i915_debugfs.c 49.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Keith Packard <keithp@keithp.com>
 *
 */

#include <linux/seq_file.h>
30
#include <linux/debugfs.h>
31
#include <linux/slab.h>
32
#include <linux/export.h>
33 34
#include "drmP.h"
#include "drm.h"
35
#include "intel_drv.h"
36
#include "intel_ringbuffer.h"
37 38 39 40 41 42 43 44
#include "i915_drm.h"
#include "i915_drv.h"

#define DRM_I915_RING_DEBUG 1


#if defined(CONFIG_DEBUG_FS)

C
Chris Wilson 已提交
45
enum {
46
	ACTIVE_LIST,
C
Chris Wilson 已提交
47 48
	FLUSHING_LIST,
	INACTIVE_LIST,
49 50
	PINNED_LIST,
	DEFERRED_FREE_LIST,
C
Chris Wilson 已提交
51
};
52

53 54 55 56 57 58 59 60 61 62 63 64
static const char *yesno(int v)
{
	return v ? "yes" : "no";
}

static int i915_capabilities(struct seq_file *m, void *data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	const struct intel_device_info *info = INTEL_INFO(dev);

	seq_printf(m, "gen: %d\n", info->gen);
65
	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
#define B(x) seq_printf(m, #x ": %s\n", yesno(info->x))
	B(is_mobile);
	B(is_i85x);
	B(is_i915g);
	B(is_i945gm);
	B(is_g33);
	B(need_gfx_hws);
	B(is_g4x);
	B(is_pineview);
	B(is_broadwater);
	B(is_crestline);
	B(has_fbc);
	B(has_pipe_cxsr);
	B(has_hotplug);
	B(cursor_needs_physical);
	B(has_overlay);
	B(overlay_needs_physical);
83
	B(supports_tv);
84 85
	B(has_bsd_ring);
	B(has_blt_ring);
86
	B(has_llc);
87 88 89 90
#undef B

	return 0;
}
91

92
static const char *get_pin_flag(struct drm_i915_gem_object *obj)
93
{
94
	if (obj->user_pin_count > 0)
95
		return "P";
96
	else if (obj->pin_count > 0)
97 98 99 100 101
		return "p";
	else
		return " ";
}

102
static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
103
{
104 105 106 107 108 109
	switch (obj->tiling_mode) {
	default:
	case I915_TILING_NONE: return " ";
	case I915_TILING_X: return "X";
	case I915_TILING_Y: return "Y";
	}
110 111
}

112
static const char *cache_level_str(int type)
113 114
{
	switch (type) {
115 116 117
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return " snooped (LLC)";
	case I915_CACHE_LLC_MLC: return " snooped (LLC+MLC)";
118 119 120 121
	default: return "";
	}
}

122 123 124
static void
describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
{
125
	seq_printf(m, "%p: %s%s %8zd %04x %04x %d %d%s%s%s",
126 127 128 129 130 131 132
		   &obj->base,
		   get_pin_flag(obj),
		   get_tiling_flag(obj),
		   obj->base.size,
		   obj->base.read_domains,
		   obj->base.write_domain,
		   obj->last_rendering_seqno,
133
		   obj->last_fenced_seqno,
134
		   cache_level_str(obj->cache_level),
135 136 137 138 139 140 141
		   obj->dirty ? " dirty" : "",
		   obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
	if (obj->base.name)
		seq_printf(m, " (name: %d)", obj->base.name);
	if (obj->fence_reg != I915_FENCE_REG_NONE)
		seq_printf(m, " (fence: %d)", obj->fence_reg);
	if (obj->gtt_space != NULL)
142 143
		seq_printf(m, " (gtt offset: %08x, size: %08x)",
			   obj->gtt_offset, (unsigned int)obj->gtt_space->size);
144 145 146 147 148 149 150 151 152
	if (obj->pin_mappable || obj->fault_mappable) {
		char s[3], *t = s;
		if (obj->pin_mappable)
			*t++ = 'p';
		if (obj->fault_mappable)
			*t++ = 'f';
		*t = '\0';
		seq_printf(m, " (%s mappable)", s);
	}
153 154
	if (obj->ring != NULL)
		seq_printf(m, " (%s)", obj->ring->name);
155 156
}

157
static int i915_gem_object_list_info(struct seq_file *m, void *data)
158 159
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
160 161
	uintptr_t list = (uintptr_t) node->info_ent->data;
	struct list_head *head;
162 163
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
164
	struct drm_i915_gem_object *obj;
165 166
	size_t total_obj_size, total_gtt_size;
	int count, ret;
167 168 169 170

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;
171

172 173 174
	switch (list) {
	case ACTIVE_LIST:
		seq_printf(m, "Active:\n");
175
		head = &dev_priv->mm.active_list;
176 177
		break;
	case INACTIVE_LIST:
178
		seq_printf(m, "Inactive:\n");
179 180
		head = &dev_priv->mm.inactive_list;
		break;
C
Chris Wilson 已提交
181 182 183 184
	case PINNED_LIST:
		seq_printf(m, "Pinned:\n");
		head = &dev_priv->mm.pinned_list;
		break;
185 186 187 188
	case FLUSHING_LIST:
		seq_printf(m, "Flushing:\n");
		head = &dev_priv->mm.flushing_list;
		break;
189 190 191 192
	case DEFERRED_FREE_LIST:
		seq_printf(m, "Deferred free:\n");
		head = &dev_priv->mm.deferred_free_list;
		break;
193
	default:
194 195
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
196 197
	}

198
	total_obj_size = total_gtt_size = count = 0;
199
	list_for_each_entry(obj, head, mm_list) {
200
		seq_printf(m, "   ");
201
		describe_obj(m, obj);
202
		seq_printf(m, "\n");
203 204
		total_obj_size += obj->base.size;
		total_gtt_size += obj->gtt_space->size;
205
		count++;
206
	}
207
	mutex_unlock(&dev->struct_mutex);
208

209 210
	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
		   count, total_obj_size, total_gtt_size);
211 212 213
	return 0;
}

214 215 216 217 218 219 220 221 222
#define count_objects(list, member) do { \
	list_for_each_entry(obj, list, member) { \
		size += obj->gtt_space->size; \
		++count; \
		if (obj->map_and_fenceable) { \
			mappable_size += obj->gtt_space->size; \
			++mappable_count; \
		} \
	} \
223
} while (0)
224

225 226 227 228 229
static int i915_gem_object_info(struct seq_file *m, void* data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
230 231 232
	u32 count, mappable_count;
	size_t size, mappable_size;
	struct drm_i915_gem_object *obj;
233 234 235 236 237 238
	int ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	seq_printf(m, "%u objects, %zu bytes\n",
		   dev_priv->mm.object_count,
		   dev_priv->mm.object_memory);

	size = count = mappable_size = mappable_count = 0;
	count_objects(&dev_priv->mm.gtt_list, gtt_list);
	seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
		   count, mappable_count, size, mappable_size);

	size = count = mappable_size = mappable_count = 0;
	count_objects(&dev_priv->mm.active_list, mm_list);
	count_objects(&dev_priv->mm.flushing_list, mm_list);
	seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
		   count, mappable_count, size, mappable_size);

	size = count = mappable_size = mappable_count = 0;
	count_objects(&dev_priv->mm.pinned_list, mm_list);
	seq_printf(m, "  %u [%u] pinned objects, %zu [%zu] bytes\n",
		   count, mappable_count, size, mappable_size);

	size = count = mappable_size = mappable_count = 0;
	count_objects(&dev_priv->mm.inactive_list, mm_list);
	seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
		   count, mappable_count, size, mappable_size);

	size = count = mappable_size = mappable_count = 0;
	count_objects(&dev_priv->mm.deferred_free_list, mm_list);
	seq_printf(m, "  %u [%u] freed objects, %zu [%zu] bytes\n",
		   count, mappable_count, size, mappable_size);

	size = count = mappable_size = mappable_count = 0;
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
		if (obj->fault_mappable) {
			size += obj->gtt_space->size;
			++count;
		}
		if (obj->pin_mappable) {
			mappable_size += obj->gtt_space->size;
			++mappable_count;
		}
	}
	seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
		   mappable_count, mappable_size);
	seq_printf(m, "%u fault mappable objects, %zu bytes\n",
		   count, size);

	seq_printf(m, "%zu [%zu] gtt total\n",
		   dev_priv->mm.gtt_total, dev_priv->mm.mappable_gtt_total);
287 288 289 290 291 292

	mutex_unlock(&dev->struct_mutex);

	return 0;
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
static int i915_gem_gtt_info(struct seq_file *m, void* data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj;
	size_t total_obj_size, total_gtt_size;
	int count, ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	total_obj_size = total_gtt_size = count = 0;
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
		seq_printf(m, "   ");
		describe_obj(m, obj);
		seq_printf(m, "\n");
		total_obj_size += obj->base.size;
		total_gtt_size += obj->gtt_space->size;
		count++;
	}

	mutex_unlock(&dev->struct_mutex);

	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
		   count, total_obj_size, total_gtt_size);

	return 0;
}

324

325 326 327 328 329 330 331 332
static int i915_gem_pageflip_info(struct seq_file *m, void *data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	unsigned long flags;
	struct intel_crtc *crtc;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
333 334
		const char pipe = pipe_name(crtc->pipe);
		const char plane = plane_name(crtc->plane);
335 336 337 338 339
		struct intel_unpin_work *work;

		spin_lock_irqsave(&dev->event_lock, flags);
		work = crtc->unpin_work;
		if (work == NULL) {
340
			seq_printf(m, "No flip due on pipe %c (plane %c)\n",
341 342 343
				   pipe, plane);
		} else {
			if (!work->pending) {
344
				seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
345 346
					   pipe, plane);
			} else {
347
				seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
348 349 350 351 352 353 354 355 356
					   pipe, plane);
			}
			if (work->enable_stall_check)
				seq_printf(m, "Stall check enabled, ");
			else
				seq_printf(m, "Stall check waiting for page flip ioctl, ");
			seq_printf(m, "%d prepares\n", work->pending);

			if (work->old_fb_obj) {
357 358 359
				struct drm_i915_gem_object *obj = work->old_fb_obj;
				if (obj)
					seq_printf(m, "Old framebuffer gtt_offset 0x%08x\n", obj->gtt_offset);
360 361
			}
			if (work->pending_flip_obj) {
362 363 364
				struct drm_i915_gem_object *obj = work->pending_flip_obj;
				if (obj)
					seq_printf(m, "New framebuffer gtt_offset 0x%08x\n", obj->gtt_offset);
365 366 367 368 369 370 371 372
			}
		}
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}

	return 0;
}

373 374 375 376 377 378
static int i915_gem_request_info(struct seq_file *m, void *data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_request *gem_request;
379
	int ret, count;
380 381 382 383

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;
384

385
	count = 0;
386
	if (!list_empty(&dev_priv->ring[RCS].request_list)) {
387 388
		seq_printf(m, "Render requests:\n");
		list_for_each_entry(gem_request,
389
				    &dev_priv->ring[RCS].request_list,
390 391 392 393 394 395 396
				    list) {
			seq_printf(m, "    %d @ %d\n",
				   gem_request->seqno,
				   (int) (jiffies - gem_request->emitted_jiffies));
		}
		count++;
	}
397
	if (!list_empty(&dev_priv->ring[VCS].request_list)) {
398 399
		seq_printf(m, "BSD requests:\n");
		list_for_each_entry(gem_request,
400
				    &dev_priv->ring[VCS].request_list,
401 402 403 404 405 406 407
				    list) {
			seq_printf(m, "    %d @ %d\n",
				   gem_request->seqno,
				   (int) (jiffies - gem_request->emitted_jiffies));
		}
		count++;
	}
408
	if (!list_empty(&dev_priv->ring[BCS].request_list)) {
409 410
		seq_printf(m, "BLT requests:\n");
		list_for_each_entry(gem_request,
411
				    &dev_priv->ring[BCS].request_list,
412 413 414 415 416 417
				    list) {
			seq_printf(m, "    %d @ %d\n",
				   gem_request->seqno,
				   (int) (jiffies - gem_request->emitted_jiffies));
		}
		count++;
418
	}
419 420
	mutex_unlock(&dev->struct_mutex);

421 422 423
	if (count == 0)
		seq_printf(m, "No requests\n");

424 425 426
	return 0;
}

427 428 429 430 431 432 433 434 435 436 437 438 439
static void i915_ring_seqno_info(struct seq_file *m,
				 struct intel_ring_buffer *ring)
{
	if (ring->get_seqno) {
		seq_printf(m, "Current sequence (%s): %d\n",
			   ring->name, ring->get_seqno(ring));
		seq_printf(m, "Waiter sequence (%s):  %d\n",
			   ring->name, ring->waiting_seqno);
		seq_printf(m, "IRQ sequence (%s):     %d\n",
			   ring->name, ring->irq_seqno);
	}
}

440 441 442 443 444
static int i915_gem_seqno_info(struct seq_file *m, void *data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
445
	int ret, i;
446 447 448 449

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;
450

451 452
	for (i = 0; i < I915_NUM_RINGS; i++)
		i915_ring_seqno_info(m, &dev_priv->ring[i]);
453 454 455

	mutex_unlock(&dev->struct_mutex);

456 457 458 459 460 461 462 463 464
	return 0;
}


static int i915_interrupt_info(struct seq_file *m, void *data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
465
	int ret, i, pipe;
466 467 468 469

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;
470

471
	if (!HAS_PCH_SPLIT(dev)) {
472 473 474 475 476 477
		seq_printf(m, "Interrupt enable:    %08x\n",
			   I915_READ(IER));
		seq_printf(m, "Interrupt identity:  %08x\n",
			   I915_READ(IIR));
		seq_printf(m, "Interrupt mask:      %08x\n",
			   I915_READ(IMR));
478 479 480 481
		for_each_pipe(pipe)
			seq_printf(m, "Pipe %c stat:         %08x\n",
				   pipe_name(pipe),
				   I915_READ(PIPESTAT(pipe)));
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
	} else {
		seq_printf(m, "North Display Interrupt enable:		%08x\n",
			   I915_READ(DEIER));
		seq_printf(m, "North Display Interrupt identity:	%08x\n",
			   I915_READ(DEIIR));
		seq_printf(m, "North Display Interrupt mask:		%08x\n",
			   I915_READ(DEIMR));
		seq_printf(m, "South Display Interrupt enable:		%08x\n",
			   I915_READ(SDEIER));
		seq_printf(m, "South Display Interrupt identity:	%08x\n",
			   I915_READ(SDEIIR));
		seq_printf(m, "South Display Interrupt mask:		%08x\n",
			   I915_READ(SDEIMR));
		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
			   I915_READ(GTIER));
		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
			   I915_READ(GTIIR));
		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
			   I915_READ(GTIMR));
	}
502 503
	seq_printf(m, "Interrupts received: %d\n",
		   atomic_read(&dev_priv->irq_received));
504
	for (i = 0; i < I915_NUM_RINGS; i++) {
505
		if (IS_GEN6(dev) || IS_GEN7(dev)) {
506 507 508 509
			seq_printf(m, "Graphics Interrupt mask (%s):	%08x\n",
				   dev_priv->ring[i].name,
				   I915_READ_IMR(&dev_priv->ring[i]));
		}
510
		i915_ring_seqno_info(m, &dev_priv->ring[i]);
511
	}
512 513
	mutex_unlock(&dev->struct_mutex);

514 515 516
	return 0;
}

517 518 519 520 521
static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
522 523 524 525 526
	int i, ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;
527 528 529 530

	seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
531
		struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
532

533 534 535 536
		seq_printf(m, "Fenced object[%2d] = ", i);
		if (obj == NULL)
			seq_printf(m, "unused");
		else
537
			describe_obj(m, obj);
538
		seq_printf(m, "\n");
539 540
	}

541
	mutex_unlock(&dev->struct_mutex);
542 543 544
	return 0;
}

545 546 547 548 549
static int i915_hws_info(struct seq_file *m, void *data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
550
	struct intel_ring_buffer *ring;
C
Chris Wilson 已提交
551
	const volatile u32 __iomem *hws;
552 553
	int i;

554
	ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
C
Chris Wilson 已提交
555
	hws = (volatile u32 __iomem *)ring->status_page.page_addr;
556 557 558 559 560 561 562 563 564 565 566
	if (hws == NULL)
		return 0;

	for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
		seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
			   i * 4,
			   hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
	}
	return 0;
}

567 568 569 570 571
static int i915_ringbuffer_data(struct seq_file *m, void *data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
572
	struct intel_ring_buffer *ring;
573 574 575 576 577
	int ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;
578

579
	ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
580
	if (!ring->obj) {
581
		seq_printf(m, "No ringbuffer setup\n");
582
	} else {
C
Chris Wilson 已提交
583
		const u8 __iomem *virt = ring->virtual_start;
584
		uint32_t off;
585

586
		for (off = 0; off < ring->size; off += 4) {
587 588 589
			uint32_t *ptr = (uint32_t *)(virt + off);
			seq_printf(m, "%08x :  %08x\n", off, *ptr);
		}
590
	}
591
	mutex_unlock(&dev->struct_mutex);
592 593 594 595 596 597 598 599 600

	return 0;
}

static int i915_ringbuffer_info(struct seq_file *m, void *data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
601
	struct intel_ring_buffer *ring;
602
	int ret;
603

604
	ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
605
	if (ring->size == 0)
606
		return 0;
607

608 609 610 611
	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

612 613 614 615 616
	seq_printf(m, "Ring %s:\n", ring->name);
	seq_printf(m, "  Head :    %08x\n", I915_READ_HEAD(ring) & HEAD_ADDR);
	seq_printf(m, "  Tail :    %08x\n", I915_READ_TAIL(ring) & TAIL_ADDR);
	seq_printf(m, "  Size :    %08x\n", ring->size);
	seq_printf(m, "  Active :  %08x\n", intel_ring_get_active_head(ring));
617 618 619 620 621
	seq_printf(m, "  NOPID :   %08x\n", I915_READ_NOPID(ring));
	if (IS_GEN6(dev)) {
		seq_printf(m, "  Sync 0 :   %08x\n", I915_READ_SYNC_0(ring));
		seq_printf(m, "  Sync 1 :   %08x\n", I915_READ_SYNC_1(ring));
	}
622 623
	seq_printf(m, "  Control : %08x\n", I915_READ_CTL(ring));
	seq_printf(m, "  Start :   %08x\n", I915_READ_START(ring));
624

625 626
	mutex_unlock(&dev->struct_mutex);

627 628 629
	return 0;
}

630 631 632
static const char *ring_str(int ring)
{
	switch (ring) {
633 634 635
	case RCS: return "render";
	case VCS: return "bsd";
	case BCS: return "blt";
636 637 638 639
	default: return "";
	}
}

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
static const char *pin_flag(int pinned)
{
	if (pinned > 0)
		return " P";
	else if (pinned < 0)
		return " p";
	else
		return "";
}

static const char *tiling_flag(int tiling)
{
	switch (tiling) {
	default:
	case I915_TILING_NONE: return "";
	case I915_TILING_X: return " X";
	case I915_TILING_Y: return " Y";
	}
}

static const char *dirty_flag(int dirty)
{
	return dirty ? " dirty" : "";
}

static const char *purgeable_flag(int purgeable)
{
	return purgeable ? " purgeable" : "";
}

670 671 672 673 674 675 676 677
static void print_error_buffers(struct seq_file *m,
				const char *name,
				struct drm_i915_error_buffer *err,
				int count)
{
	seq_printf(m, "%s [%d]:\n", name, count);

	while (count--) {
678
		seq_printf(m, "  %08x %8u %04x %04x %08x%s%s%s%s%s%s%s",
679 680 681 682 683 684 685 686 687
			   err->gtt_offset,
			   err->size,
			   err->read_domains,
			   err->write_domain,
			   err->seqno,
			   pin_flag(err->pinned),
			   tiling_flag(err->tiling),
			   dirty_flag(err->dirty),
			   purgeable_flag(err->purgeable),
688
			   err->ring != -1 ? " " : "",
689
			   ring_str(err->ring),
690
			   cache_level_str(err->cache_level));
691 692 693 694 695 696 697 698 699 700 701

		if (err->name)
			seq_printf(m, " (name: %d)", err->name);
		if (err->fence_reg != I915_FENCE_REG_NONE)
			seq_printf(m, " (fence: %d)", err->fence_reg);

		seq_printf(m, "\n");
		err++;
	}
}

702 703 704 705 706 707
static void i915_ring_error_state(struct seq_file *m,
				  struct drm_device *dev,
				  struct drm_i915_error_state *error,
				  unsigned ring)
{
	seq_printf(m, "%s command stream:\n", ring_str(ring));
708 709
	seq_printf(m, "  HEAD: 0x%08x\n", error->head[ring]);
	seq_printf(m, "  TAIL: 0x%08x\n", error->tail[ring]);
710 711 712 713
	seq_printf(m, "  ACTHD: 0x%08x\n", error->acthd[ring]);
	seq_printf(m, "  IPEIR: 0x%08x\n", error->ipeir[ring]);
	seq_printf(m, "  IPEHR: 0x%08x\n", error->ipehr[ring]);
	seq_printf(m, "  INSTDONE: 0x%08x\n", error->instdone[ring]);
714 715 716
	if (ring == RCS && INTEL_INFO(dev)->gen >= 4) {
		seq_printf(m, "  INSTDONE1: 0x%08x\n", error->instdone1);
		seq_printf(m, "  BBADDR: 0x%08llx\n", error->bbaddr);
717
	}
718 719 720
	if (INTEL_INFO(dev)->gen >= 4)
		seq_printf(m, "  INSTPS: 0x%08x\n", error->instps[ring]);
	seq_printf(m, "  INSTPM: 0x%08x\n", error->instpm[ring]);
721
	if (INTEL_INFO(dev)->gen >= 6) {
722
		seq_printf(m, "  FADDR: 0x%08x\n", error->faddr[ring]);
723
		seq_printf(m, "  FAULT_REG: 0x%08x\n", error->fault_reg[ring]);
724 725 726 727
		seq_printf(m, "  SYNC_0: 0x%08x\n",
			   error->semaphore_mboxes[ring][0]);
		seq_printf(m, "  SYNC_1: 0x%08x\n",
			   error->semaphore_mboxes[ring][1]);
728
	}
729
	seq_printf(m, "  seqno: 0x%08x\n", error->seqno[ring]);
730 731
	seq_printf(m, "  ring->head: 0x%08x\n", error->cpu_ring_head[ring]);
	seq_printf(m, "  ring->tail: 0x%08x\n", error->cpu_ring_tail[ring]);
732 733
}

734 735 736 737 738 739 740
static int i915_error_state(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_error_state *error;
	unsigned long flags;
741
	int i, page, offset, elt;
742 743 744 745 746 747 748 749 750

	spin_lock_irqsave(&dev_priv->error_lock, flags);
	if (!dev_priv->first_error) {
		seq_printf(m, "no error state collected\n");
		goto out;
	}

	error = dev_priv->first_error;

751 752
	seq_printf(m, "Time: %ld s %ld us\n", error->time.tv_sec,
		   error->time.tv_usec);
753
	seq_printf(m, "PCI ID: 0x%04x\n", dev->pci_device);
754 755
	seq_printf(m, "EIR: 0x%08x\n", error->eir);
	seq_printf(m, "PGTBL_ER: 0x%08x\n", error->pgtbl_er);
756

757
	for (i = 0; i < dev_priv->num_fence_regs; i++)
758 759
		seq_printf(m, "  fence[%d] = %08llx\n", i, error->fence[i]);

760
	if (INTEL_INFO(dev)->gen >= 6) {
761
		seq_printf(m, "ERROR: 0x%08x\n", error->error);
762 763
		seq_printf(m, "DONE_REG: 0x%08x\n", error->done_reg);
	}
764 765 766 767 768 769 770

	i915_ring_error_state(m, dev, error, RCS);
	if (HAS_BLT(dev))
		i915_ring_error_state(m, dev, error, BCS);
	if (HAS_BSD(dev))
		i915_ring_error_state(m, dev, error, VCS);

771 772 773 774 775 776 777 778 779
	if (error->active_bo)
		print_error_buffers(m, "Active",
				    error->active_bo,
				    error->active_bo_count);

	if (error->pinned_bo)
		print_error_buffers(m, "Pinned",
				    error->pinned_bo,
				    error->pinned_bo_count);
780 781 782 783 784

	for (i = 0; i < ARRAY_SIZE(error->batchbuffer); i++) {
		if (error->batchbuffer[i]) {
			struct drm_i915_error_object *obj = error->batchbuffer[i];

785 786 787
			seq_printf(m, "%s --- gtt_offset = 0x%08x\n",
				   dev_priv->ring[i].name,
				   obj->gtt_offset);
788 789 790 791 792 793 794 795 796 797
			offset = 0;
			for (page = 0; page < obj->page_count; page++) {
				for (elt = 0; elt < PAGE_SIZE/4; elt++) {
					seq_printf(m, "%08x :  %08x\n", offset, obj->pages[page][elt]);
					offset += 4;
				}
			}
		}
	}

798 799 800 801 802 803 804 805 806 807 808 809 810 811
	for (i = 0; i < ARRAY_SIZE(error->ringbuffer); i++) {
		if (error->ringbuffer[i]) {
			struct drm_i915_error_object *obj = error->ringbuffer[i];
			seq_printf(m, "%s --- ringbuffer = 0x%08x\n",
				   dev_priv->ring[i].name,
				   obj->gtt_offset);
			offset = 0;
			for (page = 0; page < obj->page_count; page++) {
				for (elt = 0; elt < PAGE_SIZE/4; elt++) {
					seq_printf(m, "%08x :  %08x\n",
						   offset,
						   obj->pages[page][elt]);
					offset += 4;
				}
812 813 814
			}
		}
	}
815

816 817 818
	if (error->overlay)
		intel_overlay_print_error_state(m, error->overlay);

819 820 821
	if (error->display)
		intel_display_print_error_state(m, dev, error->display);

822 823 824 825 826
out:
	spin_unlock_irqrestore(&dev_priv->error_lock, flags);

	return 0;
}
827

828 829 830 831 832
static int i915_rstdby_delays(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
833 834 835 836 837 838 839 840 841 842
	u16 crstanddelay;
	int ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	crstanddelay = I915_READ16(CRSTANDVID);

	mutex_unlock(&dev->struct_mutex);
843 844 845 846 847 848 849 850 851 852 853

	seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f));

	return 0;
}

static int i915_cur_delayinfo(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
854
	int ret;
855 856 857 858 859 860 861 862 863 864 865

	if (IS_GEN5(dev)) {
		u16 rgvswctl = I915_READ16(MEMSWCTL);
		u16 rgvstat = I915_READ16(MEMSTAT_ILK);

		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
			   MEMSTAT_VID_SHIFT);
		seq_printf(m, "Current P-state: %d\n",
			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
866
	} else if (IS_GEN6(dev) || IS_GEN7(dev)) {
867 868 869
		u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
		u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
870 871 872
		u32 rpstat;
		u32 rpupei, rpcurup, rpprevup;
		u32 rpdownei, rpcurdown, rpprevdown;
873 874 875
		int max_freq;

		/* RPSTAT1 is in the GT power well */
876 877 878 879
		ret = mutex_lock_interruptible(&dev->struct_mutex);
		if (ret)
			return ret;

880
		gen6_gt_force_wake_get(dev_priv);
881

882 883 884 885 886 887 888 889
		rpstat = I915_READ(GEN6_RPSTAT1);
		rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
		rpcurup = I915_READ(GEN6_RP_CUR_UP);
		rpprevup = I915_READ(GEN6_RP_PREV_UP);
		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);

890 891 892
		gen6_gt_force_wake_put(dev_priv);
		mutex_unlock(&dev->struct_mutex);

893
		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
894
		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
895 896 897 898 899 900
		seq_printf(m, "Render p-state ratio: %d\n",
			   (gt_perf_status & 0xff00) >> 8);
		seq_printf(m, "Render p-state VID: %d\n",
			   gt_perf_status & 0xff);
		seq_printf(m, "Render p-state limit: %d\n",
			   rp_state_limits & 0xff);
901
		seq_printf(m, "CAGF: %dMHz\n", ((rpstat & GEN6_CAGF_MASK) >>
902
						GEN6_CAGF_SHIFT) * 50);
903 904 905 906 907 908 909 910 911 912 913 914
		seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
			   GEN6_CURICONT_MASK);
		seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
			   GEN6_CURBSYTAVG_MASK);
		seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
			   GEN6_CURBSYTAVG_MASK);
		seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
			   GEN6_CURIAVG_MASK);
		seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
			   GEN6_CURBSYTAVG_MASK);
		seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
			   GEN6_CURBSYTAVG_MASK);
915 916 917

		max_freq = (rp_state_cap & 0xff0000) >> 16;
		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
918
			   max_freq * 50);
919 920 921

		max_freq = (rp_state_cap & 0xff00) >> 8;
		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
922
			   max_freq * 50);
923 924 925

		max_freq = rp_state_cap & 0xff;
		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
926
			   max_freq * 50);
927 928 929
	} else {
		seq_printf(m, "no P-state info available\n");
	}
930 931 932 933 934 935 936 937 938 939

	return 0;
}

static int i915_delayfreq_table(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 delayfreq;
940 941 942 943 944
	int ret, i;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;
945 946 947

	for (i = 0; i < 16; i++) {
		delayfreq = I915_READ(PXVFREQ_BASE + i * 4);
948 949
		seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq,
			   (delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT);
950 951
	}

952 953
	mutex_unlock(&dev->struct_mutex);

954 955 956 957 958 959 960 961 962 963 964 965 966 967
	return 0;
}

static inline int MAP_TO_MV(int map)
{
	return 1250 - (map * 25);
}

static int i915_inttoext_table(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 inttoext;
968 969 970 971 972
	int ret, i;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;
973 974 975 976 977 978

	for (i = 1; i <= 32; i++) {
		inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4);
		seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext);
	}

979 980
	mutex_unlock(&dev->struct_mutex);

981 982 983
	return 0;
}

984
static int ironlake_drpc_info(struct seq_file *m)
985 986 987 988
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
989 990 991 992 993 994 995 996 997 998 999 1000 1001
	u32 rgvmodectl, rstdbyctl;
	u16 crstandvid;
	int ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	rgvmodectl = I915_READ(MEMMODECTL);
	rstdbyctl = I915_READ(RSTDBYCTL);
	crstandvid = I915_READ16(CRSTANDVID);

	mutex_unlock(&dev->struct_mutex);
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

	seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
		   "yes" : "no");
	seq_printf(m, "Boost freq: %d\n",
		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
		   MEMMODE_BOOST_FREQ_SHIFT);
	seq_printf(m, "HW control enabled: %s\n",
		   rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
	seq_printf(m, "SW control enabled: %s\n",
		   rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
	seq_printf(m, "Gated voltage change: %s\n",
		   rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
	seq_printf(m, "Starting frequency: P%d\n",
		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1016
	seq_printf(m, "Max P-state: P%d\n",
1017
		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1018 1019 1020 1021 1022
	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
	seq_printf(m, "Render standby enabled: %s\n",
		   (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
	seq_printf(m, "Current RS state: ");
	switch (rstdbyctl & RSX_STATUS_MASK) {
	case RSX_STATUS_ON:
		seq_printf(m, "on\n");
		break;
	case RSX_STATUS_RC1:
		seq_printf(m, "RC1\n");
		break;
	case RSX_STATUS_RC1E:
		seq_printf(m, "RC1E\n");
		break;
	case RSX_STATUS_RS1:
		seq_printf(m, "RS1\n");
		break;
	case RSX_STATUS_RS2:
		seq_printf(m, "RS2 (RC6)\n");
		break;
	case RSX_STATUS_RS3:
		seq_printf(m, "RC3 (RC6+)\n");
		break;
	default:
		seq_printf(m, "unknown\n");
		break;
	}
1047 1048 1049 1050

	return 0;
}

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
static int gen6_drpc_info(struct seq_file *m)
{

	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rpmodectl1, gt_core_status, rcctl1;
	int count=0, ret;


	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	if (atomic_read(&dev_priv->forcewake_count)) {
		seq_printf(m, "RC information inaccurate because userspace "
			      "holds a reference \n");
	} else {
		/* NB: we cannot use forcewake, else we read the wrong values */
		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
			udelay(10);
		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
	}

	gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4);

	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
	rcctl1 = I915_READ(GEN6_RC_CONTROL);
	mutex_unlock(&dev->struct_mutex);

	seq_printf(m, "Video Turbo Mode: %s\n",
		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
	seq_printf(m, "HW control enabled: %s\n",
		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
	seq_printf(m, "SW control enabled: %s\n",
		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
			  GEN6_RP_MEDIA_SW_MODE));
	seq_printf(m, "RC6 Enabled: %s\n",
		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
	seq_printf(m, "RC6 Enabled: %s\n",
		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
	seq_printf(m, "Deep RC6 Enabled: %s\n",
		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
	seq_printf(m, "Deepest RC6 Enabled: %s\n",
		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
	seq_printf(m, "Current RC state: ");
	switch (gt_core_status & GEN6_RCn_MASK) {
	case GEN6_RC0:
		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
			seq_printf(m, "Core Power Down\n");
		else
			seq_printf(m, "on\n");
		break;
	case GEN6_RC3:
		seq_printf(m, "RC3\n");
		break;
	case GEN6_RC6:
		seq_printf(m, "RC6\n");
		break;
	case GEN6_RC7:
		seq_printf(m, "RC7\n");
		break;
	default:
		seq_printf(m, "Unknown\n");
		break;
	}

	seq_printf(m, "Core Power Down: %s\n",
		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
	return 0;
}

static int i915_drpc_info(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;

	if (IS_GEN6(dev) || IS_GEN7(dev))
		return gen6_drpc_info(m);
	else
		return ironlake_drpc_info(m);
}

1135 1136 1137 1138 1139 1140
static int i915_fbc_status(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;

1141
	if (!I915_HAS_FBC(dev)) {
1142 1143 1144 1145
		seq_printf(m, "FBC unsupported on this chipset\n");
		return 0;
	}

1146
	if (intel_fbc_enabled(dev)) {
1147 1148 1149 1150
		seq_printf(m, "FBC enabled\n");
	} else {
		seq_printf(m, "FBC disabled: ");
		switch (dev_priv->no_fbc_reason) {
C
Chris Wilson 已提交
1151 1152 1153
		case FBC_NO_OUTPUT:
			seq_printf(m, "no outputs");
			break;
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
		case FBC_STOLEN_TOO_SMALL:
			seq_printf(m, "not enough stolen memory");
			break;
		case FBC_UNSUPPORTED_MODE:
			seq_printf(m, "mode not supported");
			break;
		case FBC_MODE_TOO_LARGE:
			seq_printf(m, "mode too large");
			break;
		case FBC_BAD_PLANE:
			seq_printf(m, "FBC unsupported on plane");
			break;
		case FBC_NOT_TILED:
			seq_printf(m, "scanout buffer not tiled");
			break;
1169 1170 1171
		case FBC_MULTIPLE_PIPES:
			seq_printf(m, "multiple pipes are enabled");
			break;
1172 1173 1174
		case FBC_MODULE_PARAM:
			seq_printf(m, "disabled per module param (default off)");
			break;
1175 1176 1177 1178 1179 1180 1181 1182
		default:
			seq_printf(m, "unknown reason");
		}
		seq_printf(m, "\n");
	}
	return 0;
}

1183 1184 1185 1186 1187 1188 1189
static int i915_sr_status(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool sr_enabled = false;

1190
	if (HAS_PCH_SPLIT(dev))
1191
		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1192
	else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1193 1194 1195 1196 1197 1198
		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
	else if (IS_I915GM(dev))
		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
	else if (IS_PINEVIEW(dev))
		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;

1199 1200
	seq_printf(m, "self-refresh: %s\n",
		   sr_enabled ? "enabled" : "disabled");
1201 1202 1203 1204

	return 0;
}

1205 1206 1207 1208 1209 1210
static int i915_emon_status(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	unsigned long temp, chipset, gfx;
1211 1212 1213 1214 1215
	int ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;
1216 1217 1218 1219

	temp = i915_mch_val(dev_priv);
	chipset = i915_chipset_val(dev_priv);
	gfx = i915_gfx_val(dev_priv);
1220
	mutex_unlock(&dev->struct_mutex);
1221 1222 1223 1224 1225 1226 1227 1228 1229

	seq_printf(m, "GMCH temp: %ld\n", temp);
	seq_printf(m, "Chipset power: %ld\n", chipset);
	seq_printf(m, "GFX power: %ld\n", gfx);
	seq_printf(m, "Total power: %ld\n", chipset + gfx);

	return 0;
}

1230 1231 1232 1233 1234 1235 1236 1237
static int i915_ring_freq_table(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
	int gpu_freq, ia_freq;

1238
	if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
		seq_printf(m, "unsupported on this chipset\n");
		return 0;
	}

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	seq_printf(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\n");

	for (gpu_freq = dev_priv->min_delay; gpu_freq <= dev_priv->max_delay;
	     gpu_freq++) {
		I915_WRITE(GEN6_PCODE_DATA, gpu_freq);
		I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
			   GEN6_PCODE_READ_MIN_FREQ_TABLE);
		if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
			      GEN6_PCODE_READY) == 0, 10)) {
			DRM_ERROR("pcode read of freq table timed out\n");
			continue;
		}
		ia_freq = I915_READ(GEN6_PCODE_DATA);
		seq_printf(m, "%d\t\t%d\n", gpu_freq * 50, ia_freq * 100);
	}

	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1268 1269 1270 1271 1272
static int i915_gfxec(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1273 1274 1275 1276 1277
	int ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;
1278 1279 1280

	seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4));

1281 1282
	mutex_unlock(&dev->struct_mutex);

1283 1284 1285
	return 0;
}

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
static int i915_opregion(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct intel_opregion *opregion = &dev_priv->opregion;
	int ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	if (opregion->header)
		seq_write(m, opregion->header, OPREGION_SIZE);

	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct intel_fbdev *ifbdev;
	struct intel_framebuffer *fb;
	int ret;

	ret = mutex_lock_interruptible(&dev->mode_config.mutex);
	if (ret)
		return ret;

	ifbdev = dev_priv->fbdev;
	fb = to_intel_framebuffer(ifbdev->helper.fb);

	seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, obj ",
		   fb->base.width,
		   fb->base.height,
		   fb->base.depth,
		   fb->base.bits_per_pixel);
1327
	describe_obj(m, fb->obj);
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
	seq_printf(m, "\n");

	list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
		if (&fb->base == ifbdev->helper.fb)
			continue;

		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, obj ",
			   fb->base.width,
			   fb->base.height,
			   fb->base.depth,
			   fb->base.bits_per_pixel);
1339
		describe_obj(m, fb->obj);
1340 1341 1342 1343 1344 1345 1346 1347
		seq_printf(m, "\n");
	}

	mutex_unlock(&dev->mode_config.mutex);

	return 0;
}

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
static int i915_context_status(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

	ret = mutex_lock_interruptible(&dev->mode_config.mutex);
	if (ret)
		return ret;

1359 1360 1361 1362 1363
	if (dev_priv->pwrctx) {
		seq_printf(m, "power context ");
		describe_obj(m, dev_priv->pwrctx);
		seq_printf(m, "\n");
	}
1364

1365 1366 1367 1368 1369
	if (dev_priv->renderctx) {
		seq_printf(m, "render context ");
		describe_obj(m, dev_priv->renderctx);
		seq_printf(m, "\n");
	}
1370 1371 1372 1373 1374 1375

	mutex_unlock(&dev->mode_config.mutex);

	return 0;
}

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	seq_printf(m, "forcewake count = %d\n",
		   atomic_read(&dev_priv->forcewake_count));

	return 0;
}

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
static const char *swizzle_string(unsigned swizzle)
{
	switch(swizzle) {
	case I915_BIT_6_SWIZZLE_NONE:
		return "none";
	case I915_BIT_6_SWIZZLE_9:
		return "bit9";
	case I915_BIT_6_SWIZZLE_9_10:
		return "bit9/bit10";
	case I915_BIT_6_SWIZZLE_9_11:
		return "bit9/bit11";
	case I915_BIT_6_SWIZZLE_9_10_11:
		return "bit9/bit10/bit11";
	case I915_BIT_6_SWIZZLE_9_17:
		return "bit9/bit17";
	case I915_BIT_6_SWIZZLE_9_10_17:
		return "bit9/bit10/bit17";
	case I915_BIT_6_SWIZZLE_UNKNOWN:
		return "unkown";
	}

	return "bug";
}

static int i915_swizzle_info(struct seq_file *m, void *data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	mutex_lock(&dev->struct_mutex);
	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));

	if (IS_GEN3(dev) || IS_GEN4(dev)) {
		seq_printf(m, "DDC = 0x%08x\n",
			   I915_READ(DCC));
		seq_printf(m, "C0DRB3 = 0x%04x\n",
			   I915_READ16(C0DRB3));
		seq_printf(m, "C1DRB3 = 0x%04x\n",
			   I915_READ16(C1DRB3));
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
	} else if (IS_GEN6(dev) || IS_GEN7(dev)) {
		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
			   I915_READ(MAD_DIMM_C0));
		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
			   I915_READ(MAD_DIMM_C1));
		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
			   I915_READ(MAD_DIMM_C2));
		seq_printf(m, "TILECTL = 0x%08x\n",
			   I915_READ(TILECTL));
		seq_printf(m, "ARB_MODE = 0x%08x\n",
			   I915_READ(ARB_MODE));
		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
			   I915_READ(DISP_ARB_CTL));
1444 1445 1446 1447 1448 1449
	}
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1450
static int
1451 1452
i915_debugfs_common_open(struct inode *inode,
			 struct file *filp)
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
i915_wedged_read(struct file *filp,
		 char __user *ubuf,
		 size_t max,
		 loff_t *ppos)
{
	struct drm_device *dev = filp->private_data;
	drm_i915_private_t *dev_priv = dev->dev_private;
	char buf[80];
	int len;

1469
	len = snprintf(buf, sizeof(buf),
1470 1471 1472
		       "wedged :  %d\n",
		       atomic_read(&dev_priv->mm.wedged));

1473 1474
	if (len > sizeof(buf))
		len = sizeof(buf);
1475

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
	return simple_read_from_buffer(ubuf, max, ppos, buf, len);
}

static ssize_t
i915_wedged_write(struct file *filp,
		  const char __user *ubuf,
		  size_t cnt,
		  loff_t *ppos)
{
	struct drm_device *dev = filp->private_data;
	char buf[20];
	int val = 1;

	if (cnt > 0) {
1490
		if (cnt > sizeof(buf) - 1)
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
			return -EINVAL;

		if (copy_from_user(buf, ubuf, cnt))
			return -EFAULT;
		buf[cnt] = 0;

		val = simple_strtoul(buf, NULL, 0);
	}

	DRM_INFO("Manually setting wedged to %d\n", val);
1501
	i915_handle_error(dev, val);
1502 1503 1504 1505 1506 1507

	return cnt;
}

static const struct file_operations i915_wedged_fops = {
	.owner = THIS_MODULE,
1508
	.open = i915_debugfs_common_open,
1509 1510
	.read = i915_wedged_read,
	.write = i915_wedged_write,
1511
	.llseek = default_llseek,
1512 1513
};

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
static ssize_t
i915_max_freq_read(struct file *filp,
		   char __user *ubuf,
		   size_t max,
		   loff_t *ppos)
{
	struct drm_device *dev = filp->private_data;
	drm_i915_private_t *dev_priv = dev->dev_private;
	char buf[80];
	int len;

1525
	len = snprintf(buf, sizeof(buf),
1526 1527
		       "max freq: %d\n", dev_priv->max_delay * 50);

1528 1529
	if (len > sizeof(buf))
		len = sizeof(buf);
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545

	return simple_read_from_buffer(ubuf, max, ppos, buf, len);
}

static ssize_t
i915_max_freq_write(struct file *filp,
		  const char __user *ubuf,
		  size_t cnt,
		  loff_t *ppos)
{
	struct drm_device *dev = filp->private_data;
	struct drm_i915_private *dev_priv = dev->dev_private;
	char buf[20];
	int val = 1;

	if (cnt > 0) {
1546
		if (cnt > sizeof(buf) - 1)
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
			return -EINVAL;

		if (copy_from_user(buf, ubuf, cnt))
			return -EFAULT;
		buf[cnt] = 0;

		val = simple_strtoul(buf, NULL, 0);
	}

	DRM_DEBUG_DRIVER("Manually setting max freq to %d\n", val);

	/*
	 * Turbo will still be enabled, but won't go above the set value.
	 */
	dev_priv->max_delay = val / 50;

	gen6_set_rps(dev, val / 50);

	return cnt;
}

static const struct file_operations i915_max_freq_fops = {
	.owner = THIS_MODULE,
1570
	.open = i915_debugfs_common_open,
1571 1572 1573 1574 1575
	.read = i915_max_freq_read,
	.write = i915_max_freq_write,
	.llseek = default_llseek,
};

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
static ssize_t
i915_cache_sharing_read(struct file *filp,
		   char __user *ubuf,
		   size_t max,
		   loff_t *ppos)
{
	struct drm_device *dev = filp->private_data;
	drm_i915_private_t *dev_priv = dev->dev_private;
	char buf[80];
	u32 snpcr;
	int len;

	mutex_lock(&dev_priv->dev->struct_mutex);
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	mutex_unlock(&dev_priv->dev->struct_mutex);

1592
	len = snprintf(buf, sizeof(buf),
1593 1594 1595
		       "%d\n", (snpcr & GEN6_MBC_SNPCR_MASK) >>
		       GEN6_MBC_SNPCR_SHIFT);

1596 1597
	if (len > sizeof(buf))
		len = sizeof(buf);
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614

	return simple_read_from_buffer(ubuf, max, ppos, buf, len);
}

static ssize_t
i915_cache_sharing_write(struct file *filp,
		  const char __user *ubuf,
		  size_t cnt,
		  loff_t *ppos)
{
	struct drm_device *dev = filp->private_data;
	struct drm_i915_private *dev_priv = dev->dev_private;
	char buf[20];
	u32 snpcr;
	int val = 1;

	if (cnt > 0) {
1615
		if (cnt > sizeof(buf) - 1)
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
			return -EINVAL;

		if (copy_from_user(buf, ubuf, cnt))
			return -EFAULT;
		buf[cnt] = 0;

		val = simple_strtoul(buf, NULL, 0);
	}

	if (val < 0 || val > 3)
		return -EINVAL;

	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %d\n", val);

	/* Update the cache sharing policy here as well */
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);

	return cnt;
}

static const struct file_operations i915_cache_sharing_fops = {
	.owner = THIS_MODULE,
1641
	.open = i915_debugfs_common_open,
1642 1643 1644 1645 1646
	.read = i915_cache_sharing_read,
	.write = i915_cache_sharing_write,
	.llseek = default_llseek,
};

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
/* As the drm_debugfs_init() routines are called before dev->dev_private is
 * allocated we need to hook into the minor for release. */
static int
drm_add_fake_info_node(struct drm_minor *minor,
		       struct dentry *ent,
		       const void *key)
{
	struct drm_info_node *node;

	node = kmalloc(sizeof(struct drm_info_node), GFP_KERNEL);
	if (node == NULL) {
		debugfs_remove(ent);
		return -ENOMEM;
	}

	node->minor = minor;
	node->dent = ent;
	node->info_ent = (void *) key;
1665 1666 1667 1668

	mutex_lock(&minor->debugfs_lock);
	list_add(&node->list, &minor->debugfs_list);
	mutex_unlock(&minor->debugfs_lock);
1669 1670 1671 1672

	return 0;
}

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
static int i915_forcewake_open(struct inode *inode, struct file *file)
{
	struct drm_device *dev = inode->i_private;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (!IS_GEN6(dev))
		return 0;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;
	gen6_gt_force_wake_get(dev_priv);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

int i915_forcewake_release(struct inode *inode, struct file *file)
{
	struct drm_device *dev = inode->i_private;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!IS_GEN6(dev))
		return 0;

	/*
	 * It's bad that we can potentially hang userspace if struct_mutex gets
	 * forever stuck.  However, if we cannot acquire this lock it means that
	 * almost certainly the driver has hung, is not unload-able. Therefore
	 * hanging here is probably a minor inconvenience not to be seen my
	 * almost every user.
	 */
	mutex_lock(&dev->struct_mutex);
	gen6_gt_force_wake_put(dev_priv);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

static const struct file_operations i915_forcewake_fops = {
	.owner = THIS_MODULE,
	.open = i915_forcewake_open,
	.release = i915_forcewake_release,
};

static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
{
	struct drm_device *dev = minor->dev;
	struct dentry *ent;

	ent = debugfs_create_file("i915_forcewake_user",
B
Ben Widawsky 已提交
1725
				  S_IRUSR,
1726 1727 1728 1729 1730
				  root, dev,
				  &i915_forcewake_fops);
	if (IS_ERR(ent))
		return PTR_ERR(ent);

B
Ben Widawsky 已提交
1731
	return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
1732 1733
}

1734 1735 1736 1737
static int i915_debugfs_create(struct dentry *root,
			       struct drm_minor *minor,
			       const char *name,
			       const struct file_operations *fops)
1738 1739 1740 1741
{
	struct drm_device *dev = minor->dev;
	struct dentry *ent;

1742
	ent = debugfs_create_file(name,
1743 1744
				  S_IRUGO | S_IWUSR,
				  root, dev,
1745
				  fops);
1746 1747 1748
	if (IS_ERR(ent))
		return PTR_ERR(ent);

1749
	return drm_add_fake_info_node(minor, ent, fops);
1750 1751
}

1752
static struct drm_info_list i915_debugfs_list[] = {
C
Chris Wilson 已提交
1753
	{"i915_capabilities", i915_capabilities, 0},
1754
	{"i915_gem_objects", i915_gem_object_info, 0},
1755
	{"i915_gem_gtt", i915_gem_gtt_info, 0},
1756 1757 1758
	{"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
	{"i915_gem_flushing", i915_gem_object_list_info, 0, (void *) FLUSHING_LIST},
	{"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
C
Chris Wilson 已提交
1759
	{"i915_gem_pinned", i915_gem_object_list_info, 0, (void *) PINNED_LIST},
1760
	{"i915_gem_deferred_free", i915_gem_object_list_info, 0, (void *) DEFERRED_FREE_LIST},
1761
	{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
1762 1763
	{"i915_gem_request", i915_gem_request_info, 0},
	{"i915_gem_seqno", i915_gem_seqno_info, 0},
1764
	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
1765
	{"i915_gem_interrupt", i915_interrupt_info, 0},
1766 1767 1768 1769 1770 1771 1772 1773 1774
	{"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
	{"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
	{"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
	{"i915_ringbuffer_data", i915_ringbuffer_data, 0, (void *)RCS},
	{"i915_ringbuffer_info", i915_ringbuffer_info, 0, (void *)RCS},
	{"i915_bsd_ringbuffer_data", i915_ringbuffer_data, 0, (void *)VCS},
	{"i915_bsd_ringbuffer_info", i915_ringbuffer_info, 0, (void *)VCS},
	{"i915_blt_ringbuffer_data", i915_ringbuffer_data, 0, (void *)BCS},
	{"i915_blt_ringbuffer_info", i915_ringbuffer_info, 0, (void *)BCS},
1775
	{"i915_error_state", i915_error_state, 0},
1776 1777 1778 1779 1780
	{"i915_rstdby_delays", i915_rstdby_delays, 0},
	{"i915_cur_delayinfo", i915_cur_delayinfo, 0},
	{"i915_delayfreq_table", i915_delayfreq_table, 0},
	{"i915_inttoext_table", i915_inttoext_table, 0},
	{"i915_drpc_info", i915_drpc_info, 0},
1781
	{"i915_emon_status", i915_emon_status, 0},
1782
	{"i915_ring_freq_table", i915_ring_freq_table, 0},
1783
	{"i915_gfxec", i915_gfxec, 0},
1784
	{"i915_fbc_status", i915_fbc_status, 0},
1785
	{"i915_sr_status", i915_sr_status, 0},
1786
	{"i915_opregion", i915_opregion, 0},
1787
	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
1788
	{"i915_context_status", i915_context_status, 0},
1789
	{"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
1790
	{"i915_swizzle_info", i915_swizzle_info, 0},
1791
};
1792
#define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
1793

1794
int i915_debugfs_init(struct drm_minor *minor)
1795
{
1796 1797
	int ret;

1798 1799 1800
	ret = i915_debugfs_create(minor->debugfs_root, minor,
				  "i915_wedged",
				  &i915_wedged_fops);
1801 1802 1803
	if (ret)
		return ret;

1804
	ret = i915_forcewake_create(minor->debugfs_root, minor);
1805 1806
	if (ret)
		return ret;
1807 1808 1809 1810

	ret = i915_debugfs_create(minor->debugfs_root, minor,
				  "i915_max_freq",
				  &i915_max_freq_fops);
1811 1812
	if (ret)
		return ret;
1813 1814 1815 1816

	ret = i915_debugfs_create(minor->debugfs_root, minor,
				  "i915_cache_sharing",
				  &i915_cache_sharing_fops);
1817 1818 1819
	if (ret)
		return ret;

1820 1821
	return drm_debugfs_create_files(i915_debugfs_list,
					I915_DEBUGFS_ENTRIES,
1822 1823 1824
					minor->debugfs_root, minor);
}

1825
void i915_debugfs_cleanup(struct drm_minor *minor)
1826
{
1827 1828
	drm_debugfs_remove_files(i915_debugfs_list,
				 I915_DEBUGFS_ENTRIES, minor);
1829 1830
	drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
				 1, minor);
1831 1832
	drm_debugfs_remove_files((struct drm_info_list *) &i915_wedged_fops,
				 1, minor);
1833 1834
	drm_debugfs_remove_files((struct drm_info_list *) &i915_max_freq_fops,
				 1, minor);
1835 1836
	drm_debugfs_remove_files((struct drm_info_list *) &i915_cache_sharing_fops,
				 1, minor);
1837 1838 1839
}

#endif /* CONFIG_DEBUG_FS */