numa.c 19.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
/*
 * pSeries NUMA support
 *
 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/threads.h>
#include <linux/bootmem.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/module.h>
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <asm/lmb.h>
#include <asm/machdep.h>
#include <asm/abs_addr.h>

static int numa_enabled = 1;

static int numa_debug;
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }

#ifdef DEBUG_NUMA
#define ARRAY_INITIALISER -1
#else
#define ARRAY_INITIALISER 0
#endif

int numa_cpu_lookup_table[NR_CPUS] = { [ 0 ... (NR_CPUS - 1)] =
	ARRAY_INITIALISER};
char *numa_memory_lookup_table;
cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
int nr_cpus_in_node[MAX_NUMNODES] = { [0 ... (MAX_NUMNODES -1)] = 0};

struct pglist_data *node_data[MAX_NUMNODES];
bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES];
static int min_common_depth;

/*
 * We need somewhere to store start/span for each node until we have
 * allocated the real node_data structures.
 */
static struct {
	unsigned long node_start_pfn;
	unsigned long node_end_pfn;
	unsigned long node_present_pages;
} init_node_data[MAX_NUMNODES] __initdata;

EXPORT_SYMBOL(node_data);
EXPORT_SYMBOL(numa_cpu_lookup_table);
EXPORT_SYMBOL(numa_memory_lookup_table);
EXPORT_SYMBOL(numa_cpumask_lookup_table);
EXPORT_SYMBOL(nr_cpus_in_node);

static inline void map_cpu_to_node(int cpu, int node)
{
	numa_cpu_lookup_table[cpu] = node;
	if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node]))) {
		cpu_set(cpu, numa_cpumask_lookup_table[node]);
		nr_cpus_in_node[node]++;
	}
}

#ifdef CONFIG_HOTPLUG_CPU
static void unmap_cpu_from_node(unsigned long cpu)
{
	int node = numa_cpu_lookup_table[cpu];

	dbg("removing cpu %lu from node %d\n", cpu, node);

	if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
		cpu_clear(cpu, numa_cpumask_lookup_table[node]);
		nr_cpus_in_node[node]--;
	} else {
		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
		       cpu, node);
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

static struct device_node * __devinit find_cpu_node(unsigned int cpu)
{
	unsigned int hw_cpuid = get_hard_smp_processor_id(cpu);
	struct device_node *cpu_node = NULL;
	unsigned int *interrupt_server, *reg;
	int len;

	while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) {
		/* Try interrupt server first */
		interrupt_server = (unsigned int *)get_property(cpu_node,
					"ibm,ppc-interrupt-server#s", &len);

		len = len / sizeof(u32);

		if (interrupt_server && (len > 0)) {
			while (len--) {
				if (interrupt_server[len] == hw_cpuid)
					return cpu_node;
			}
		} else {
			reg = (unsigned int *)get_property(cpu_node,
							   "reg", &len);
			if (reg && (len > 0) && (reg[0] == hw_cpuid))
				return cpu_node;
		}
	}

	return NULL;
}

/* must hold reference to node during call */
static int *of_get_associativity(struct device_node *dev)
{
	return (unsigned int *)get_property(dev, "ibm,associativity", NULL);
}

static int of_node_numa_domain(struct device_node *device)
{
	int numa_domain;
	unsigned int *tmp;

	if (min_common_depth == -1)
		return 0;

	tmp = of_get_associativity(device);
	if (tmp && (tmp[0] >= min_common_depth)) {
		numa_domain = tmp[min_common_depth];
	} else {
		dbg("WARNING: no NUMA information for %s\n",
		    device->full_name);
		numa_domain = 0;
	}
	return numa_domain;
}

/*
 * In theory, the "ibm,associativity" property may contain multiple
 * associativity lists because a resource may be multiply connected
 * into the machine.  This resource then has different associativity
 * characteristics relative to its multiple connections.  We ignore
 * this for now.  We also assume that all cpu and memory sets have
 * their distances represented at a common level.  This won't be
 * true for heirarchical NUMA.
 *
 * In any case the ibm,associativity-reference-points should give
 * the correct depth for a normal NUMA system.
 *
 * - Dave Hansen <haveblue@us.ibm.com>
 */
static int __init find_min_common_depth(void)
{
	int depth;
	unsigned int *ref_points;
	struct device_node *rtas_root;
	unsigned int len;

	rtas_root = of_find_node_by_path("/rtas");

	if (!rtas_root)
		return -1;

	/*
	 * this property is 2 32-bit integers, each representing a level of
	 * depth in the associativity nodes.  The first is for an SMP
	 * configuration (should be all 0's) and the second is for a normal
	 * NUMA configuration.
	 */
	ref_points = (unsigned int *)get_property(rtas_root,
			"ibm,associativity-reference-points", &len);

	if ((len >= 1) && ref_points) {
		depth = ref_points[1];
	} else {
		dbg("WARNING: could not find NUMA "
		    "associativity reference point\n");
		depth = -1;
	}
	of_node_put(rtas_root);

	return depth;
}

static int __init get_mem_addr_cells(void)
{
	struct device_node *memory = NULL;
	int rc;

	memory = of_find_node_by_type(memory, "memory");
	if (!memory)
		return 0; /* it won't matter */

	rc = prom_n_addr_cells(memory);
	return rc;
}

static int __init get_mem_size_cells(void)
{
	struct device_node *memory = NULL;
	int rc;

	memory = of_find_node_by_type(memory, "memory");
	if (!memory)
		return 0; /* it won't matter */
	rc = prom_n_size_cells(memory);
	return rc;
}

static unsigned long read_n_cells(int n, unsigned int **buf)
{
	unsigned long result = 0;

	while (n--) {
		result = (result << 32) | **buf;
		(*buf)++;
	}
	return result;
}

/*
 * Figure out to which domain a cpu belongs and stick it there.
 * Return the id of the domain used.
 */
static int numa_setup_cpu(unsigned long lcpu)
{
	int numa_domain = 0;
	struct device_node *cpu = find_cpu_node(lcpu);

	if (!cpu) {
		WARN_ON(1);
		goto out;
	}

	numa_domain = of_node_numa_domain(cpu);

	if (numa_domain >= num_online_nodes()) {
		/*
		 * POWER4 LPAR uses 0xffff as invalid node,
		 * dont warn in this case.
		 */
		if (numa_domain != 0xffff)
			printk(KERN_ERR "WARNING: cpu %ld "
			       "maps to invalid NUMA node %d\n",
			       lcpu, numa_domain);
		numa_domain = 0;
	}
out:
	node_set_online(numa_domain);

	map_cpu_to_node(lcpu, numa_domain);

	of_node_put(cpu);

	return numa_domain;
}

static int cpu_numa_callback(struct notifier_block *nfb,
			     unsigned long action,
			     void *hcpu)
{
	unsigned long lcpu = (unsigned long)hcpu;
	int ret = NOTIFY_DONE;

	switch (action) {
	case CPU_UP_PREPARE:
		if (min_common_depth == -1 || !numa_enabled)
			map_cpu_to_node(lcpu, 0);
		else
			numa_setup_cpu(lcpu);
		ret = NOTIFY_OK;
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		unmap_cpu_from_node(lcpu);
		break;
		ret = NOTIFY_OK;
#endif
	}
	return ret;
}

/*
 * Check and possibly modify a memory region to enforce the memory limit.
 *
 * Returns the size the region should have to enforce the memory limit.
 * This will either be the original value of size, a truncated value,
 * or zero. If the returned value of size is 0 the region should be
 * discarded as it lies wholy above the memory limit.
 */
static unsigned long __init numa_enforce_memory_limit(unsigned long start, unsigned long size)
{
	/*
	 * We use lmb_end_of_DRAM() in here instead of memory_limit because
	 * we've already adjusted it for the limit and it takes care of
	 * having memory holes below the limit.
	 */
	extern unsigned long memory_limit;

	if (! memory_limit)
		return size;

	if (start + size <= lmb_end_of_DRAM())
		return size;

	if (start >= lmb_end_of_DRAM())
		return 0;

	return lmb_end_of_DRAM() - start;
}

static int __init parse_numa_properties(void)
{
	struct device_node *cpu = NULL;
	struct device_node *memory = NULL;
	int addr_cells, size_cells;
	int max_domain = 0;
	long entries = lmb_end_of_DRAM() >> MEMORY_INCREMENT_SHIFT;
	unsigned long i;

	if (numa_enabled == 0) {
		printk(KERN_WARNING "NUMA disabled by user\n");
		return -1;
	}

	numa_memory_lookup_table =
		(char *)abs_to_virt(lmb_alloc(entries * sizeof(char), 1));
	memset(numa_memory_lookup_table, 0, entries * sizeof(char));

	for (i = 0; i < entries ; i++)
		numa_memory_lookup_table[i] = ARRAY_INITIALISER;

	min_common_depth = find_min_common_depth();

	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
	if (min_common_depth < 0)
		return min_common_depth;

	max_domain = numa_setup_cpu(boot_cpuid);

	/*
	 * Even though we connect cpus to numa domains later in SMP init,
	 * we need to know the maximum node id now. This is because each
	 * node id must have NODE_DATA etc backing it.
	 * As a result of hotplug we could still have cpus appear later on
	 * with larger node ids. In that case we force the cpu into node 0.
	 */
	for_each_cpu(i) {
		int numa_domain;

		cpu = find_cpu_node(i);

		if (cpu) {
			numa_domain = of_node_numa_domain(cpu);
			of_node_put(cpu);

			if (numa_domain < MAX_NUMNODES &&
			    max_domain < numa_domain)
				max_domain = numa_domain;
		}
	}

	addr_cells = get_mem_addr_cells();
	size_cells = get_mem_size_cells();
	memory = NULL;
	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
		unsigned long start;
		unsigned long size;
		int numa_domain;
		int ranges;
		unsigned int *memcell_buf;
		unsigned int len;

		memcell_buf = (unsigned int *)get_property(memory, "reg", &len);
		if (!memcell_buf || len <= 0)
			continue;

		ranges = memory->n_addrs;
new_range:
		/* these are order-sensitive, and modify the buffer pointer */
		start = read_n_cells(addr_cells, &memcell_buf);
		size = read_n_cells(size_cells, &memcell_buf);

		start = _ALIGN_DOWN(start, MEMORY_INCREMENT);
		size = _ALIGN_UP(size, MEMORY_INCREMENT);

		numa_domain = of_node_numa_domain(memory);

		if (numa_domain >= MAX_NUMNODES) {
			if (numa_domain != 0xffff)
				printk(KERN_ERR "WARNING: memory at %lx maps "
				       "to invalid NUMA node %d\n", start,
				       numa_domain);
			numa_domain = 0;
		}

		if (max_domain < numa_domain)
			max_domain = numa_domain;

		if (! (size = numa_enforce_memory_limit(start, size))) {
			if (--ranges)
				goto new_range;
			else
				continue;
		}

		/*
		 * Initialize new node struct, or add to an existing one.
		 */
		if (init_node_data[numa_domain].node_end_pfn) {
			if ((start / PAGE_SIZE) <
			    init_node_data[numa_domain].node_start_pfn)
				init_node_data[numa_domain].node_start_pfn =
					start / PAGE_SIZE;
			if (((start / PAGE_SIZE) + (size / PAGE_SIZE)) >
			    init_node_data[numa_domain].node_end_pfn)
				init_node_data[numa_domain].node_end_pfn =
					(start / PAGE_SIZE) +
					(size / PAGE_SIZE);

			init_node_data[numa_domain].node_present_pages +=
				size / PAGE_SIZE;
		} else {
			node_set_online(numa_domain);

			init_node_data[numa_domain].node_start_pfn =
				start / PAGE_SIZE;
			init_node_data[numa_domain].node_end_pfn =
				init_node_data[numa_domain].node_start_pfn +
				size / PAGE_SIZE;
			init_node_data[numa_domain].node_present_pages =
				size / PAGE_SIZE;
		}

		for (i = start ; i < (start+size); i += MEMORY_INCREMENT)
			numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] =
				numa_domain;

		if (--ranges)
			goto new_range;
	}

	for (i = 0; i <= max_domain; i++)
		node_set_online(i);

	return 0;
}

static void __init setup_nonnuma(void)
{
	unsigned long top_of_ram = lmb_end_of_DRAM();
	unsigned long total_ram = lmb_phys_mem_size();
	unsigned long i;

	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
	       top_of_ram, total_ram);
	printk(KERN_INFO "Memory hole size: %ldMB\n",
	       (top_of_ram - total_ram) >> 20);

	if (!numa_memory_lookup_table) {
		long entries = top_of_ram >> MEMORY_INCREMENT_SHIFT;
		numa_memory_lookup_table =
			(char *)abs_to_virt(lmb_alloc(entries * sizeof(char), 1));
		memset(numa_memory_lookup_table, 0, entries * sizeof(char));
		for (i = 0; i < entries ; i++)
			numa_memory_lookup_table[i] = ARRAY_INITIALISER;
	}

	map_cpu_to_node(boot_cpuid, 0);

	node_set_online(0);

	init_node_data[0].node_start_pfn = 0;
	init_node_data[0].node_end_pfn = lmb_end_of_DRAM() / PAGE_SIZE;
	init_node_data[0].node_present_pages = total_ram / PAGE_SIZE;

	for (i = 0 ; i < top_of_ram; i += MEMORY_INCREMENT)
		numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] = 0;
}

static void __init dump_numa_topology(void)
{
	unsigned int node;
	unsigned int count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
		unsigned long i;

		printk(KERN_INFO "Node %d Memory:", node);

		count = 0;

		for (i = 0; i < lmb_end_of_DRAM(); i += MEMORY_INCREMENT) {
			if (numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] == node) {
				if (count == 0)
					printk(" 0x%lx", i);
				++count;
			} else {
				if (count > 0)
					printk("-0x%lx", i);
				count = 0;
			}
		}

		if (count > 0)
			printk("-0x%lx", i);
		printk("\n");
	}
	return;
}

/*
 * Allocate some memory, satisfying the lmb or bootmem allocator where
 * required. nid is the preferred node and end is the physical address of
 * the highest address in the node.
 *
 * Returns the physical address of the memory.
 */
static unsigned long careful_allocation(int nid, unsigned long size,
					unsigned long align, unsigned long end)
{
	unsigned long ret = lmb_alloc_base(size, align, end);

	/* retry over all memory */
	if (!ret)
		ret = lmb_alloc_base(size, align, lmb_end_of_DRAM());

	if (!ret)
		panic("numa.c: cannot allocate %lu bytes on node %d",
		      size, nid);

	/*
	 * If the memory came from a previously allocated node, we must
	 * retry with the bootmem allocator.
	 */
	if (pa_to_nid(ret) < nid) {
		nid = pa_to_nid(ret);
		ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(nid),
				size, align, 0);

		if (!ret)
			panic("numa.c: cannot allocate %lu bytes on node %d",
			      size, nid);

		ret = virt_to_abs(ret);

		dbg("alloc_bootmem %lx %lx\n", ret, size);
	}

	return ret;
}

void __init do_init_bootmem(void)
{
	int nid;
	int addr_cells, size_cells;
	struct device_node *memory = NULL;
	static struct notifier_block ppc64_numa_nb = {
		.notifier_call = cpu_numa_callback,
		.priority = 1 /* Must run before sched domains notifier. */
	};

	min_low_pfn = 0;
	max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
	max_pfn = max_low_pfn;

	if (parse_numa_properties())
		setup_nonnuma();
	else
		dump_numa_topology();

	register_cpu_notifier(&ppc64_numa_nb);

	for_each_online_node(nid) {
		unsigned long start_paddr, end_paddr;
		int i;
		unsigned long bootmem_paddr;
		unsigned long bootmap_pages;

		start_paddr = init_node_data[nid].node_start_pfn * PAGE_SIZE;
		end_paddr = init_node_data[nid].node_end_pfn * PAGE_SIZE;

		/* Allocate the node structure node local if possible */
		NODE_DATA(nid) = (struct pglist_data *)careful_allocation(nid,
					sizeof(struct pglist_data),
					SMP_CACHE_BYTES, end_paddr);
		NODE_DATA(nid) = abs_to_virt(NODE_DATA(nid));
		memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));

  		dbg("node %d\n", nid);
		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));

		NODE_DATA(nid)->bdata = &plat_node_bdata[nid];
		NODE_DATA(nid)->node_start_pfn =
			init_node_data[nid].node_start_pfn;
		NODE_DATA(nid)->node_spanned_pages =
			end_paddr - start_paddr;

		if (NODE_DATA(nid)->node_spanned_pages == 0)
  			continue;

  		dbg("start_paddr = %lx\n", start_paddr);
  		dbg("end_paddr = %lx\n", end_paddr);

		bootmap_pages = bootmem_bootmap_pages((end_paddr - start_paddr) >> PAGE_SHIFT);

		bootmem_paddr = careful_allocation(nid,
				bootmap_pages << PAGE_SHIFT,
				PAGE_SIZE, end_paddr);
		memset(abs_to_virt(bootmem_paddr), 0,
		       bootmap_pages << PAGE_SHIFT);
		dbg("bootmap_paddr = %lx\n", bootmem_paddr);

		init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT,
				  start_paddr >> PAGE_SHIFT,
				  end_paddr >> PAGE_SHIFT);

		/*
		 * We need to do another scan of all memory sections to
		 * associate memory with the correct node.
		 */
		addr_cells = get_mem_addr_cells();
		size_cells = get_mem_size_cells();
		memory = NULL;
		while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
			unsigned long mem_start, mem_size;
			int numa_domain, ranges;
			unsigned int *memcell_buf;
			unsigned int len;

			memcell_buf = (unsigned int *)get_property(memory, "reg", &len);
			if (!memcell_buf || len <= 0)
				continue;

			ranges = memory->n_addrs;	/* ranges in cell */
new_range:
			mem_start = read_n_cells(addr_cells, &memcell_buf);
			mem_size = read_n_cells(size_cells, &memcell_buf);
647 648 649 650 651 652
			if (numa_enabled) {
				numa_domain = of_node_numa_domain(memory);
				if (numa_domain  >= MAX_NUMNODES)
					numa_domain = 0;
			} else
				numa_domain =  0;
L
Linus Torvalds 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670

			if (numa_domain != nid)
				continue;

			mem_size = numa_enforce_memory_limit(mem_start, mem_size);
  			if (mem_size) {
  				dbg("free_bootmem %lx %lx\n", mem_start, mem_size);
  				free_bootmem_node(NODE_DATA(nid), mem_start, mem_size);
			}

			if (--ranges)		/* process all ranges in cell */
				goto new_range;
		}

		/*
		 * Mark reserved regions on this node
		 */
		for (i = 0; i < lmb.reserved.cnt; i++) {
671
			unsigned long physbase = lmb.reserved.region[i].base;
L
Linus Torvalds 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
			unsigned long size = lmb.reserved.region[i].size;

			if (pa_to_nid(physbase) != nid &&
			    pa_to_nid(physbase+size-1) != nid)
				continue;

			if (physbase < end_paddr &&
			    (physbase+size) > start_paddr) {
				/* overlaps */
				if (physbase < start_paddr) {
					size -= start_paddr - physbase;
					physbase = start_paddr;
				}

				if (size > end_paddr - physbase)
					size = end_paddr - physbase;

				dbg("reserve_bootmem %lx %lx\n", physbase,
				    size);
				reserve_bootmem_node(NODE_DATA(nid), physbase,
						     size);
			}
		}
B
Bob Picco 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
		/*
		 * This loop may look famaliar, but we have to do it again
		 * after marking our reserved memory to mark memory present
		 * for sparsemem.
		 */
		addr_cells = get_mem_addr_cells();
		size_cells = get_mem_size_cells();
		memory = NULL;
		while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
			unsigned long mem_start, mem_size;
			int numa_domain, ranges;
			unsigned int *memcell_buf;
			unsigned int len;

			memcell_buf = (unsigned int *)get_property(memory, "reg", &len);
			if (!memcell_buf || len <= 0)
				continue;

			ranges = memory->n_addrs;	/* ranges in cell */
new_range2:
			mem_start = read_n_cells(addr_cells, &memcell_buf);
			mem_size = read_n_cells(size_cells, &memcell_buf);
			if (numa_enabled) {
				numa_domain = of_node_numa_domain(memory);
				if (numa_domain  >= MAX_NUMNODES)
					numa_domain = 0;
			} else
				numa_domain =  0;

			if (numa_domain != nid)
				continue;

			mem_size = numa_enforce_memory_limit(mem_start, mem_size);
			memory_present(numa_domain, mem_start >> PAGE_SHIFT,
				       (mem_start + mem_size) >> PAGE_SHIFT);

			if (--ranges)		/* process all ranges in cell */
				goto new_range2;
		}

L
Linus Torvalds 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
	}
}

void __init paging_init(void)
{
	unsigned long zones_size[MAX_NR_ZONES];
	unsigned long zholes_size[MAX_NR_ZONES];
	int nid;

	memset(zones_size, 0, sizeof(zones_size));
	memset(zholes_size, 0, sizeof(zholes_size));

	for_each_online_node(nid) {
		unsigned long start_pfn;
		unsigned long end_pfn;

		start_pfn = init_node_data[nid].node_start_pfn;
		end_pfn = init_node_data[nid].node_end_pfn;

		zones_size[ZONE_DMA] = end_pfn - start_pfn;
		zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] -
			init_node_data[nid].node_present_pages;

		dbg("free_area_init node %d %lx %lx (hole: %lx)\n", nid,
		    zones_size[ZONE_DMA], start_pfn, zholes_size[ZONE_DMA]);

		free_area_init_node(nid, NODE_DATA(nid), zones_size,
							start_pfn, zholes_size);
	}
}

static int __init early_numa(char *p)
{
	if (!p)
		return 0;

	if (strstr(p, "off"))
		numa_enabled = 0;

	if (strstr(p, "debug"))
		numa_debug = 1;

	return 0;
}
early_param("numa", early_numa);