Receive filter when operating
 * @config: Current timestamp configuration
 * @enabled: PTP operation enabled
 * @mode: Mode in which PTP operating (PTP version)
236 237 238 239 240 241 242 243
 * @time_format: Time format supported by this NIC
 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
 * @nic_to_kernel_time: Function to convert from NIC to kernel time
 * @min_synchronisation_ns: Minimum acceptable corrected sync window
 * @ts_corrections.tx: Required driver correction of transmit timestamps
 * @ts_corrections.rx: Required driver correction of receive timestamps
 * @ts_corrections.pps_out: PPS output error (information only)
 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
244 245 246 247 248 249
 * @evt_frags: Partly assembled PTP events
 * @evt_frag_idx: Current fragment number
 * @evt_code: Last event code
 * @start: Address at which MC indicates ready for synchronisation
 * @host_time_pps: Host time at last PPS
 * @current_adjfreq: Current ppb adjustment.
250
 * @phc_clock: Pointer to registered phc device (if primary function)
251 252 253 254 255 256
 * @phc_clock_info: Registration structure for phc device
 * @pps_work: pps work task for handling pps events
 * @pps_workwq: pps work queue
 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
 *         allocations in main data path).
257 258 259 260 261 262 263 264 265
 * @good_syncs: Number of successful synchronisations.
 * @fast_syncs: Number of synchronisations requiring short delay
 * @bad_syncs: Number of failed synchronisations.
 * @sync_timeouts: Number of synchronisation timeouts
 * @no_time_syncs: Number of synchronisations with no good times.
 * @invalid_sync_windows: Number of sync windows with bad durations.
 * @undersize_sync_windows: Number of corrected sync windows that are too small
 * @oversize_sync_windows: Number of corrected sync windows that are too large
 * @rx_no_timestamp: Number of packets received without a timestamp.
266 267 268
 * @timeset: Last set of synchronisation statistics.
 */
struct efx_ptp_data {
269
	struct efx_nic *efx;
270
	struct efx_channel *channel;
271
	bool rx_ts_inline;
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	struct sk_buff_head rxq;
	struct sk_buff_head txq;
	struct list_head evt_list;
	struct list_head evt_free_list;
	spinlock_t evt_lock;
	struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
	struct workqueue_struct *workwq;
	struct work_struct work;
	bool reset_required;
	u32 rxfilter_event;
	u32 rxfilter_general;
	bool rxfilter_installed;
	struct hwtstamp_config config;
	bool enabled;
	unsigned int mode;
287 288 289 290 291 292 293 294 295 296 297
	unsigned int time_format;
	void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
	ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
				      s32 correction);
	unsigned int min_synchronisation_ns;
	struct {
		s32 tx;
		s32 rx;
		s32 pps_out;
		s32 pps_in;
	} ts_corrections;
298 299 300 301 302 303 304 305 306 307 308
	efx_qword_t evt_frags[MAX_EVENT_FRAGS];
	int evt_frag_idx;
	int evt_code;
	struct efx_buffer start;
	struct pps_event_time host_time_pps;
	s64 current_adjfreq;
	struct ptp_clock *phc_clock;
	struct ptp_clock_info phc_clock_info;
	struct work_struct pps_work;
	struct workqueue_struct *pps_workwq;
	bool nic_ts_enabled;
309
	_MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
310 311 312 313 314 315 316 317 318 319

	unsigned int good_syncs;
	unsigned int fast_syncs;
	unsigned int bad_syncs;
	unsigned int sync_timeouts;
	unsigned int no_time_syncs;
	unsigned int invalid_sync_windows;
	unsigned int undersize_sync_windows;
	unsigned int oversize_sync_windows;
	unsigned int rx_no_timestamp;
320 321 322 323 324 325
	struct efx_ptp_timeset
	timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
};

static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
326
static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
327
static int efx_phc_settime(struct ptp_clock_info *ptp,
328
			   const struct timespec64 *e_ts);
329 330 331
static int efx_phc_enable(struct ptp_clock_info *ptp,
			  struct ptp_clock_request *request, int on);

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
#define PTP_SW_STAT(ext_name, field_name)				\
	{ #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
#define PTP_MC_STAT(ext_name, mcdi_name)				\
	{ #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
	PTP_SW_STAT(ptp_good_syncs, good_syncs),
	PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
	PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
	PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
	PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
	PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
	PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
	PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
	PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
	PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
	PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
	PTP_MC_STAT(ptp_timestamp_packets, TS),
	PTP_MC_STAT(ptp_filter_matches, FM),
	PTP_MC_STAT(ptp_non_filter_matches, NFM),
};
#define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
static const unsigned long efx_ptp_stat_mask[] = {
	[0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
};

size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
{
	if (!efx->ptp_data)
		return 0;

	return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
				      efx_ptp_stat_mask, strings);
}

size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
	size_t i;
	int rc;

	if (!efx->ptp_data)
		return 0;

	/* Copy software statistics */
	for (i = 0; i < PTP_STAT_COUNT; i++) {
		if (efx_ptp_stat_desc[i].dma_width)
			continue;
		stats[i] = *(unsigned int *)((char *)efx->ptp_data +
					     efx_ptp_stat_desc[i].offset);
	}

	/* Fetch MC statistics.  We *must* fill in all statistics or
	 * risk leaking kernel memory to userland, so if the MCDI
	 * request fails we pretend we got zeroes.
	 */
	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
			  outbuf, sizeof(outbuf), NULL);
392
	if (rc)
393 394 395 396 397 398 399 400
		memset(outbuf, 0, sizeof(outbuf));
	efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
			     efx_ptp_stat_mask,
			     stats, _MCDI_PTR(outbuf, 0), false);

	return PTP_STAT_COUNT;
}

401 402 403 404 405 406 407 408
/* For Siena platforms NIC time is s and ns */
static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
{
	struct timespec ts = ns_to_timespec(ns);
	*nic_major = ts.tv_sec;
	*nic_minor = ts.tv_nsec;
}

409 410
static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
						s32 correction)
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
{
	ktime_t kt = ktime_set(nic_major, nic_minor);
	if (correction >= 0)
		kt = ktime_add_ns(kt, (u64)correction);
	else
		kt = ktime_sub_ns(kt, (u64)-correction);
	return kt;
}

/* To convert from s27 format to ns we multiply then divide by a power of 2.
 * For the conversion from ns to s27, the operation is also converted to a
 * multiply and shift.
 */
#define S27_TO_NS_SHIFT	(27)
#define NS_TO_S27_MULT	(((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
#define NS_TO_S27_SHIFT	(63 - S27_TO_NS_SHIFT)
#define S27_MINOR_MAX	(1 << S27_TO_NS_SHIFT)

/* For Huntington platforms NIC time is in seconds and fractions of a second
 * where the minor register only uses 27 bits in units of 2^-27s.
 */
static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
{
	struct timespec ts = ns_to_timespec(ns);
	u32 maj = ts.tv_sec;
	u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
			 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);

	/* The conversion can result in the minor value exceeding the maximum.
	 * In this case, round up to the next second.
	 */
	if (min >= S27_MINOR_MAX) {
		min -= S27_MINOR_MAX;
		maj++;
	}

	*nic_major = maj;
	*nic_minor = min;
}

451
static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
452
{
453 454 455 456
	u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
			(1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
	return ktime_set(nic_major, ns);
}
457

458 459 460
static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
					       s32 correction)
{
461 462 463 464 465 466 467 468 469 470
	/* Apply the correction and deal with carry */
	nic_minor += correction;
	if ((s32)nic_minor < 0) {
		nic_minor += S27_MINOR_MAX;
		nic_major--;
	} else if (nic_minor >= S27_MINOR_MAX) {
		nic_minor -= S27_MINOR_MAX;
		nic_major++;
	}

471
	return efx_ptp_s27_to_ktime(nic_major, nic_minor);
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
}

/* Get PTP attributes and set up time conversions */
static int efx_ptp_get_attributes(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
	struct efx_ptp_data *ptp = efx->ptp_data;
	int rc;
	u32 fmt;
	size_t out_len;

	/* Get the PTP attributes. If the NIC doesn't support the operation we
	 * use the default format for compatibility with older NICs i.e.
	 * seconds and nanoseconds.
	 */
	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
490 491 492
	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
				outbuf, sizeof(outbuf), &out_len);
	if (rc == 0) {
493
		fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
494
	} else if (rc == -EINVAL) {
495
		fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
496 497
	} else if (rc == -EPERM) {
		netif_info(efx, probe, efx->net_dev, "no PTP support\n");
498
		return rc;
499 500 501 502 503
	} else {
		efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
				       outbuf, sizeof(outbuf), rc);
		return rc;
	}
504 505 506

	if (fmt == MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION) {
		ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
507
		ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
508 509
	} else if (fmt == MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS) {
		ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
510
		ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
	} else {
		return -ERANGE;
	}

	ptp->time_format = fmt;

	/* MC_CMD_PTP_OP_GET_ATTRIBUTES is an extended version of an older
	 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT that also returns a value
	 * to use for the minimum acceptable corrected synchronization window.
	 * If we have the extra information store it. For older firmware that
	 * does not implement the extended command use the default value.
	 */
	if (rc == 0 && out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
		ptp->min_synchronisation_ns =
			MCDI_DWORD(outbuf,
				   PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
	else
		ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;

	return 0;
}

/* Get PTP timestamp corrections */
static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_LEN);
	int rc;

	/* Get the timestamp corrections from the NIC. If this operation is
	 * not supported (older NICs) then no correction is required.
	 */
	MCDI_SET_DWORD(inbuf, PTP_IN_OP,
		       MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);

547 548
	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
				outbuf, sizeof(outbuf), NULL);
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	if (rc == 0) {
		efx->ptp_data->ts_corrections.tx = MCDI_DWORD(outbuf,
			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
		efx->ptp_data->ts_corrections.rx = MCDI_DWORD(outbuf,
			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
		efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
		efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
	} else if (rc == -EINVAL) {
		efx->ptp_data->ts_corrections.tx = 0;
		efx->ptp_data->ts_corrections.rx = 0;
		efx->ptp_data->ts_corrections.pps_out = 0;
		efx->ptp_data->ts_corrections.pps_in = 0;
	} else {
564 565
		efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
				       sizeof(outbuf), rc);
566 567 568 569 570 571
		return rc;
	}

	return 0;
}

572 573 574
/* Enable MCDI PTP support. */
static int efx_ptp_enable(struct efx_nic *efx)
{
575
	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
576
	MCDI_DECLARE_BUF_ERR(outbuf);
E
Edward Cree 已提交
577
	int rc;
578 579

	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
580
	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
581
	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
582 583
		       efx->ptp_data->channel ?
		       efx->ptp_data->channel->channel : 0);
584 585
	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);

E
Edward Cree 已提交
586 587 588 589 590 591 592 593
	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
				outbuf, sizeof(outbuf), NULL);
	rc = (rc == -EALREADY) ? 0 : rc;
	if (rc)
		efx_mcdi_display_error(efx, MC_CMD_PTP,
				       MC_CMD_PTP_IN_ENABLE_LEN,
				       outbuf, sizeof(outbuf), rc);
	return rc;
594 595 596 597 598 599 600 601 602
}

/* Disable MCDI PTP support.
 *
 * Note that this function should never rely on the presence of ptp_data -
 * may be called before that exists.
 */
static int efx_ptp_disable(struct efx_nic *efx)
{
603
	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
604
	MCDI_DECLARE_BUF_ERR(outbuf);
E
Edward Cree 已提交
605
	int rc;
606 607

	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
608
	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
E
Edward Cree 已提交
609 610 611
	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
				outbuf, sizeof(outbuf), NULL);
	rc = (rc == -EALREADY) ? 0 : rc;
612 613 614 615 616 617
	/* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
	 * should only have been called during probe.
	 */
	if (rc == -ENOSYS || rc == -EPERM)
		netif_info(efx, probe, efx->net_dev, "no PTP support\n");
	else if (rc)
E
Edward Cree 已提交
618 619 620 621
		efx_mcdi_display_error(efx, MC_CMD_PTP,
				       MC_CMD_PTP_IN_DISABLE_LEN,
				       outbuf, sizeof(outbuf), rc);
	return rc;
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
}

static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
{
	struct sk_buff *skb;

	while ((skb = skb_dequeue(q))) {
		local_bh_disable();
		netif_receive_skb(skb);
		local_bh_enable();
	}
}

static void efx_ptp_handle_no_channel(struct efx_nic *efx)
{
	netif_err(efx, drv, efx->net_dev,
		  "ERROR: PTP requires MSI-X and 1 additional interrupt"
		  "vector. PTP disabled\n");
}

/* Repeatedly send the host time to the MC which will capture the hardware
 * time.
 */
static void efx_ptp_send_times(struct efx_nic *efx,
			       struct pps_event_time *last_time)
{
	struct pps_event_time now;
	struct timespec limit;
	struct efx_ptp_data *ptp = efx->ptp_data;
	struct timespec start;
	int *mc_running = ptp->start.addr;

	pps_get_ts(&now);
	start = now.ts_real;
	limit = now.ts_real;
	timespec_add_ns(&limit, SYNCHRONISE_PERIOD_NS);

	/* Write host time for specified period or until MC is done */
	while ((timespec_compare(&now.ts_real, &limit) < 0) &&
	       ACCESS_ONCE(*mc_running)) {
		struct timespec update_time;
		unsigned int host_time;

		/* Don't update continuously to avoid saturating the PCIe bus */
		update_time = now.ts_real;
		timespec_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
		do {
			pps_get_ts(&now);
		} while ((timespec_compare(&now.ts_real, &update_time) < 0) &&
			 ACCESS_ONCE(*mc_running));

		/* Synchronise NIC with single word of time only */
		host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
			     now.ts_real.tv_nsec);
		/* Update host time in NIC memory */
677
		efx->type->ptp_write_host_time(efx, host_time);
678 679 680 681 682
	}
	*last_time = now;
}

/* Read a timeset from the MC's results and partial process. */
683 684
static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
				 struct efx_ptp_timeset *timeset)
685 686 687 688
{
	unsigned start_ns, end_ns;

	timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
689 690
	timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
	timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
691
	timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
692
	timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711

	/* Ignore seconds */
	start_ns = timeset->host_start & MC_NANOSECOND_MASK;
	end_ns = timeset->host_end & MC_NANOSECOND_MASK;
	/* Allow for rollover */
	if (end_ns < start_ns)
		end_ns += NSEC_PER_SEC;
	/* Determine duration of operation */
	timeset->window = end_ns - start_ns;
}

/* Process times received from MC.
 *
 * Extract times from returned results, and establish the minimum value
 * seen.  The minimum value represents the "best" possible time and events
 * too much greater than this are rejected - the machine is, perhaps, too
 * busy. A number of readings are taken so that, hopefully, at least one good
 * synchronisation will be seen in the results.
 */
712 713 714 715
static int
efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
		      size_t response_length,
		      const struct pps_event_time *last_time)
716
{
717 718 719
	unsigned number_readings =
		MCDI_VAR_ARRAY_LEN(response_length,
				   PTP_OUT_SYNCHRONIZE_TIMESET);
720 721 722 723 724 725 726
	unsigned i;
	unsigned ngood = 0;
	unsigned last_good = 0;
	struct efx_ptp_data *ptp = efx->ptp_data;
	u32 last_sec;
	u32 start_sec;
	struct timespec delta;
727
	ktime_t mc_time;
728 729 730 731

	if (number_readings == 0)
		return -EAGAIN;

732 733 734
	/* Read the set of results and find the last good host-MC
	 * synchronization result. The MC times when it finishes reading the
	 * host time so the corrected window time should be fairly constant
735 736
	 * for a given platform. Increment stats for any results that appear
	 * to be erroneous.
737 738
	 */
	for (i = 0; i < number_readings; i++) {
739
		s32 window, corrected;
740
		struct timespec wait;
741

742 743 744 745
		efx_ptp_read_timeset(
			MCDI_ARRAY_STRUCT_PTR(synch_buf,
					      PTP_OUT_SYNCHRONIZE_TIMESET, i),
			&ptp->timeset[i]);
746

747 748
		wait = ktime_to_timespec(
			ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
749
		window = ptp->timeset[i].window;
750
		corrected = window - wait.tv_nsec;
751 752 753 754 755 756 757 758 759 760

		/* We expect the uncorrected synchronization window to be at
		 * least as large as the interval between host start and end
		 * times. If it is smaller than this then this is mostly likely
		 * to be a consequence of the host's time being adjusted.
		 * Check that the corrected sync window is in a reasonable
		 * range. If it is out of range it is likely to be because an
		 * interrupt or other delay occurred between reading the system
		 * time and writing it to MC memory.
		 */
761 762 763 764
		if (window < SYNCHRONISATION_GRANULARITY_NS) {
			++ptp->invalid_sync_windows;
		} else if (corrected >= MAX_SYNCHRONISATION_NS) {
			++ptp->oversize_sync_windows;
765 766
		} else if (corrected < ptp->min_synchronisation_ns) {
			++ptp->undersize_sync_windows;
767
		} else {
768 769
			ngood++;
			last_good = i;
770
		}
771
	}
772 773 774

	if (ngood == 0) {
		netif_warn(efx, drv, efx->net_dev,
775
			   "PTP no suitable synchronisations\n");
776 777 778
		return -EAGAIN;
	}

779 780
	/* Calculate delay from last good sync (host time) to last_time.
	 * It is possible that the seconds rolled over between taking
781 782
	 * the start reading and the last value written by the host.  The
	 * timescales are such that a gap of more than one second is never
783
	 * expected.  delta is *not* normalised.
784 785 786
	 */
	start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
	last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
787 788 789 790 791
	if (start_sec != last_sec &&
	    ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
		netif_warn(efx, hw, efx->net_dev,
			   "PTP bad synchronisation seconds\n");
		return -EAGAIN;
792
	}
793 794 795 796 797 798 799 800 801 802 803 804 805 806
	delta.tv_sec = (last_sec - start_sec) & 1;
	delta.tv_nsec =
		last_time->ts_real.tv_nsec -
		(ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);

	/* Convert the NIC time at last good sync into kernel time.
	 * No correction is required - this time is the output of a
	 * firmware process.
	 */
	mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
					  ptp->timeset[last_good].minor, 0);

	/* Calculate delay from NIC top of second to last_time */
	delta.tv_nsec += ktime_to_timespec(mc_time).tv_nsec;
807

808
	/* Set PPS timestamp to match NIC top of second */
809 810 811 812 813 814 815 816 817 818
	ptp->host_time_pps = *last_time;
	pps_sub_ts(&ptp->host_time_pps, delta);

	return 0;
}

/* Synchronize times between the host and the MC */
static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
{
	struct efx_ptp_data *ptp = efx->ptp_data;
819
	MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
820 821 822 823 824 825 826 827
	size_t response_length;
	int rc;
	unsigned long timeout;
	struct pps_event_time last_time = {};
	unsigned int loops = 0;
	int *start = ptp->start.addr;

	MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
828
	MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
829 830
	MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
		       num_readings);
831 832
	MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
		       ptp->start.dma_addr);
833 834 835

	/* Clear flag that signals MC ready */
	ACCESS_ONCE(*start) = 0;
B
Ben Hutchings 已提交
836 837 838
	rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
				MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
	EFX_BUG_ON_PARANOID(rc);
839 840 841 842 843 844 845 846

	/* Wait for start from MCDI (or timeout) */
	timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
	while (!ACCESS_ONCE(*start) && (time_before(jiffies, timeout))) {
		udelay(20);	/* Usually start MCDI execution quickly */
		loops++;
	}

847 848 849 850 851
	if (loops <= 1)
		++ptp->fast_syncs;
	if (!time_before(jiffies, timeout))
		++ptp->sync_timeouts;

852 853 854 855 856 857 858 859
	if (ACCESS_ONCE(*start))
		efx_ptp_send_times(efx, &last_time);

	/* Collect results */
	rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
				 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
				 synch_buf, sizeof(synch_buf),
				 &response_length);
860
	if (rc == 0) {
861 862
		rc = efx_ptp_process_times(efx, synch_buf, response_length,
					   &last_time);
863 864 865 866 867 868 869 870 871 872 873
		if (rc == 0)
			++ptp->good_syncs;
		else
			++ptp->no_time_syncs;
	}

	/* Increment the bad syncs counter if the synchronize fails, whatever
	 * the reason.
	 */
	if (rc != 0)
		++ptp->bad_syncs;
874 875 876 877 878 879 880

	return rc;
}

/* Transmit a PTP packet, via the MCDI interface, to the wire. */
static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb)
{
881
	struct efx_ptp_data *ptp_data = efx->ptp_data;
882 883
	struct skb_shared_hwtstamps timestamps;
	int rc = -EIO;
884
	MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
885
	size_t len;
886

887
	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
888
	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
889
	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
890 891 892 893 894 895 896 897 898 899 900 901
	if (skb_shinfo(skb)->nr_frags != 0) {
		rc = skb_linearize(skb);
		if (rc != 0)
			goto fail;
	}

	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		rc = skb_checksum_help(skb);
		if (rc != 0)
			goto fail;
	}
	skb_copy_from_linear_data(skb,
902 903
				  MCDI_PTR(ptp_data->txbuf,
					   PTP_IN_TRANSMIT_PACKET),
904 905 906 907
				  skb->len);
	rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
			  ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
			  txtime, sizeof(txtime), &len);
908 909 910 911
	if (rc != 0)
		goto fail;

	memset(&timestamps, 0, sizeof(timestamps));
912 913 914 915
	timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
		ptp_data->ts_corrections.tx);
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932

	skb_tstamp_tx(skb, &timestamps);

	rc = 0;

fail:
	dev_kfree_skb(skb);

	return rc;
}

static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
{
	struct efx_ptp_data *ptp = efx->ptp_data;
	struct list_head *cursor;
	struct list_head *next;

933 934 935
	if (ptp->rx_ts_inline)
		return;

936 937 938 939 940 941 942 943 944
	/* Drop time-expired events */
	spin_lock_bh(&ptp->evt_lock);
	if (!list_empty(&ptp->evt_list)) {
		list_for_each_safe(cursor, next, &ptp->evt_list) {
			struct efx_ptp_event_rx *evt;

			evt = list_entry(cursor, struct efx_ptp_event_rx,
					 link);
			if (time_after(jiffies, evt->expiry)) {
945
				list_move(&evt->link, &ptp->evt_free_list);
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
				netif_warn(efx, hw, efx->net_dev,
					   "PTP rx event dropped\n");
			}
		}
	}
	spin_unlock_bh(&ptp->evt_lock);
}

static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
					      struct sk_buff *skb)
{
	struct efx_ptp_data *ptp = efx->ptp_data;
	bool evts_waiting;
	struct list_head *cursor;
	struct list_head *next;
	struct efx_ptp_match *match;
	enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;

964 965
	WARN_ON_ONCE(ptp->rx_ts_inline);

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
	spin_lock_bh(&ptp->evt_lock);
	evts_waiting = !list_empty(&ptp->evt_list);
	spin_unlock_bh(&ptp->evt_lock);

	if (!evts_waiting)
		return PTP_PACKET_STATE_UNMATCHED;

	match = (struct efx_ptp_match *)skb->cb;
	/* Look for a matching timestamp in the event queue */
	spin_lock_bh(&ptp->evt_lock);
	list_for_each_safe(cursor, next, &ptp->evt_list) {
		struct efx_ptp_event_rx *evt;

		evt = list_entry(cursor, struct efx_ptp_event_rx, link);
		if ((evt->seq0 == match->words[0]) &&
		    (evt->seq1 == match->words[1])) {
			struct skb_shared_hwtstamps *timestamps;

			/* Match - add in hardware timestamp */
			timestamps = skb_hwtstamps(skb);
			timestamps->hwtstamp = evt->hwtimestamp;

			match->state = PTP_PACKET_STATE_MATCHED;
			rc = PTP_PACKET_STATE_MATCHED;
990
			list_move(&evt->link, &ptp->evt_free_list);
991 992 993 994 995 996 997 998 999 1000 1001 1002
			break;
		}
	}
	spin_unlock_bh(&ptp->evt_lock);

	return rc;
}

/* Process any queued receive events and corresponding packets
 *
 * q is returned with all the packets that are ready for delivery.
 */
1003
static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
{
	struct efx_ptp_data *ptp = efx->ptp_data;
	struct sk_buff *skb;

	while ((skb = skb_dequeue(&ptp->rxq))) {
		struct efx_ptp_match *match;

		match = (struct efx_ptp_match *)skb->cb;
		if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
			__skb_queue_tail(q, skb);
		} else if (efx_ptp_match_rx(efx, skb) ==
			   PTP_PACKET_STATE_MATCHED) {
			__skb_queue_tail(q, skb);
		} else if (time_after(jiffies, match->expiry)) {
			match->state = PTP_PACKET_STATE_TIMED_OUT;
1019
			++ptp->rx_no_timestamp;
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
			__skb_queue_tail(q, skb);
		} else {
			/* Replace unprocessed entry and stop */
			skb_queue_head(&ptp->rxq, skb);
			break;
		}
	}
}

/* Complete processing of a received packet */
static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
{
	local_bh_disable();
	netif_receive_skb(skb);
	local_bh_enable();
}

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
{
	struct efx_ptp_data *ptp = efx->ptp_data;

	if (ptp->rxfilter_installed) {
		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
					  ptp->rxfilter_general);
		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
					  ptp->rxfilter_event);
		ptp->rxfilter_installed = false;
	}
}

static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
1051 1052 1053 1054 1055
{
	struct efx_ptp_data *ptp = efx->ptp_data;
	struct efx_filter_spec rxfilter;
	int rc;

1056
	if (!ptp->channel || ptp->rxfilter_installed)
1057
		return 0;
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

	/* Must filter on both event and general ports to ensure
	 * that there is no packet re-ordering.
	 */
	efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
			   efx_rx_queue_index(
				   efx_channel_get_rx_queue(ptp->channel)));
	rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
				       htonl(PTP_ADDRESS),
				       htons(PTP_EVENT_PORT));
	if (rc != 0)
		return rc;

	rc = efx_filter_insert_filter(efx, &rxfilter, true);
	if (rc < 0)
		return rc;
	ptp->rxfilter_event = rc;

	efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
			   efx_rx_queue_index(
				   efx_channel_get_rx_queue(ptp->channel)));
	rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
				       htonl(PTP_ADDRESS),
				       htons(PTP_GENERAL_PORT));
	if (rc != 0)
		goto fail;

	rc = efx_filter_insert_filter(efx, &rxfilter, true);
	if (rc < 0)
		goto fail;
	ptp->rxfilter_general = rc;

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	ptp->rxfilter_installed = true;
	return 0;

fail:
	efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
				  ptp->rxfilter_event);
	return rc;
}

static int efx_ptp_start(struct efx_nic *efx)
{
	struct efx_ptp_data *ptp = efx->ptp_data;
	int rc;

	ptp->reset_required = false;

	rc = efx_ptp_insert_multicast_filters(efx);
	if (rc)
		return rc;

1110 1111
	rc = efx_ptp_enable(efx);
	if (rc != 0)
1112
		goto fail;
1113 1114 1115 1116 1117 1118 1119

	ptp->evt_frag_idx = 0;
	ptp->current_adjfreq = 0;

	return 0;

fail:
1120
	efx_ptp_remove_multicast_filters(efx);
1121 1122 1123 1124 1125 1126 1127 1128
	return rc;
}

static int efx_ptp_stop(struct efx_nic *efx)
{
	struct efx_ptp_data *ptp = efx->ptp_data;
	struct list_head *cursor;
	struct list_head *next;
1129 1130 1131 1132 1133 1134
	int rc;

	if (ptp == NULL)
		return 0;

	rc = efx_ptp_disable(efx);
1135

1136
	efx_ptp_remove_multicast_filters(efx);
1137 1138 1139 1140 1141 1142 1143 1144

	/* Make sure RX packets are really delivered */
	efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
	skb_queue_purge(&efx->ptp_data->txq);

	/* Drop any pending receive events */
	spin_lock_bh(&efx->ptp_data->evt_lock);
	list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
1145
		list_move(cursor, &efx->ptp_data->evt_free_list);
1146 1147 1148 1149 1150 1151
	}
	spin_unlock_bh(&efx->ptp_data->evt_lock);

	return rc;
}

1152 1153 1154 1155 1156 1157 1158
static int efx_ptp_restart(struct efx_nic *efx)
{
	if (efx->ptp_data && efx->ptp_data->enabled)
		return efx_ptp_start(efx);
	return 0;
}

1159 1160 1161 1162
static void efx_ptp_pps_worker(struct work_struct *work)
{
	struct efx_ptp_data *ptp =
		container_of(work, struct efx_ptp_data, pps_work);
1163
	struct efx_nic *efx = ptp->efx;
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	struct ptp_clock_event ptp_evt;

	if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
		return;

	ptp_evt.type = PTP_CLOCK_PPSUSR;
	ptp_evt.pps_times = ptp->host_time_pps;
	ptp_clock_event(ptp->phc_clock, &ptp_evt);
}

static void efx_ptp_worker(struct work_struct *work)
{
	struct efx_ptp_data *ptp_data =
		container_of(work, struct efx_ptp_data, work);
1178
	struct efx_nic *efx = ptp_data->efx;
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
	struct sk_buff *skb;
	struct sk_buff_head tempq;

	if (ptp_data->reset_required) {
		efx_ptp_stop(efx);
		efx_ptp_start(efx);
		return;
	}

	efx_ptp_drop_time_expired_events(efx);

	__skb_queue_head_init(&tempq);
1191
	efx_ptp_process_events(efx, &tempq);
1192

1193 1194
	while ((skb = skb_dequeue(&ptp_data->txq)))
		efx_ptp_xmit_skb(efx, skb);
1195 1196 1197 1198 1199

	while ((skb = __skb_dequeue(&tempq)))
		efx_ptp_process_rx(efx, skb);
}

1200 1201 1202 1203 1204 1205 1206
static const struct ptp_clock_info efx_phc_clock_info = {
	.owner		= THIS_MODULE,
	.name		= "sfc",
	.max_adj	= MAX_PPB,
	.n_alarm	= 0,
	.n_ext_ts	= 0,
	.n_per_out	= 0,
1207
	.n_pins		= 0,
1208 1209 1210
	.pps		= 1,
	.adjfreq	= efx_phc_adjfreq,
	.adjtime	= efx_phc_adjtime,
1211 1212
	.gettime64	= efx_phc_gettime,
	.settime64	= efx_phc_settime,
1213 1214 1215
	.enable		= efx_phc_enable,
};

1216 1217
/* Initialise PTP state. */
int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
{
	struct efx_ptp_data *ptp;
	int rc = 0;
	unsigned int pos;

	ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
	efx->ptp_data = ptp;
	if (!efx->ptp_data)
		return -ENOMEM;

1228 1229
	ptp->efx = efx;
	ptp->channel = channel;
1230
	ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1231

1232
	rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	if (rc != 0)
		goto fail1;

	skb_queue_head_init(&ptp->rxq);
	skb_queue_head_init(&ptp->txq);
	ptp->workwq = create_singlethread_workqueue("sfc_ptp");
	if (!ptp->workwq) {
		rc = -ENOMEM;
		goto fail2;
	}

	INIT_WORK(&ptp->work, efx_ptp_worker);
	ptp->config.flags = 0;
	ptp->config.tx_type = HWTSTAMP_TX_OFF;
	ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
	INIT_LIST_HEAD(&ptp->evt_list);
	INIT_LIST_HEAD(&ptp->evt_free_list);
	spin_lock_init(&ptp->evt_lock);
	for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
		list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	/* Get the NIC PTP attributes and set up time conversions */
	rc = efx_ptp_get_attributes(efx);
	if (rc < 0)
		goto fail3;

	/* Get the timestamp corrections */
	rc = efx_ptp_get_timestamp_corrections(efx);
	if (rc < 0)
		goto fail3;

1264 1265 1266 1267 1268 1269 1270 1271 1272
	if (efx->mcdi->fn_flags &
	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
		ptp->phc_clock_info = efx_phc_clock_info;
		ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
						    &efx->pci_dev->dev);
		if (IS_ERR(ptp->phc_clock)) {
			rc = PTR_ERR(ptp->phc_clock);
			goto fail3;
		}
1273

1274 1275 1276 1277 1278 1279
		INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
		ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
		if (!ptp->pps_workwq) {
			rc = -ENOMEM;
			goto fail4;
		}
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	}
	ptp->nic_ts_enabled = false;

	return 0;
fail4:
	ptp_clock_unregister(efx->ptp_data->phc_clock);

fail3:
	destroy_workqueue(efx->ptp_data->workwq);

fail2:
	efx_nic_free_buffer(efx, &ptp->start);

fail1:
	kfree(efx->ptp_data);
	efx->ptp_data = NULL;

	return rc;
}

1300 1301 1302 1303 1304 1305
/* Initialise PTP channel.
 *
 * Setting core_index to zero causes the queue to be initialised and doesn't
 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
 */
static int efx_ptp_probe_channel(struct efx_channel *channel)
1306 1307 1308
{
	struct efx_nic *efx = channel->efx;

1309 1310 1311 1312 1313 1314 1315 1316
	channel->irq_moderation = 0;
	channel->rx_queue.core_index = 0;

	return efx_ptp_probe(efx, channel);
}

void efx_ptp_remove(struct efx_nic *efx)
{
1317 1318 1319
	if (!efx->ptp_data)
		return;

1320
	(void)efx_ptp_disable(efx);
1321 1322 1323 1324 1325 1326 1327

	cancel_work_sync(&efx->ptp_data->work);
	cancel_work_sync(&efx->ptp_data->pps_work);

	skb_queue_purge(&efx->ptp_data->rxq);
	skb_queue_purge(&efx->ptp_data->txq);

1328 1329 1330 1331
	if (efx->ptp_data->phc_clock) {
		destroy_workqueue(efx->ptp_data->pps_workwq);
		ptp_clock_unregister(efx->ptp_data->phc_clock);
	}
1332 1333 1334 1335 1336 1337 1338

	destroy_workqueue(efx->ptp_data->workwq);

	efx_nic_free_buffer(efx, &efx->ptp_data->start);
	kfree(efx->ptp_data);
}

1339 1340 1341 1342 1343
static void efx_ptp_remove_channel(struct efx_channel *channel)
{
	efx_ptp_remove(channel->efx);
}

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
static void efx_ptp_get_channel_name(struct efx_channel *channel,
				     char *buf, size_t len)
{
	snprintf(buf, len, "%s-ptp", channel->efx->name);
}

/* Determine whether this packet should be processed by the PTP module
 * or transmitted conventionally.
 */
bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
{
	return efx->ptp_data &&
		efx->ptp_data->enabled &&
		skb->len >= PTP_MIN_LENGTH &&
		skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
		likely(skb->protocol == htons(ETH_P_IP)) &&
1360 1361
		skb_transport_header_was_set(skb) &&
		skb_network_header_len(skb) >= sizeof(struct iphdr) &&
1362
		ip_hdr(skb)->protocol == IPPROTO_UDP &&
1363 1364
		skb_headlen(skb) >=
		skb_transport_offset(skb) + sizeof(struct udphdr) &&
1365 1366 1367 1368 1369 1370 1371
		udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
}

/* Receive a PTP packet.  Packets are queued until the arrival of
 * the receive timestamp from the MC - this will probably occur after the
 * packet arrival because of the processing in the MC.
 */
1372
static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1373 1374 1375 1376
{
	struct efx_nic *efx = channel->efx;
	struct efx_ptp_data *ptp = efx->ptp_data;
	struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1377
	u8 *match_data_012, *match_data_345;
1378
	unsigned int version;
1379
	u8 *data;
1380 1381 1382 1383 1384

	match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);

	/* Correct version? */
	if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1385
		if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1386
			return false;
1387
		}
1388 1389
		data = skb->data;
		version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
1390
		if (version != PTP_VERSION_V1) {
1391
			return false;
1392
		}
1393 1394 1395 1396

		/* PTP V1 uses all six bytes of the UUID to match the packet
		 * to the timestamp
		 */
1397 1398
		match_data_012 = data + PTP_V1_UUID_OFFSET;
		match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
1399
	} else {
1400
		if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1401
			return false;
1402
		}
1403 1404
		data = skb->data;
		version = data[PTP_V2_VERSION_OFFSET];
1405
		if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1406
			return false;
1407
		}
1408 1409 1410 1411 1412 1413 1414 1415

		/* The original V2 implementation uses bytes 2-7 of
		 * the UUID to match the packet to the timestamp. This
		 * discards two of the bytes of the MAC address used
		 * to create the UUID (SF bug 33070).  The PTP V2
		 * enhanced mode fixes this issue and uses bytes 0-2
		 * and byte 5-7 of the UUID.
		 */
1416
		match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
1417
		if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1418
			match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
1419
		} else {
1420
			match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
1421 1422
			BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
		}
1423 1424 1425
	}

	/* Does this packet require timestamping? */
1426
	if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1427 1428
		match->state = PTP_PACKET_STATE_UNMATCHED;

1429 1430 1431 1432 1433 1434
		/* We expect the sequence number to be in the same position in
		 * the packet for PTP V1 and V2
		 */
		BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
		BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);

1435
		/* Extract UUID/Sequence information */
1436 1437 1438 1439 1440 1441
		match->words[0] = (match_data_012[0]         |
				   (match_data_012[1] << 8)  |
				   (match_data_012[2] << 16) |
				   (match_data_345[0] << 24));
		match->words[1] = (match_data_345[1]         |
				   (match_data_345[2] << 8)  |
1442 1443
				   (data[PTP_V1_SEQUENCE_OFFSET +
					 PTP_V1_SEQUENCE_LENGTH - 1] <<
1444 1445 1446 1447 1448 1449 1450
				    16));
	} else {
		match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
	}

	skb_queue_tail(&ptp->rxq, skb);
	queue_work(ptp->workwq, &ptp->work);
1451 1452

	return true;
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
}

/* Transmit a PTP packet.  This has to be transmitted by the MC
 * itself, through an MCDI call.  MCDI calls aren't permitted
 * in the transmit path so defer the actual transmission to a suitable worker.
 */
int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
{
	struct efx_ptp_data *ptp = efx->ptp_data;

	skb_queue_tail(&ptp->txq, skb);

	if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
	    (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
		efx_xmit_hwtstamp_pending(skb);
	queue_work(ptp->workwq, &ptp->work);

	return NETDEV_TX_OK;
}

1473 1474 1475 1476 1477 1478 1479
int efx_ptp_get_mode(struct efx_nic *efx)
{
	return efx->ptp_data->mode;
}

int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
			unsigned int new_mode)
1480 1481 1482
{
	if ((enable_wanted != efx->ptp_data->enabled) ||
	    (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1483
		int rc = 0;
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499

		if (enable_wanted) {
			/* Change of mode requires disable */
			if (efx->ptp_data->enabled &&
			    (efx->ptp_data->mode != new_mode)) {
				efx->ptp_data->enabled = false;
				rc = efx_ptp_stop(efx);
				if (rc != 0)
					return rc;
			}

			/* Set new operating mode and establish
			 * baseline synchronisation, which must
			 * succeed.
			 */
			efx->ptp_data->mode = new_mode;
1500 1501
			if (netif_running(efx->net_dev))
				rc = efx_ptp_start(efx);
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
			if (rc == 0) {
				rc = efx_ptp_synchronize(efx,
							 PTP_SYNC_ATTEMPTS * 2);
				if (rc != 0)
					efx_ptp_stop(efx);
			}
		} else {
			rc = efx_ptp_stop(efx);
		}

		if (rc != 0)
			return rc;

		efx->ptp_data->enabled = enable_wanted;
	}

	return 0;
}

static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
{
	int rc;

	if (init->flags)
		return -EINVAL;

	if ((init->tx_type != HWTSTAMP_TX_OFF) &&
	    (init->tx_type != HWTSTAMP_TX_ON))
		return -ERANGE;

1532 1533
	rc = efx->type->ptp_set_ts_config(efx, init);
	if (rc)
1534 1535 1536 1537 1538 1539
		return rc;

	efx->ptp_data->config = *init;
	return 0;
}

1540
void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1541 1542
{
	struct efx_ptp_data *ptp = efx->ptp_data;
1543 1544 1545
	struct efx_nic *primary = efx->primary;

	ASSERT_RTNL();
1546 1547

	if (!ptp)
1548
		return;
1549

1550 1551 1552
	ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
				     SOF_TIMESTAMPING_RX_HARDWARE |
				     SOF_TIMESTAMPING_RAW_HARDWARE);
1553 1554 1555
	if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
		ts_info->phc_index =
			ptp_clock_index(primary->ptp_data->phc_clock);
1556
	ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1557
	ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
1558 1559
}

1560
int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
{
	struct hwtstamp_config config;
	int rc;

	/* Not a PTP enabled port */
	if (!efx->ptp_data)
		return -EOPNOTSUPP;

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	rc = efx_ptp_ts_init(efx, &config);
	if (rc != 0)
		return rc;

	return copy_to_user(ifr->ifr_data, &config, sizeof(config))
		? -EFAULT : 0;
}

1580 1581 1582 1583 1584 1585 1586 1587 1588
int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
{
	if (!efx->ptp_data)
		return -EOPNOTSUPP;

	return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
			    sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
}

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
{
	struct efx_ptp_data *ptp = efx->ptp_data;

	netif_err(efx, hw, efx->net_dev,
		"PTP unexpected event length: got %d expected %d\n",
		ptp->evt_frag_idx, expected_frag_len);
	ptp->reset_required = true;
	queue_work(ptp->workwq, &ptp->work);
}

/* Process a completed receive event.  Put it on the event queue and
 * start worker thread.  This is required because event and their
 * correspoding packets may come in either order.
 */
static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
{
	struct efx_ptp_event_rx *evt = NULL;

1608 1609 1610
	if (WARN_ON_ONCE(ptp->rx_ts_inline))
		return;

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	if (ptp->evt_frag_idx != 3) {
		ptp_event_failure(efx, 3);
		return;
	}

	spin_lock_bh(&ptp->evt_lock);
	if (!list_empty(&ptp->evt_free_list)) {
		evt = list_first_entry(&ptp->evt_free_list,
				       struct efx_ptp_event_rx, link);
		list_del(&evt->link);

		evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
		evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
					     MCDI_EVENT_SRC)        |
			     (EFX_QWORD_FIELD(ptp->evt_frags[1],
					      MCDI_EVENT_SRC) << 8) |
			     (EFX_QWORD_FIELD(ptp->evt_frags[0],
					      MCDI_EVENT_SRC) << 16));
1629
		evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
1630
			EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1631 1632
			EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
			ptp->ts_corrections.rx);
1633 1634 1635 1636
		evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
		list_add_tail(&evt->link, &ptp->evt_list);

		queue_work(ptp->workwq, &ptp->work);
1637 1638
	} else if (net_ratelimit()) {
		/* Log a rate-limited warning message. */
1639
		netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	}
	spin_unlock_bh(&ptp->evt_lock);
}

static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
{
	int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
	if (ptp->evt_frag_idx != 1) {
		ptp_event_failure(efx, 1);
		return;
	}

	netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
}

static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
{
	if (ptp->nic_ts_enabled)
		queue_work(ptp->pps_workwq, &ptp->pps_work);
}

void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
{
	struct efx_ptp_data *ptp = efx->ptp_data;
	int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);

1666 1667 1668 1669 1670 1671 1672
	if (!ptp) {
		if (net_ratelimit())
			netif_warn(efx, drv, efx->net_dev,
				   "Received PTP event but PTP not set up\n");
		return;
	}

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	if (!ptp->enabled)
		return;

	if (ptp->evt_frag_idx == 0) {
		ptp->evt_code = code;
	} else if (ptp->evt_code != code) {
		netif_err(efx, hw, efx->net_dev,
			  "PTP out of sequence event %d\n", code);
		ptp->evt_frag_idx = 0;
	}

	ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
	if (!MCDI_EVENT_FIELD(*ev, CONT)) {
		/* Process resulting event */
		switch (code) {
		case MCDI_EVENT_CODE_PTP_RX:
			ptp_event_rx(efx, ptp);
			break;
		case MCDI_EVENT_CODE_PTP_FAULT:
			ptp_event_fault(efx, ptp);
			break;
		case MCDI_EVENT_CODE_PTP_PPS:
			ptp_event_pps(efx, ptp);
			break;
		default:
			netif_err(efx, hw, efx->net_dev,
				  "PTP unknown event %d\n", code);
			break;
		}
		ptp->evt_frag_idx = 0;
	} else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
		netif_err(efx, hw, efx->net_dev,
			  "PTP too many event fragments\n");
		ptp->evt_frag_idx = 0;
	}
}

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
{
	channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
	channel->sync_timestamp_minor =
		MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_26_19) << 19;
	/* if sync events have been disabled then we want to silently ignore
	 * this event, so throw away result.
	 */
	(void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
		       SYNC_EVENTS_VALID);
}

/* make some assumptions about the time representation rather than abstract it,
 * since we currently only support one type of inline timestamping and only on
 * EF10.
 */
#define MINOR_TICKS_PER_SECOND 0x8000000
/* Fuzz factor for sync events to be out of order with RX events */
#define FUZZ (MINOR_TICKS_PER_SECOND / 10)
#define EXPECTED_SYNC_EVENTS_PER_SECOND 4

static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
{
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
	return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
#else
	const u8 *data = eh + efx->rx_packet_ts_offset;
	return (u32)data[0]       |
	       (u32)data[1] << 8  |
	       (u32)data[2] << 16 |
	       (u32)data[3] << 24;
#endif
}

void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
				   struct sk_buff *skb)
{
	struct efx_nic *efx = channel->efx;
	u32 pkt_timestamp_major, pkt_timestamp_minor;
	u32 diff, carry;
	struct skb_shared_hwtstamps *timestamps;

	pkt_timestamp_minor = (efx_rx_buf_timestamp_minor(efx,
							  skb_mac_header(skb)) +
			       (u32) efx->ptp_data->ts_corrections.rx) &
			      (MINOR_TICKS_PER_SECOND - 1);

	/* get the difference between the packet and sync timestamps,
	 * modulo one second
	 */
	diff = (pkt_timestamp_minor - channel->sync_timestamp_minor) &
		(MINOR_TICKS_PER_SECOND - 1);
	/* do we roll over a second boundary and need to carry the one? */
	carry = channel->sync_timestamp_minor + diff > MINOR_TICKS_PER_SECOND ?
		1 : 0;

	if (diff <= MINOR_TICKS_PER_SECOND / EXPECTED_SYNC_EVENTS_PER_SECOND +
		    FUZZ) {
		/* packet is ahead of the sync event by a quarter of a second or
		 * less (allowing for fuzz)
		 */
		pkt_timestamp_major = channel->sync_timestamp_major + carry;
	} else if (diff >= MINOR_TICKS_PER_SECOND - FUZZ) {
		/* packet is behind the sync event but within the fuzz factor.
		 * This means the RX packet and sync event crossed as they were
		 * placed on the event queue, which can sometimes happen.
		 */
		pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
	} else {
		/* it's outside tolerance in both directions. this might be
		 * indicative of us missing sync events for some reason, so
		 * we'll call it an error rather than risk giving a bogus
		 * timestamp.
		 */
		netif_vdbg(efx, drv, efx->net_dev,
			  "packet timestamp %x too far from sync event %x:%x\n",
			  pkt_timestamp_minor, channel->sync_timestamp_major,
			  channel->sync_timestamp_minor);
		return;
	}

	/* attach the timestamps to the skb */
	timestamps = skb_hwtstamps(skb);
	timestamps->hwtstamp =
		efx_ptp_s27_to_ktime(pkt_timestamp_major, pkt_timestamp_minor);
}

1797 1798 1799 1800 1801
static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
{
	struct efx_ptp_data *ptp_data = container_of(ptp,
						     struct efx_ptp_data,
						     phc_clock_info);
1802
	struct efx_nic *efx = ptp_data->efx;
1803
	MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
	s64 adjustment_ns;
	int rc;

	if (delta > MAX_PPB)
		delta = MAX_PPB;
	else if (delta < -MAX_PPB)
		delta = -MAX_PPB;

	/* Convert ppb to fixed point ns. */
	adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >>
			 (PPB_EXTRA_BITS + MAX_PPB_BITS));

	MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1817
	MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
1818
	MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
1819 1820 1821 1822 1823 1824 1825
	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
			  NULL, 0, NULL);
	if (rc != 0)
		return rc;

1826
	ptp_data->current_adjfreq = adjustment_ns;
1827 1828 1829 1830 1831
	return 0;
}

static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
1832
	u32 nic_major, nic_minor;
1833 1834 1835
	struct efx_ptp_data *ptp_data = container_of(ptp,
						     struct efx_ptp_data,
						     phc_clock_info);
1836
	struct efx_nic *efx = ptp_data->efx;
1837
	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
1838

1839 1840
	efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);

1841
	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1842
	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
1843
	MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
1844 1845
	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
1846 1847 1848 1849
	return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
			    NULL, 0, NULL);
}

1850
static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
1851 1852 1853 1854
{
	struct efx_ptp_data *ptp_data = container_of(ptp,
						     struct efx_ptp_data,
						     phc_clock_info);
1855
	struct efx_nic *efx = ptp_data->efx;
1856 1857
	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
1858
	int rc;
1859
	ktime_t kt;
1860 1861

	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
1862
	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
1863 1864 1865 1866 1867 1868

	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
			  outbuf, sizeof(outbuf), NULL);
	if (rc != 0)
		return rc;

1869 1870 1871
	kt = ptp_data->nic_to_kernel_time(
		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
1872
	*ts = ktime_to_timespec64(kt);
1873 1874 1875 1876
	return 0;
}

static int efx_phc_settime(struct ptp_clock_info *ptp,
1877
			   const struct timespec64 *e_ts)
1878 1879 1880 1881 1882 1883
{
	/* Get the current NIC time, efx_phc_gettime.
	 * Subtract from the desired time to get the offset
	 * call efx_phc_adjtime with the offset
	 */
	int rc;
1884 1885
	struct timespec64 time_now;
	struct timespec64 delta;
1886 1887 1888 1889 1890

	rc = efx_phc_gettime(ptp, &time_now);
	if (rc != 0)
		return rc;

1891
	delta = timespec64_sub(*e_ts, time_now);
1892

1893
	rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
	if (rc != 0)
		return rc;

	return 0;
}

static int efx_phc_enable(struct ptp_clock_info *ptp,
			  struct ptp_clock_request *request,
			  int enable)
{
	struct efx_ptp_data *ptp_data = container_of(ptp,
						     struct efx_ptp_data,
						     phc_clock_info);
	if (request->type != PTP_CLK_REQ_PPS)
		return -EOPNOTSUPP;

	ptp_data->nic_ts_enabled = !!enable;
	return 0;
}

static const struct efx_channel_type efx_ptp_channel_type = {
	.handle_no_channel	= efx_ptp_handle_no_channel,
	.pre_probe		= efx_ptp_probe_channel,
	.post_remove		= efx_ptp_remove_channel,
	.get_name		= efx_ptp_get_channel_name,
	/* no copy operation; there is no need to reallocate this channel */
	.receive_skb		= efx_ptp_rx,
	.keep_eventq		= false,
};

1924
void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
1925 1926 1927 1928 1929 1930 1931 1932
{
	/* Check whether PTP is implemented on this NIC.  The DISABLE
	 * operation will succeed if and only if it is implemented.
	 */
	if (efx_ptp_disable(efx) == 0)
		efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
			&efx_ptp_channel_type;
}
1933 1934 1935 1936 1937

void efx_ptp_start_datapath(struct efx_nic *efx)
{
	if (efx_ptp_restart(efx))
		netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
1938 1939 1940
	/* re-enable timestamping if it was previously enabled */
	if (efx->type->ptp_set_ts_sync_events)
		efx->type->ptp_set_ts_sync_events(efx, true, true);
1941 1942 1943 1944
}

void efx_ptp_stop_datapath(struct efx_nic *efx)
{
1945 1946 1947
	/* temporarily disable timestamping */
	if (efx->type->ptp_set_ts_sync_events)
		efx->type->ptp_set_ts_sync_events(efx, false, true);
1948 1949
	efx_ptp_stop(efx);
}