i915_guc_submission.c 43.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */
#include <linux/firmware.h>
#include <linux/circ_buf.h>
26 27
#include <linux/debugfs.h>
#include <linux/relay.h>
28 29 30
#include "i915_drv.h"
#include "intel_guc.h"

31
/**
A
Alex Dai 已提交
32
 * DOC: GuC-based command submission
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
 *
 * i915_guc_client:
 * We use the term client to avoid confusion with contexts. A i915_guc_client is
 * equivalent to GuC object guc_context_desc. This context descriptor is
 * allocated from a pool of 1024 entries. Kernel driver will allocate doorbell
 * and workqueue for it. Also the process descriptor (guc_process_desc), which
 * is mapped to client space. So the client can write Work Item then ring the
 * doorbell.
 *
 * To simplify the implementation, we allocate one gem object that contains all
 * pages for doorbell, process descriptor and workqueue.
 *
 * The Scratch registers:
 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
 * triggers an interrupt on the GuC via another register write (0xC4C8).
 * Firmware writes a success/fail code back to the action register after
 * processes the request. The kernel driver polls waiting for this update and
 * then proceeds.
 * See host2guc_action()
 *
 * Doorbells:
 * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
 * mapped into process space.
 *
 * Work Items:
 * There are several types of work items that the host may place into a
 * workqueue, each with its own requirements and limitations. Currently only
 * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
 * represents in-order queue. The kernel driver packs ring tail pointer and an
 * ELSP context descriptor dword into Work Item.
64
 * See guc_wq_item_append()
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 *
 */

/*
 * Read GuC command/status register (SOFT_SCRATCH_0)
 * Return true if it contains a response rather than a command
 */
static inline bool host2guc_action_response(struct drm_i915_private *dev_priv,
					    u32 *status)
{
	u32 val = I915_READ(SOFT_SCRATCH(0));
	*status = val;
	return GUC2HOST_IS_RESPONSE(val);
}

static int host2guc_action(struct intel_guc *guc, u32 *data, u32 len)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	u32 status;
	int i;
	int ret;

	if (WARN_ON(len < 1 || len > 15))
		return -EINVAL;

90
	mutex_lock(&guc->action_lock);
91 92 93 94 95 96 97 98 99 100 101 102
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	dev_priv->guc.action_count += 1;
	dev_priv->guc.action_cmd = data[0];

	for (i = 0; i < len; i++)
		I915_WRITE(SOFT_SCRATCH(i), data[i]);

	POSTING_READ(SOFT_SCRATCH(i - 1));

	I915_WRITE(HOST2GUC_INTERRUPT, HOST2GUC_TRIGGER);

103 104 105 106 107 108 109 110
	/*
	 * Fast commands should complete in less than 10us, so sample quickly
	 * up to that length of time, then switch to a slower sleep-wait loop.
	 * No HOST2GUC command should ever take longer than 10ms.
	 */
	ret = wait_for_us(host2guc_action_response(dev_priv, &status), 10);
	if (ret)
		ret = wait_for(host2guc_action_response(dev_priv, &status), 10);
111 112 113 114 115 116 117 118 119
	if (status != GUC2HOST_STATUS_SUCCESS) {
		/*
		 * Either the GuC explicitly returned an error (which
		 * we convert to -EIO here) or no response at all was
		 * received within the timeout limit (-ETIMEDOUT)
		 */
		if (ret != -ETIMEDOUT)
			ret = -EIO;

120 121
		DRM_WARN("Action 0x%X failed; ret=%d status=0x%08X response=0x%08X\n",
			 data[0], ret, status, I915_READ(SOFT_SCRATCH(15)));
122 123 124 125 126 127 128

		dev_priv->guc.action_fail += 1;
		dev_priv->guc.action_err = ret;
	}
	dev_priv->guc.action_status = status;

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
129
	mutex_unlock(&guc->action_lock);
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

	return ret;
}

/*
 * Tell the GuC to allocate or deallocate a specific doorbell
 */

static int host2guc_allocate_doorbell(struct intel_guc *guc,
				      struct i915_guc_client *client)
{
	u32 data[2];

	data[0] = HOST2GUC_ACTION_ALLOCATE_DOORBELL;
	data[1] = client->ctx_index;

	return host2guc_action(guc, data, 2);
}

static int host2guc_release_doorbell(struct intel_guc *guc,
				     struct i915_guc_client *client)
{
	u32 data[2];

	data[0] = HOST2GUC_ACTION_DEALLOCATE_DOORBELL;
	data[1] = client->ctx_index;

	return host2guc_action(guc, data, 2);
}

A
Alex Dai 已提交
160 161 162 163 164 165 166
static int host2guc_sample_forcewake(struct intel_guc *guc,
				     struct i915_guc_client *client)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	u32 data[2];

	data[0] = HOST2GUC_ACTION_SAMPLE_FORCEWAKE;
167
	/* WaRsDisableCoarsePowerGating:skl,bxt */
168
	if (!intel_enable_rc6() || NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
169 170 171 172 173 174
		data[1] = 0;
	else
		/* bit 0 and 1 are for Render and Media domain separately */
		data[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;

	return host2guc_action(guc, data, ARRAY_SIZE(data));
A
Alex Dai 已提交
175 176
}

177 178 179 180 181 182 183 184 185
static int host2guc_logbuffer_flush_complete(struct intel_guc *guc)
{
	u32 data[1];

	data[0] = HOST2GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE;

	return host2guc_action(guc, data, 1);
}

186 187 188 189 190 191 192
/*
 * Initialise, update, or clear doorbell data shared with the GuC
 *
 * These functions modify shared data and so need access to the mapped
 * client object which contains the page being used for the doorbell
 */

193 194 195
static int guc_update_doorbell_id(struct intel_guc *guc,
				  struct i915_guc_client *client,
				  u16 new_id)
196
{
197
	struct sg_table *sg = guc->ctx_pool_vma->pages;
198
	void *doorbell_bitmap = guc->doorbell_bitmap;
199
	struct guc_doorbell_info *doorbell;
200 201
	struct guc_context_desc desc;
	size_t len;
202

203
	doorbell = client->client_base + client->doorbell_offset;
204

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
	if (client->doorbell_id != GUC_INVALID_DOORBELL_ID &&
	    test_bit(client->doorbell_id, doorbell_bitmap)) {
		/* Deactivate the old doorbell */
		doorbell->db_status = GUC_DOORBELL_DISABLED;
		(void)host2guc_release_doorbell(guc, client);
		__clear_bit(client->doorbell_id, doorbell_bitmap);
	}

	/* Update the GuC's idea of the doorbell ID */
	len = sg_pcopy_to_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
			     sizeof(desc) * client->ctx_index);
	if (len != sizeof(desc))
		return -EFAULT;
	desc.db_id = new_id;
	len = sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
			     sizeof(desc) * client->ctx_index);
	if (len != sizeof(desc))
		return -EFAULT;

	client->doorbell_id = new_id;
	if (new_id == GUC_INVALID_DOORBELL_ID)
		return 0;

	/* Activate the new doorbell */
	__set_bit(new_id, doorbell_bitmap);
230
	doorbell->cookie = 0;
231 232 233 234 235 236 237 238 239
	doorbell->db_status = GUC_DOORBELL_ENABLED;
	return host2guc_allocate_doorbell(guc, client);
}

static int guc_init_doorbell(struct intel_guc *guc,
			      struct i915_guc_client *client,
			      uint16_t db_id)
{
	return guc_update_doorbell_id(guc, client, db_id);
240 241 242 243 244
}

static void guc_disable_doorbell(struct intel_guc *guc,
				 struct i915_guc_client *client)
{
245
	(void)guc_update_doorbell_id(guc, client, GUC_INVALID_DOORBELL_ID);
246 247 248 249 250

	/* XXX: wait for any interrupts */
	/* XXX: wait for workqueue to drain */
}

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static uint16_t
select_doorbell_register(struct intel_guc *guc, uint32_t priority)
{
	/*
	 * The bitmap tracks which doorbell registers are currently in use.
	 * It is split into two halves; the first half is used for normal
	 * priority contexts, the second half for high-priority ones.
	 * Note that logically higher priorities are numerically less than
	 * normal ones, so the test below means "is it high-priority?"
	 */
	const bool hi_pri = (priority <= GUC_CTX_PRIORITY_HIGH);
	const uint16_t half = GUC_MAX_DOORBELLS / 2;
	const uint16_t start = hi_pri ? half : 0;
	const uint16_t end = start + half;
	uint16_t id;

	id = find_next_zero_bit(guc->doorbell_bitmap, end, start);
	if (id == end)
		id = GUC_INVALID_DOORBELL_ID;

	DRM_DEBUG_DRIVER("assigned %s priority doorbell id 0x%x\n",
			hi_pri ? "high" : "normal", id);

	return id;
}

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
/*
 * Select, assign and relase doorbell cachelines
 *
 * These functions track which doorbell cachelines are in use.
 * The data they manipulate is protected by the host2guc lock.
 */

static uint32_t select_doorbell_cacheline(struct intel_guc *guc)
{
	const uint32_t cacheline_size = cache_line_size();
	uint32_t offset;

	/* Doorbell uses a single cache line within a page */
	offset = offset_in_page(guc->db_cacheline);

	/* Moving to next cache line to reduce contention */
	guc->db_cacheline += cacheline_size;

	DRM_DEBUG_DRIVER("selected doorbell cacheline 0x%x, next 0x%x, linesize %u\n",
			offset, guc->db_cacheline, cacheline_size);

	return offset;
}

/*
 * Initialise the process descriptor shared with the GuC firmware.
 */
304
static void guc_proc_desc_init(struct intel_guc *guc,
305 306 307 308
			       struct i915_guc_client *client)
{
	struct guc_process_desc *desc;

309
	desc = client->client_base + client->proc_desc_offset;
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

	memset(desc, 0, sizeof(*desc));

	/*
	 * XXX: pDoorbell and WQVBaseAddress are pointers in process address
	 * space for ring3 clients (set them as in mmap_ioctl) or kernel
	 * space for kernel clients (map on demand instead? May make debug
	 * easier to have it mapped).
	 */
	desc->wq_base_addr = 0;
	desc->db_base_addr = 0;

	desc->context_id = client->ctx_index;
	desc->wq_size_bytes = client->wq_size;
	desc->wq_status = WQ_STATUS_ACTIVE;
	desc->priority = client->priority;
}

/*
 * Initialise/clear the context descriptor shared with the GuC firmware.
 *
 * This descriptor tells the GuC where (in GGTT space) to find the important
 * data structures relating to this client (doorbell, process descriptor,
 * write queue, etc).
 */

336
static void guc_ctx_desc_init(struct intel_guc *guc,
337 338
			      struct i915_guc_client *client)
{
339
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
340
	struct intel_engine_cs *engine;
341
	struct i915_gem_context *ctx = client->owner;
342 343
	struct guc_context_desc desc;
	struct sg_table *sg;
344
	unsigned int tmp;
345
	u32 gfx_addr;
346 347 348 349 350 351 352 353

	memset(&desc, 0, sizeof(desc));

	desc.attribute = GUC_CTX_DESC_ATTR_ACTIVE | GUC_CTX_DESC_ATTR_KERNEL;
	desc.context_id = client->ctx_index;
	desc.priority = client->priority;
	desc.db_id = client->doorbell_id;

354
	for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
355
		struct intel_context *ce = &ctx->engine[engine->id];
356 357
		uint32_t guc_engine_id = engine->guc_id;
		struct guc_execlist_context *lrc = &desc.lrc[guc_engine_id];
358 359 360 361 362 363 364 365

		/* TODO: We have a design issue to be solved here. Only when we
		 * receive the first batch, we know which engine is used by the
		 * user. But here GuC expects the lrc and ring to be pinned. It
		 * is not an issue for default context, which is the only one
		 * for now who owns a GuC client. But for future owner of GuC
		 * client, need to make sure lrc is pinned prior to enter here.
		 */
366
		if (!ce->state)
367 368
			break;	/* XXX: continue? */

369
		lrc->context_desc = lower_32_bits(ce->lrc_desc);
370 371

		/* The state page is after PPHWSP */
372
		lrc->ring_lcra =
373
			i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
374
		lrc->context_id = (client->ctx_index << GUC_ELC_CTXID_OFFSET) |
375
				(guc_engine_id << GUC_ELC_ENGINE_OFFSET);
376

377
		lrc->ring_begin = i915_ggtt_offset(ce->ring->vma);
378 379
		lrc->ring_end = lrc->ring_begin + ce->ring->size - 1;
		lrc->ring_next_free_location = lrc->ring_begin;
380 381
		lrc->ring_current_tail_pointer_value = 0;

382
		desc.engines_used |= (1 << guc_engine_id);
383 384
	}

385 386
	DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n",
			client->engines, desc.engines_used);
387 388
	WARN_ON(desc.engines_used == 0);

389
	/*
390 391
	 * The doorbell, process descriptor, and workqueue are all parts
	 * of the client object, which the GuC will reference via the GGTT
392
	 */
393
	gfx_addr = i915_ggtt_offset(client->vma);
394
	desc.db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
395 396 397 398 399 400
				client->doorbell_offset;
	desc.db_trigger_cpu = (uintptr_t)client->client_base +
				client->doorbell_offset;
	desc.db_trigger_uk = gfx_addr + client->doorbell_offset;
	desc.process_desc = gfx_addr + client->proc_desc_offset;
	desc.wq_addr = gfx_addr + client->wq_offset;
401 402 403
	desc.wq_size = client->wq_size;

	/*
404
	 * XXX: Take LRCs from an existing context if this is not an
405 406 407 408 409
	 * IsKMDCreatedContext client
	 */
	desc.desc_private = (uintptr_t)client;

	/* Pool context is pinned already */
410
	sg = guc->ctx_pool_vma->pages;
411 412 413 414
	sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
			     sizeof(desc) * client->ctx_index);
}

415
static void guc_ctx_desc_fini(struct intel_guc *guc,
416 417 418 419 420 421 422
			      struct i915_guc_client *client)
{
	struct guc_context_desc desc;
	struct sg_table *sg;

	memset(&desc, 0, sizeof(desc));

423
	sg = guc->ctx_pool_vma->pages;
424 425 426 427
	sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
			     sizeof(desc) * client->ctx_index);
}

428
/**
429
 * i915_guc_wq_reserve() - reserve space in the GuC's workqueue
430 431 432 433 434 435 436
 * @request:	request associated with the commands
 *
 * Return:	0 if space is available
 *		-EAGAIN if space is not currently available
 *
 * This function must be called (and must return 0) before a request
 * is submitted to the GuC via i915_guc_submit() below. Once a result
437 438
 * of 0 has been returned, it must be balanced by a corresponding
 * call to submit().
439
 *
440
 * Reservation allows the caller to determine in advance that space
441 442 443
 * will be available for the next submission before committing resources
 * to it, and helps avoid late failures with complicated recovery paths.
 */
444
int i915_guc_wq_reserve(struct drm_i915_gem_request *request)
445
{
446
	const size_t wqi_size = sizeof(struct guc_wq_item);
447
	struct i915_guc_client *gc = request->i915->guc.execbuf_client;
448
	struct guc_process_desc *desc = gc->client_base + gc->proc_desc_offset;
449
	u32 freespace;
450
	int ret;
451

452
	spin_lock(&gc->wq_lock);
453
	freespace = CIRC_SPACE(gc->wq_tail, desc->head, gc->wq_size);
454 455 456 457 458 459 460 461 462
	freespace -= gc->wq_rsvd;
	if (likely(freespace >= wqi_size)) {
		gc->wq_rsvd += wqi_size;
		ret = 0;
	} else {
		gc->no_wq_space++;
		ret = -EAGAIN;
	}
	spin_unlock(&gc->wq_lock);
463

464
	return ret;
465 466
}

467 468 469 470 471 472 473 474 475 476 477 478
void i915_guc_wq_unreserve(struct drm_i915_gem_request *request)
{
	const size_t wqi_size = sizeof(struct guc_wq_item);
	struct i915_guc_client *gc = request->i915->guc.execbuf_client;

	GEM_BUG_ON(READ_ONCE(gc->wq_rsvd) < wqi_size);

	spin_lock(&gc->wq_lock);
	gc->wq_rsvd -= wqi_size;
	spin_unlock(&gc->wq_lock);
}

479 480 481
/* Construct a Work Item and append it to the GuC's Work Queue */
static void guc_wq_item_append(struct i915_guc_client *gc,
			       struct drm_i915_gem_request *rq)
482
{
483 484 485
	/* wqi_len is in DWords, and does not include the one-word header */
	const size_t wqi_size = sizeof(struct guc_wq_item);
	const u32 wqi_len = wqi_size/sizeof(u32) - 1;
486
	struct intel_engine_cs *engine = rq->engine;
487
	struct guc_process_desc *desc;
488 489
	struct guc_wq_item *wqi;
	void *base;
490
	u32 freespace, tail, wq_off, wq_page;
491

492
	desc = gc->client_base + gc->proc_desc_offset;
493

494
	/* Free space is guaranteed, see i915_guc_wq_reserve() above */
495 496 497 498 499 500 501 502
	freespace = CIRC_SPACE(gc->wq_tail, desc->head, gc->wq_size);
	GEM_BUG_ON(freespace < wqi_size);

	/* The GuC firmware wants the tail index in QWords, not bytes */
	tail = rq->tail;
	GEM_BUG_ON(tail & 7);
	tail >>= 3;
	GEM_BUG_ON(tail > WQ_RING_TAIL_MAX);
503 504 505 506 507 508 509 510

	/* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
	 * should not have the case where structure wqi is across page, neither
	 * wrapped to the beginning. This simplifies the implementation below.
	 *
	 * XXX: if not the case, we need save data to a temp wqi and copy it to
	 * workqueue buffer dw by dw.
	 */
511
	BUILD_BUG_ON(wqi_size != 16);
512
	GEM_BUG_ON(gc->wq_rsvd < wqi_size);
513

514 515
	/* postincrement WQ tail for next time */
	wq_off = gc->wq_tail;
516
	GEM_BUG_ON(wq_off & (wqi_size - 1));
517 518
	gc->wq_tail += wqi_size;
	gc->wq_tail &= gc->wq_size - 1;
519
	gc->wq_rsvd -= wqi_size;
520 521 522

	/* WQ starts from the page after doorbell / process_desc */
	wq_page = (wq_off + GUC_DB_SIZE) >> PAGE_SHIFT;
523
	wq_off &= PAGE_SIZE - 1;
524
	base = kmap_atomic(i915_gem_object_get_page(gc->vma->obj, wq_page));
525 526
	wqi = (struct guc_wq_item *)((char *)base + wq_off);

527
	/* Now fill in the 4-word work queue item */
528
	wqi->header = WQ_TYPE_INORDER |
529
			(wqi_len << WQ_LEN_SHIFT) |
530
			(engine->guc_id << WQ_TARGET_SHIFT) |
531 532 533
			WQ_NO_WCFLUSH_WAIT;

	/* The GuC wants only the low-order word of the context descriptor */
534
	wqi->context_desc = (u32)intel_lr_context_descriptor(rq->ctx, engine);
535 536

	wqi->ring_tail = tail << WQ_RING_TAIL_SHIFT;
537
	wqi->fence_id = rq->fence.seqno;
538 539 540 541

	kunmap_atomic(base);
}

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
static int guc_ring_doorbell(struct i915_guc_client *gc)
{
	struct guc_process_desc *desc;
	union guc_doorbell_qw db_cmp, db_exc, db_ret;
	union guc_doorbell_qw *db;
	int attempt = 2, ret = -EAGAIN;

	desc = gc->client_base + gc->proc_desc_offset;

	/* Update the tail so it is visible to GuC */
	desc->tail = gc->wq_tail;

	/* current cookie */
	db_cmp.db_status = GUC_DOORBELL_ENABLED;
	db_cmp.cookie = gc->cookie;

	/* cookie to be updated */
	db_exc.db_status = GUC_DOORBELL_ENABLED;
	db_exc.cookie = gc->cookie + 1;
	if (db_exc.cookie == 0)
		db_exc.cookie = 1;

	/* pointer of current doorbell cacheline */
	db = gc->client_base + gc->doorbell_offset;

	while (attempt--) {
		/* lets ring the doorbell */
		db_ret.value_qw = atomic64_cmpxchg((atomic64_t *)db,
			db_cmp.value_qw, db_exc.value_qw);

		/* if the exchange was successfully executed */
		if (db_ret.value_qw == db_cmp.value_qw) {
			/* db was successfully rung */
			gc->cookie = db_exc.cookie;
			ret = 0;
			break;
		}

		/* XXX: doorbell was lost and need to acquire it again */
		if (db_ret.db_status == GUC_DOORBELL_DISABLED)
			break;

584 585
		DRM_WARN("Cookie mismatch. Expected %d, found %d\n",
			 db_cmp.cookie, db_ret.cookie);
586 587 588 589 590 591 592 593 594 595 596

		/* update the cookie to newly read cookie from GuC */
		db_cmp.cookie = db_ret.cookie;
		db_exc.cookie = db_ret.cookie + 1;
		if (db_exc.cookie == 0)
			db_exc.cookie = 1;
	}

	return ret;
}

597 598
/**
 * i915_guc_submit() - Submit commands through GuC
A
Alex Dai 已提交
599
 * @rq:		request associated with the commands
600
 *
601 602 603
 * Return:	0 on success, otherwise an errno.
 * 		(Note: nonzero really shouldn't happen!)
 *
604 605 606
 * The caller must have already called i915_guc_wq_reserve() above with
 * a result of 0 (success), guaranteeing that there is space in the work
 * queue for the new request, so enqueuing the item cannot fail.
607 608
 *
 * Bad Things Will Happen if the caller violates this protocol e.g. calls
609 610
 * submit() when _reserve() says there's no space, or calls _submit()
 * a different number of times from (successful) calls to _reserve().
611 612 613
 *
 * The only error here arises if the doorbell hardware isn't functioning
 * as expected, which really shouln't happen.
614
 */
615
static void i915_guc_submit(struct drm_i915_gem_request *rq)
616
{
617
	unsigned int engine_id = rq->engine->id;
618 619
	struct intel_guc *guc = &rq->i915->guc;
	struct i915_guc_client *client = guc->execbuf_client;
620
	int b_ret;
621

622
	spin_lock(&client->wq_lock);
623
	guc_wq_item_append(client, rq);
624
	b_ret = guc_ring_doorbell(client);
625

626
	client->submissions[engine_id] += 1;
627 628
	client->retcode = b_ret;
	if (b_ret)
629
		client->b_fail += 1;
630

631
	guc->submissions[engine_id] += 1;
632
	guc->last_seqno[engine_id] = rq->fence.seqno;
633
	spin_unlock(&client->wq_lock);
634 635 636 637 638 639 640 641
}

/*
 * Everything below here is concerned with setup & teardown, and is
 * therefore not part of the somewhat time-critical batch-submission
 * path of i915_guc_submit() above.
 */

642
/**
643 644 645
 * guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
 * @guc:	the guc
 * @size:	size of area to allocate (both virtual space and memory)
646
 *
647 648 649 650 651
 * This is a wrapper to create an object for use with the GuC. In order to
 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
 * both some backing storage and a range inside the Global GTT. We must pin
 * it in the GGTT somewhere other than than [0, GUC_WOPCM_TOP) because that
 * range is reserved inside GuC.
652
 *
653
 * Return:	A i915_vma if successful, otherwise an ERR_PTR.
654
 */
655
static struct i915_vma *guc_allocate_vma(struct intel_guc *guc, u32 size)
656
{
657
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
658
	struct drm_i915_gem_object *obj;
659 660
	struct i915_vma *vma;
	int ret;
661

662
	obj = i915_gem_object_create(&dev_priv->drm, size);
663
	if (IS_ERR(obj))
664
		return ERR_CAST(obj);
665

666 667 668
	vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
	if (IS_ERR(vma))
		goto err;
669

670 671 672 673 674
	ret = i915_vma_pin(vma, 0, PAGE_SIZE,
			   PIN_GLOBAL | PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret) {
		vma = ERR_PTR(ret);
		goto err;
675 676 677 678 679
	}

	/* Invalidate GuC TLB to let GuC take the latest updates to GTT. */
	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);

680 681 682 683 684
	return vma;

err:
	i915_gem_object_put(obj);
	return vma;
685 686
}

687 688 689
static void
guc_client_free(struct drm_i915_private *dev_priv,
		struct i915_guc_client *client)
690 691 692 693 694 695 696 697 698 699 700
{
	struct intel_guc *guc = &dev_priv->guc;

	if (!client)
		return;

	/*
	 * XXX: wait for any outstanding submissions before freeing memory.
	 * Be sure to drop any locks
	 */

701 702
	if (client->client_base) {
		/*
703 704
		 * If we got as far as setting up a doorbell, make sure we
		 * shut it down before unmapping & deallocating the memory.
705
		 */
706
		guc_disable_doorbell(guc, client);
707 708 709 710

		kunmap(kmap_to_page(client->client_base));
	}

711
	i915_vma_unpin_and_release(&client->vma);
712 713

	if (client->ctx_index != GUC_INVALID_CTX_ID) {
714
		guc_ctx_desc_fini(guc, client);
715 716 717 718 719 720
		ida_simple_remove(&guc->ctx_ids, client->ctx_index);
	}

	kfree(client);
}

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
/* Check that a doorbell register is in the expected state */
static bool guc_doorbell_check(struct intel_guc *guc, uint16_t db_id)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	i915_reg_t drbreg = GEN8_DRBREGL(db_id);
	uint32_t value = I915_READ(drbreg);
	bool enabled = (value & GUC_DOORBELL_ENABLED) != 0;
	bool expected = test_bit(db_id, guc->doorbell_bitmap);

	if (enabled == expected)
		return true;

	DRM_DEBUG_DRIVER("Doorbell %d (reg 0x%x) 0x%x, should be %s\n",
			 db_id, drbreg.reg, value,
			 expected ? "active" : "inactive");

	return false;
}

740
/*
741
 * Borrow the first client to set up & tear down each unused doorbell
742 743 744 745 746
 * in turn, to ensure that all doorbell h/w is (re)initialised.
 */
static void guc_init_doorbell_hw(struct intel_guc *guc)
{
	struct i915_guc_client *client = guc->execbuf_client;
747 748
	uint16_t db_id;
	int i, err;
749

750
	/* Save client's original doorbell selection */
751 752 753
	db_id = client->doorbell_id;

	for (i = 0; i < GUC_MAX_DOORBELLS; ++i) {
754 755
		/* Skip if doorbell is OK */
		if (guc_doorbell_check(guc, i))
756 757
			continue;

758
		err = guc_update_doorbell_id(guc, client, i);
759 760 761
		if (err)
			DRM_DEBUG_DRIVER("Doorbell %d update failed, err %d\n",
					i, err);
762 763 764 765 766
	}

	/* Restore to original value */
	err = guc_update_doorbell_id(guc, client, db_id);
	if (err)
767 768
		DRM_WARN("Failed to restore doorbell to %d, err %d\n",
			 db_id, err);
769

770 771 772
	/* Read back & verify all doorbell registers */
	for (i = 0; i < GUC_MAX_DOORBELLS; ++i)
		(void)guc_doorbell_check(guc, i);
773 774
}

775 776
/**
 * guc_client_alloc() - Allocate an i915_guc_client
777
 * @dev_priv:	driver private data structure
778
 * @engines:	The set of engines to enable for this client
779 780 781 782
 * @priority:	four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
 * 		The kernel client to replace ExecList submission is created with
 * 		NORMAL priority. Priority of a client for scheduler can be HIGH,
 * 		while a preemption context can use CRITICAL.
A
Alex Dai 已提交
783 784
 * @ctx:	the context that owns the client (we use the default render
 * 		context)
785
 *
786
 * Return:	An i915_guc_client object if success, else NULL.
787
 */
788 789
static struct i915_guc_client *
guc_client_alloc(struct drm_i915_private *dev_priv,
790
		 uint32_t engines,
791 792
		 uint32_t priority,
		 struct i915_gem_context *ctx)
793 794 795
{
	struct i915_guc_client *client;
	struct intel_guc *guc = &dev_priv->guc;
796
	struct i915_vma *vma;
797
	uint16_t db_id;
798 799 800 801 802

	client = kzalloc(sizeof(*client), GFP_KERNEL);
	if (!client)
		return NULL;

803
	client->owner = ctx;
804
	client->guc = guc;
805 806 807
	client->engines = engines;
	client->priority = priority;
	client->doorbell_id = GUC_INVALID_DOORBELL_ID;
808 809 810 811 812 813 814 815 816

	client->ctx_index = (uint32_t)ida_simple_get(&guc->ctx_ids, 0,
			GUC_MAX_GPU_CONTEXTS, GFP_KERNEL);
	if (client->ctx_index >= GUC_MAX_GPU_CONTEXTS) {
		client->ctx_index = GUC_INVALID_CTX_ID;
		goto err;
	}

	/* The first page is doorbell/proc_desc. Two followed pages are wq. */
817 818
	vma = guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
	if (IS_ERR(vma))
819 820
		goto err;

821
	/* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
822 823
	client->vma = vma;
	client->client_base = kmap(i915_vma_first_page(vma));
824 825

	spin_lock_init(&client->wq_lock);
826 827 828
	client->wq_offset = GUC_DB_SIZE;
	client->wq_size = GUC_WQ_SIZE;

829 830 831 832 833
	db_id = select_doorbell_register(guc, client->priority);
	if (db_id == GUC_INVALID_DOORBELL_ID)
		/* XXX: evict a doorbell instead? */
		goto err;

834 835 836 837 838 839 840 841 842 843 844 845
	client->doorbell_offset = select_doorbell_cacheline(guc);

	/*
	 * Since the doorbell only requires a single cacheline, we can save
	 * space by putting the application process descriptor in the same
	 * page. Use the half of the page that doesn't include the doorbell.
	 */
	if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
		client->proc_desc_offset = 0;
	else
		client->proc_desc_offset = (GUC_DB_SIZE / 2);

846 847
	guc_proc_desc_init(guc, client);
	guc_ctx_desc_init(guc, client);
848
	if (guc_init_doorbell(guc, client, db_id))
849 850
		goto err;

851 852
	DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: ctx_index %u\n",
		priority, client, client->engines, client->ctx_index);
853 854
	DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%x\n",
		client->doorbell_id, client->doorbell_offset);
855 856 857 858

	return client;

err:
859
	guc_client_free(dev_priv, client);
860 861 862
	return NULL;
}

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
/*
 * Sub buffer switch callback. Called whenever relay has to switch to a new
 * sub buffer, relay stays on the same sub buffer if 0 is returned.
 */
static int subbuf_start_callback(struct rchan_buf *buf,
				 void *subbuf,
				 void *prev_subbuf,
				 size_t prev_padding)
{
	/* Use no-overwrite mode by default, where relay will stop accepting
	 * new data if there are no empty sub buffers left.
	 * There is no strict synchronization enforced by relay between Consumer
	 * and Producer. In overwrite mode, there is a possibility of getting
	 * inconsistent/garbled data, the producer could be writing on to the
	 * same sub buffer from which Consumer is reading. This can't be avoided
	 * unless Consumer is fast enough and can always run in tandem with
	 * Producer.
	 */
	if (relay_buf_full(buf))
		return 0;

	return 1;
}

/*
 * file_create() callback. Creates relay file in debugfs.
 */
static struct dentry *create_buf_file_callback(const char *filename,
					       struct dentry *parent,
					       umode_t mode,
					       struct rchan_buf *buf,
					       int *is_global)
{
	struct dentry *buf_file;

	if (!parent)
		return NULL;

	/* This to enable the use of a single buffer for the relay channel and
	 * correspondingly have a single file exposed to User, through which
	 * it can collect the logs in order without any post-processing.
	 */
	*is_global = 1;

	/* Not using the channel filename passed as an argument, since for each
	 * channel relay appends the corresponding CPU number to the filename
	 * passed in relay_open(). This should be fine as relay just needs a
	 * dentry of the file associated with the channel buffer and that file's
	 * name need not be same as the filename passed as an argument.
	 */
	buf_file = debugfs_create_file("guc_log", mode,
				       parent, buf, &relay_file_operations);
	return buf_file;
}

/*
 * file_remove() default callback. Removes relay file in debugfs.
 */
static int remove_buf_file_callback(struct dentry *dentry)
{
	debugfs_remove(dentry);
	return 0;
}

/* relay channel callbacks */
static struct rchan_callbacks relay_callbacks = {
	.subbuf_start = subbuf_start_callback,
	.create_buf_file = create_buf_file_callback,
	.remove_buf_file = remove_buf_file_callback,
};

static void guc_log_remove_relay_file(struct intel_guc *guc)
{
	relay_close(guc->log.relay_chan);
}

static int guc_log_create_relay_file(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	struct rchan *guc_log_relay_chan;
	struct dentry *log_dir;
	size_t n_subbufs, subbuf_size;

	/* For now create the log file in /sys/kernel/debug/dri/0 dir */
	log_dir = dev_priv->drm.primary->debugfs_root;

	/* If /sys/kernel/debug/dri/0 location do not exist, then debugfs is
	 * not mounted and so can't create the relay file.
	 * The relay API seems to fit well with debugfs only, for availing relay
	 * there are 3 requirements which can be met for debugfs file only in a
	 * straightforward/clean manner :-
	 * i)   Need the associated dentry pointer of the file, while opening the
	 *      relay channel.
	 * ii)  Should be able to use 'relay_file_operations' fops for the file.
	 * iii) Set the 'i_private' field of file's inode to the pointer of
	 *	relay channel buffer.
	 */
	if (!log_dir) {
		DRM_ERROR("Debugfs dir not available yet for GuC log file\n");
		return -ENODEV;
	}

	/* Keep the size of sub buffers same as shared log buffer */
	subbuf_size = guc->log.vma->obj->base.size;

	/* Store up to 8 snapshots, which is large enough to buffer sufficient
	 * boot time logs and provides enough leeway to User, in terms of
	 * latency, for consuming the logs from relay. Also doesn't take
	 * up too much memory.
	 */
	n_subbufs = 8;

	guc_log_relay_chan = relay_open("guc_log", log_dir, subbuf_size,
					n_subbufs, &relay_callbacks, dev_priv);
	if (!guc_log_relay_chan) {
		DRM_ERROR("Couldn't create relay chan for GuC logging\n");
		return -ENOMEM;
	}

	GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
	/* FIXME: Cover the update under a lock ? */
	guc->log.relay_chan = guc_log_relay_chan;
	return 0;
}

988 989
static void guc_move_to_next_buf(struct intel_guc *guc)
{
990 991 992 993 994 995 996 997 998 999
	/* Make sure the updates made in the sub buffer are visible when
	 * Consumer sees the following update to offset inside the sub buffer.
	 */
	smp_wmb();

	/* All data has been written, so now move the offset of sub buffer. */
	relay_reserve(guc->log.relay_chan, guc->log.vma->obj->base.size);

	/* Switch to the next sub buffer */
	relay_flush(guc->log.relay_chan);
1000 1001 1002 1003
}

static void *guc_get_write_buffer(struct intel_guc *guc)
{
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	/* FIXME: Cover the check under a lock ? */
	if (!guc->log.relay_chan)
		return NULL;

	/* Just get the base address of a new sub buffer and copy data into it
	 * ourselves. NULL will be returned in no-overwrite mode, if all sub
	 * buffers are full. Could have used the relay_write() to indirectly
	 * copy the data, but that would have been bit convoluted, as we need to
	 * write to only certain locations inside a sub buffer which cannot be
	 * done without using relay_reserve() along with relay_write(). So its
	 * better to use relay_reserve() alone.
	 */
	return relay_reserve(guc->log.relay_chan, 0);
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
}

static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type)
{
	switch (type) {
	case GUC_ISR_LOG_BUFFER:
		return (GUC_LOG_ISR_PAGES + 1) * PAGE_SIZE;
	case GUC_DPC_LOG_BUFFER:
		return (GUC_LOG_DPC_PAGES + 1) * PAGE_SIZE;
	case GUC_CRASH_DUMP_LOG_BUFFER:
		return (GUC_LOG_CRASH_PAGES + 1) * PAGE_SIZE;
	default:
		MISSING_CASE(type);
	}

	return 0;
}

static void guc_read_update_log_buffer(struct intel_guc *guc)
{
	struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
	struct guc_log_buffer_state log_buf_state_local;
	unsigned int buffer_size, write_offset;
	enum guc_log_buffer_type type;
	void *src_data, *dst_data;

	if (WARN_ON(!guc->log.buf_addr))
		return;

	/* Get the pointer to shared GuC log buffer */
	log_buf_state = src_data = guc->log.buf_addr;

	/* Get the pointer to local buffer to store the logs */
	log_buf_snapshot_state = dst_data = guc_get_write_buffer(guc);

	/* Actual logs are present from the 2nd page */
	src_data += PAGE_SIZE;
	dst_data += PAGE_SIZE;

	for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
		/* Make a copy of the state structure, inside GuC log buffer
		 * (which is uncached mapped), on the stack to avoid reading
		 * from it multiple times.
		 */
		memcpy(&log_buf_state_local, log_buf_state,
		       sizeof(struct guc_log_buffer_state));
		buffer_size = guc_get_log_buffer_size(type);
		write_offset = log_buf_state_local.sampled_write_ptr;

		/* Update the state of shared log buffer */
		log_buf_state->read_ptr = write_offset;
		log_buf_state->flush_to_file = 0;
		log_buf_state++;

		if (unlikely(!log_buf_snapshot_state))
			continue;

		/* First copy the state structure in snapshot buffer */
		memcpy(log_buf_snapshot_state, &log_buf_state_local,
		       sizeof(struct guc_log_buffer_state));

		/* The write pointer could have been updated by GuC firmware,
		 * after sending the flush interrupt to Host, for consistency
		 * set write pointer value to same value of sampled_write_ptr
		 * in the snapshot buffer.
		 */
		log_buf_snapshot_state->write_ptr = write_offset;
		log_buf_snapshot_state++;

		/* Now copy the actual logs. */
		memcpy(dst_data, src_data, buffer_size);

		src_data += buffer_size;
		dst_data += buffer_size;

		/* FIXME: invalidate/flush for log buffer needed */
	}

	if (log_buf_snapshot_state)
		guc_move_to_next_buf(guc);
1097 1098 1099 1100 1101 1102
	else {
		/* Used rate limited to avoid deluge of messages, logs might be
		 * getting consumed by User at a slow rate.
		 */
		DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n");
	}
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
}

static void guc_capture_logs_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private, guc.log.flush_work);

	i915_guc_capture_logs(dev_priv);
}

static void guc_log_cleanup(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

	/* First disable the flush interrupt */
	gen9_disable_guc_interrupts(dev_priv);

	if (guc->log.flush_wq)
		destroy_workqueue(guc->log.flush_wq);

	guc->log.flush_wq = NULL;

1127 1128 1129 1130 1131
	if (guc->log.relay_chan)
		guc_log_remove_relay_file(guc);

	guc->log.relay_chan = NULL;

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	if (guc->log.buf_addr)
		i915_gem_object_unpin_map(guc->log.vma->obj);

	guc->log.buf_addr = NULL;
}

static int guc_log_create_extras(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	void *vaddr;
	int ret;

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

	/* Nothing to do */
	if (i915.guc_log_level < 0)
		return 0;

	if (!guc->log.buf_addr) {
		/* Create a vmalloc mapping of log buffer pages */
		vaddr = i915_gem_object_pin_map(guc->log.vma->obj, I915_MAP_WB);
		if (IS_ERR(vaddr)) {
			ret = PTR_ERR(vaddr);
			DRM_ERROR("Couldn't map log buffer pages %d\n", ret);
			return ret;
		}

		guc->log.buf_addr = vaddr;
	}

	if (!guc->log.flush_wq) {
		INIT_WORK(&guc->log.flush_work, guc_capture_logs_work);

		/* Need a dedicated wq to process log buffer flush interrupts
		 * from GuC without much delay so as to avoid any loss of logs.
		 */
		guc->log.flush_wq = alloc_ordered_workqueue("i915-guc_log", WQ_HIGHPRI);
		if (guc->log.flush_wq == NULL) {
			DRM_ERROR("Couldn't allocate the wq for GuC logging\n");
			return -ENOMEM;
		}
	}

	return 0;
}

1178
static void guc_log_create(struct intel_guc *guc)
A
Alex Dai 已提交
1179
{
1180
	struct i915_vma *vma;
A
Alex Dai 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	unsigned long offset;
	uint32_t size, flags;

	if (i915.guc_log_level > GUC_LOG_VERBOSITY_MAX)
		i915.guc_log_level = GUC_LOG_VERBOSITY_MAX;

	/* The first page is to save log buffer state. Allocate one
	 * extra page for others in case for overlap */
	size = (1 + GUC_LOG_DPC_PAGES + 1 +
		GUC_LOG_ISR_PAGES + 1 +
		GUC_LOG_CRASH_PAGES + 1) << PAGE_SHIFT;

1193
	vma = guc->log.vma;
1194 1195 1196
	if (!vma) {
		vma = guc_allocate_vma(guc, size);
		if (IS_ERR(vma)) {
A
Alex Dai 已提交
1197 1198 1199 1200 1201
			/* logging will be off */
			i915.guc_log_level = -1;
			return;
		}

1202
		guc->log.vma = vma;
1203 1204 1205 1206 1207 1208 1209

		if (guc_log_create_extras(guc)) {
			guc_log_cleanup(guc);
			i915_vma_unpin_and_release(&guc->log.vma);
			i915.guc_log_level = -1;
			return;
		}
A
Alex Dai 已提交
1210 1211 1212 1213 1214 1215 1216 1217
	}

	/* each allocated unit is a page */
	flags = GUC_LOG_VALID | GUC_LOG_NOTIFY_ON_HALF_FULL |
		(GUC_LOG_DPC_PAGES << GUC_LOG_DPC_SHIFT) |
		(GUC_LOG_ISR_PAGES << GUC_LOG_ISR_SHIFT) |
		(GUC_LOG_CRASH_PAGES << GUC_LOG_CRASH_SHIFT);

1218
	offset = i915_ggtt_offset(vma) >> PAGE_SHIFT; /* in pages */
1219
	guc->log.flags = (offset << GUC_LOG_BUF_ADDR_SHIFT) | flags;
A
Alex Dai 已提交
1220 1221
}

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
static int guc_log_late_setup(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	int ret;

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

	if (i915.guc_log_level < 0)
		return -EINVAL;

	/* If log_level was set as -1 at boot time, then setup needed to
	 * handle log buffer flush interrupts would not have been done yet,
	 * so do that now.
	 */
	ret = guc_log_create_extras(guc);
	if (ret)
		goto err;

	ret = guc_log_create_relay_file(guc);
	if (ret)
		goto err;

	return 0;
err:
	guc_log_cleanup(guc);
	/* logging will remain off */
	i915.guc_log_level = -1;
	return ret;
}

1252
static void guc_policies_init(struct guc_policies *policies)
1253 1254 1255 1256 1257 1258 1259 1260
{
	struct guc_policy *policy;
	u32 p, i;

	policies->dpc_promote_time = 500000;
	policies->max_num_work_items = POLICY_MAX_NUM_WI;

	for (p = 0; p < GUC_CTX_PRIORITY_NUM; p++) {
1261
		for (i = GUC_RENDER_ENGINE; i < GUC_MAX_ENGINES_NUM; i++) {
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
			policy = &policies->policy[p][i];

			policy->execution_quantum = 1000000;
			policy->preemption_time = 500000;
			policy->fault_time = 250000;
			policy->policy_flags = 0;
		}
	}

	policies->is_valid = 1;
}

1274
static void guc_addon_create(struct intel_guc *guc)
1275 1276
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
1277
	struct i915_vma *vma;
1278
	struct guc_ads *ads;
1279
	struct guc_policies *policies;
1280
	struct guc_mmio_reg_state *reg_state;
1281
	struct intel_engine_cs *engine;
1282
	enum intel_engine_id id;
1283
	struct page *page;
1284
	u32 size;
1285 1286

	/* The ads obj includes the struct itself and buffers passed to GuC */
1287 1288 1289
	size = sizeof(struct guc_ads) + sizeof(struct guc_policies) +
			sizeof(struct guc_mmio_reg_state) +
			GUC_S3_SAVE_SPACE_PAGES * PAGE_SIZE;
1290

1291 1292 1293 1294
	vma = guc->ads_vma;
	if (!vma) {
		vma = guc_allocate_vma(guc, PAGE_ALIGN(size));
		if (IS_ERR(vma))
1295 1296
			return;

1297
		guc->ads_vma = vma;
1298 1299
	}

1300
	page = i915_vma_first_page(vma);
1301 1302 1303 1304 1305 1306 1307 1308 1309
	ads = kmap(page);

	/*
	 * The GuC requires a "Golden Context" when it reinitialises
	 * engines after a reset. Here we use the Render ring default
	 * context, which must already exist and be pinned in the GGTT,
	 * so its address won't change after we've told the GuC where
	 * to find it.
	 */
1310
	engine = dev_priv->engine[RCS];
1311
	ads->golden_context_lrca = engine->status_page.ggtt_offset;
1312

1313
	for_each_engine(engine, dev_priv, id)
1314
		ads->eng_state_size[engine->guc_id] = intel_lr_context_size(engine);
1315

1316 1317
	/* GuC scheduling policies */
	policies = (void *)ads + sizeof(struct guc_ads);
1318
	guc_policies_init(policies);
1319

1320 1321
	ads->scheduler_policies =
		i915_ggtt_offset(vma) + sizeof(struct guc_ads);
1322

1323 1324 1325
	/* MMIO reg state */
	reg_state = (void *)policies + sizeof(struct guc_policies);

1326
	for_each_engine(engine, dev_priv, id) {
1327 1328
		reg_state->mmio_white_list[engine->guc_id].mmio_start =
			engine->mmio_base + GUC_MMIO_WHITE_LIST_START;
1329 1330

		/* Nothing to be saved or restored for now. */
1331
		reg_state->mmio_white_list[engine->guc_id].count = 0;
1332 1333 1334 1335 1336 1337 1338 1339
	}

	ads->reg_state_addr = ads->scheduler_policies +
			sizeof(struct guc_policies);

	ads->reg_state_buffer = ads->reg_state_addr +
			sizeof(struct guc_mmio_reg_state);

1340 1341 1342
	kunmap(page);
}

1343 1344 1345 1346
/*
 * Set up the memory resources to be shared with the GuC.  At this point,
 * we require just one object that can be mapped through the GGTT.
 */
1347
int i915_guc_submission_init(struct drm_i915_private *dev_priv)
1348
{
1349 1350 1351
	const size_t ctxsize = sizeof(struct guc_context_desc);
	const size_t poolsize = GUC_MAX_GPU_CONTEXTS * ctxsize;
	const size_t gemsize = round_up(poolsize, PAGE_SIZE);
1352
	struct intel_guc *guc = &dev_priv->guc;
1353
	struct i915_vma *vma;
1354

1355 1356
	/* Wipe bitmap & delete client in case of reinitialisation */
	bitmap_clear(guc->doorbell_bitmap, 0, GUC_MAX_DOORBELLS);
1357
	i915_guc_submission_disable(dev_priv);
1358

1359 1360 1361
	if (!i915.enable_guc_submission)
		return 0; /* not enabled  */

1362
	if (guc->ctx_pool_vma)
1363 1364
		return 0; /* already allocated */

1365
	vma = guc_allocate_vma(guc, gemsize);
1366 1367
	if (IS_ERR(vma))
		return PTR_ERR(vma);
1368

1369
	guc->ctx_pool_vma = vma;
1370
	ida_init(&guc->ctx_ids);
1371
	mutex_init(&guc->action_lock);
1372 1373
	guc_log_create(guc);
	guc_addon_create(guc);
1374

1375 1376 1377
	return 0;
}

1378
int i915_guc_submission_enable(struct drm_i915_private *dev_priv)
1379 1380
{
	struct intel_guc *guc = &dev_priv->guc;
1381
	struct drm_i915_gem_request *request;
1382
	struct i915_guc_client *client;
1383
	struct intel_engine_cs *engine;
1384
	enum intel_engine_id id;
1385 1386

	/* client for execbuf submission */
1387
	client = guc_client_alloc(dev_priv,
1388
				  INTEL_INFO(dev_priv)->ring_mask,
1389 1390
				  GUC_CTX_PRIORITY_KMD_NORMAL,
				  dev_priv->kernel_context);
1391
	if (!client) {
1392
		DRM_ERROR("Failed to create normal GuC client!\n");
1393 1394 1395 1396
		return -ENOMEM;
	}

	guc->execbuf_client = client;
A
Alex Dai 已提交
1397
	host2guc_sample_forcewake(guc, client);
1398
	guc_init_doorbell_hw(guc);
A
Alex Dai 已提交
1399

1400
	/* Take over from manual control of ELSP (execlists) */
1401
	for_each_engine(engine, dev_priv, id) {
1402 1403
		engine->submit_request = i915_guc_submit;

1404
		/* Replay the current set of previously submitted requests */
1405 1406
		list_for_each_entry(request, &engine->request_list, link) {
			client->wq_rsvd += sizeof(struct guc_wq_item);
1407 1408
			if (i915_sw_fence_done(&request->submit))
				i915_guc_submit(request);
1409
		}
1410 1411
	}

1412 1413 1414
	return 0;
}

1415
void i915_guc_submission_disable(struct drm_i915_private *dev_priv)
1416 1417 1418
{
	struct intel_guc *guc = &dev_priv->guc;

1419 1420 1421 1422 1423
	if (!guc->execbuf_client)
		return;

	/* Revert back to manual ELSP submission */
	intel_execlists_enable_submission(dev_priv);
1424 1425 1426

	guc_client_free(dev_priv, guc->execbuf_client);
	guc->execbuf_client = NULL;
1427 1428
}

1429
void i915_guc_submission_fini(struct drm_i915_private *dev_priv)
1430 1431 1432
{
	struct intel_guc *guc = &dev_priv->guc;

1433
	i915_vma_unpin_and_release(&guc->ads_vma);
1434
	i915_vma_unpin_and_release(&guc->log.vma);
A
Alex Dai 已提交
1435

1436
	if (guc->ctx_pool_vma)
1437
		ida_destroy(&guc->ctx_ids);
1438
	i915_vma_unpin_and_release(&guc->ctx_pool_vma);
1439
}
1440 1441 1442 1443 1444 1445 1446

/**
 * intel_guc_suspend() - notify GuC entering suspend state
 * @dev:	drm device
 */
int intel_guc_suspend(struct drm_device *dev)
{
1447
	struct drm_i915_private *dev_priv = to_i915(dev);
1448
	struct intel_guc *guc = &dev_priv->guc;
1449
	struct i915_gem_context *ctx;
1450 1451
	u32 data[3];

1452
	if (guc->guc_fw.guc_fw_load_status != GUC_FIRMWARE_SUCCESS)
1453 1454
		return 0;

1455 1456
	gen9_disable_guc_interrupts(dev_priv);

1457
	ctx = dev_priv->kernel_context;
1458 1459 1460 1461 1462

	data[0] = HOST2GUC_ACTION_ENTER_S_STATE;
	/* any value greater than GUC_POWER_D0 */
	data[1] = GUC_POWER_D1;
	/* first page is shared data with GuC */
1463
	data[2] = i915_ggtt_offset(ctx->engine[RCS].state);
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474

	return host2guc_action(guc, data, ARRAY_SIZE(data));
}


/**
 * intel_guc_resume() - notify GuC resuming from suspend state
 * @dev:	drm device
 */
int intel_guc_resume(struct drm_device *dev)
{
1475
	struct drm_i915_private *dev_priv = to_i915(dev);
1476
	struct intel_guc *guc = &dev_priv->guc;
1477
	struct i915_gem_context *ctx;
1478 1479
	u32 data[3];

1480
	if (guc->guc_fw.guc_fw_load_status != GUC_FIRMWARE_SUCCESS)
1481 1482
		return 0;

1483 1484 1485
	if (i915.guc_log_level >= 0)
		gen9_enable_guc_interrupts(dev_priv);

1486
	ctx = dev_priv->kernel_context;
1487 1488 1489 1490

	data[0] = HOST2GUC_ACTION_EXIT_S_STATE;
	data[1] = GUC_POWER_D0;
	/* first page is shared data with GuC */
1491
	data[2] = i915_ggtt_offset(ctx->engine[RCS].state);
1492 1493 1494

	return host2guc_action(guc, data, ARRAY_SIZE(data));
}
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506

void i915_guc_capture_logs(struct drm_i915_private *dev_priv)
{
	guc_read_update_log_buffer(&dev_priv->guc);

	/* Generally device is expected to be active only at this
	 * time, so get/put should be really quick.
	 */
	intel_runtime_pm_get(dev_priv);
	host2guc_logbuffer_flush_complete(&dev_priv->guc);
	intel_runtime_pm_put(dev_priv);
}
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526

void i915_guc_unregister(struct drm_i915_private *dev_priv)
{
	if (!i915.enable_guc_submission)
		return;

	mutex_lock(&dev_priv->drm.struct_mutex);
	guc_log_cleanup(&dev_priv->guc);
	mutex_unlock(&dev_priv->drm.struct_mutex);
}

void i915_guc_register(struct drm_i915_private *dev_priv)
{
	if (!i915.enable_guc_submission)
		return;

	mutex_lock(&dev_priv->drm.struct_mutex);
	guc_log_late_setup(&dev_priv->guc);
	mutex_unlock(&dev_priv->drm.struct_mutex);
}