huge_memory.c 63.2 KB
Newer Older
1 2 3 4 5 6 7
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 *
 *  This work is licensed under the terms of the GNU GPL, version 2. See
 *  the COPYING file in the top-level directory.
 */

8 9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

10 11 12 13 14 15 16
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
17
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
18
#include <linux/mm_inline.h>
19
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
20
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
21
#include <linux/khugepaged.h>
22
#include <linux/freezer.h>
23
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
24
#include <linux/mman.h>
25
#include <linux/memremap.h>
R
Ralf Baechle 已提交
26
#include <linux/pagemap.h>
27
#include <linux/debugfs.h>
28
#include <linux/migrate.h>
29
#include <linux/hashtable.h>
30
#include <linux/userfaultfd_k.h>
31
#include <linux/page_idle.h>
32
#include <linux/shmem_fs.h>
33

34 35 36 37
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
38
/*
39 40 41 42 43 44
 * By default transparent hugepage support is disabled in order that avoid
 * to risk increase the memory footprint of applications without a guaranteed
 * benefit. When transparent hugepage support is enabled, is for all mappings,
 * and khugepaged scans all mappings.
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
45
 */
46
unsigned long transparent_hugepage_flags __read_mostly =
47
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
48
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
49 50 51 52
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
53
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54 55
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
56

57
static struct shrinker deferred_split_shrinker;
58

59
static atomic_t huge_zero_refcount;
60
struct page *huge_zero_page __read_mostly;
61

62
static struct page *get_huge_zero_page(void)
63 64 65 66
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67
		return READ_ONCE(huge_zero_page);
68 69

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
70
			HPAGE_PMD_ORDER);
71 72
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
73
		return NULL;
74 75
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
76
	preempt_disable();
77
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
78
		preempt_enable();
79
		__free_pages(zero_page, compound_order(zero_page));
80 81 82 83 84 85
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
86
	return READ_ONCE(huge_zero_page);
87 88
}

89
static void put_huge_zero_page(void)
90
{
91 92 93 94 95
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
96 97
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

118 119
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
120
{
121 122 123
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
124

125 126 127
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
128
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
129 130
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
131
		__free_pages(zero_page, compound_order(zero_page));
132
		return HPAGE_PMD_NR;
133 134 135
	}

	return 0;
136 137
}

138
static struct shrinker huge_zero_page_shrinker = {
139 140
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
141 142 143
	.seeks = DEFAULT_SEEKS,
};

144
#ifdef CONFIG_SYSFS
A
Andrea Arcangeli 已提交
145

146
static ssize_t triple_flag_store(struct kobject *kobj,
147 148 149
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag enabled,
150
				 enum transparent_hugepage_flag deferred,
151 152
				 enum transparent_hugepage_flag req_madv)
{
153 154 155 156 157 158 159 160
	if (!memcmp("defer", buf,
		    min(sizeof("defer")-1, count))) {
		if (enabled == deferred)
			return -EINVAL;
		clear_bit(enabled, &transparent_hugepage_flags);
		clear_bit(req_madv, &transparent_hugepage_flags);
		set_bit(deferred, &transparent_hugepage_flags);
	} else if (!memcmp("always", buf,
161
		    min(sizeof("always")-1, count))) {
162
		clear_bit(deferred, &transparent_hugepage_flags);
163
		clear_bit(req_madv, &transparent_hugepage_flags);
164
		set_bit(enabled, &transparent_hugepage_flags);
165 166 167
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(enabled, &transparent_hugepage_flags);
168
		clear_bit(deferred, &transparent_hugepage_flags);
169 170 171 172 173
		set_bit(req_madv, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(enabled, &transparent_hugepage_flags);
		clear_bit(req_madv, &transparent_hugepage_flags);
174
		clear_bit(deferred, &transparent_hugepage_flags);
175 176 177 178 179 180 181 182 183
	} else
		return -EINVAL;

	return count;
}

static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
184 185 186 187 188 189
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
190
}
191

192 193 194 195
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
A
Andrea Arcangeli 已提交
196 197
	ssize_t ret;

198 199
	ret = triple_flag_store(kobj, attr, buf, count,
				TRANSPARENT_HUGEPAGE_FLAG,
A
Andrea Arcangeli 已提交
200 201 202 203
				TRANSPARENT_HUGEPAGE_FLAG,
				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);

	if (ret > 0) {
204
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
205 206 207 208 209
		if (err)
			ret = err;
	}

	return ret;
210 211 212 213
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

214
ssize_t single_hugepage_flag_show(struct kobject *kobj,
215 216 217
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
218 219
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
220
}
221

222
ssize_t single_hugepage_flag_store(struct kobject *kobj,
223 224 225 226
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
227 228 229 230 231 232 233 234 235 236
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
237
		set_bit(flag, &transparent_hugepage_flags);
238
	else
239 240 241 242 243 244 245 246 247 248 249 250 251
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

/*
 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 * memory just to allocate one more hugepage.
 */
static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
252 253 254 255 256 257 258 259 260
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] defer madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [defer] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [madvise] never\n");
	else
		return sprintf(buf, "always defer madvise [never]\n");

261 262 263 264 265
}
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
266 267 268
	return triple_flag_store(kobj, attr, buf, count,
				 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
				 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
269 270 271 272 273
				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

274 275 276
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
277
	return single_hugepage_flag_show(kobj, attr, buf,
278 279 280 281 282
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
283
	return single_hugepage_flag_store(kobj, attr, buf, count,
284 285 286 287
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
288 289 290 291
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
				struct kobj_attribute *attr, char *buf)
{
292
	return single_hugepage_flag_show(kobj, attr, buf,
293 294 295 296 297 298
				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       const char *buf, size_t count)
{
299
	return single_hugepage_flag_store(kobj, attr, buf, count,
300 301 302 303 304 305 306 307 308
				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */

static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
309
	&use_zero_page_attr.attr,
310
#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
311 312
	&shmem_enabled_attr.attr,
#endif
313 314 315 316 317 318 319 320
#ifdef CONFIG_DEBUG_VM
	&debug_cow_attr.attr,
#endif
	NULL,
};

static struct attribute_group hugepage_attr_group = {
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
321 322
};

S
Shaohua Li 已提交
323
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
324 325 326
{
	int err;

S
Shaohua Li 已提交
327 328
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
329
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
330
		return -ENOMEM;
A
Andrea Arcangeli 已提交
331 332
	}

S
Shaohua Li 已提交
333
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
334
	if (err) {
335
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
336
		goto delete_obj;
A
Andrea Arcangeli 已提交
337 338
	}

S
Shaohua Li 已提交
339
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
340
	if (err) {
341
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
342
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
343
	}
S
Shaohua Li 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

381 382 383 384 385 386 387 388 389 390
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
391 392
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
393
		goto err_sysfs;
A
Andrea Arcangeli 已提交
394

395
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
396
	if (err)
397
		goto err_slab;
A
Andrea Arcangeli 已提交
398

399 400 401
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
402 403 404
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
405

406 407 408 409 410
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
411
	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
412
		transparent_hugepage_flags = 0;
413 414
		return 0;
	}
415

416
	err = start_stop_khugepaged();
417 418
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
419

S
Shaohua Li 已提交
420
	return 0;
421
err_khugepaged:
422 423
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
424 425
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
426
	khugepaged_destroy();
427
err_slab:
S
Shaohua Li 已提交
428
	hugepage_exit_sysfs(hugepage_kobj);
429
err_sysfs:
A
Andrea Arcangeli 已提交
430
	return err;
431
}
432
subsys_initcall(hugepage_init);
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
460
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
461 462 463 464
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

465
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
466 467 468 469 470 471
{
	if (likely(vma->vm_flags & VM_WRITE))
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
static inline struct list_head *page_deferred_list(struct page *page)
{
	/*
	 * ->lru in the tail pages is occupied by compound_head.
	 * Let's use ->mapping + ->index in the second tail page as list_head.
	 */
	return (struct list_head *)&page[2].mapping;
}

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
		loff_t off, unsigned long flags, unsigned long size)
{
	unsigned long addr;
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
	unsigned long len_pad;

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
					      off >> PAGE_SHIFT, flags);
	if (IS_ERR_VALUE(addr))
		return 0;

	addr += (off - addr) & (size - 1);
	return addr;
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (addr)
		goto out;
	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
	if (addr)
		return addr;

 out:
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

K
Kirill A. Shutemov 已提交
535 536
static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
		gfp_t gfp)
537
{
K
Kirill A. Shutemov 已提交
538
	struct vm_area_struct *vma = fe->vma;
539
	struct mem_cgroup *memcg;
540
	pgtable_t pgtable;
K
Kirill A. Shutemov 已提交
541
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
542

543
	VM_BUG_ON_PAGE(!PageCompound(page), page);
544

K
Kirill A. Shutemov 已提交
545
	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
546 547 548 549
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
		return VM_FAULT_FALLBACK;
	}
550

K
Kirill A. Shutemov 已提交
551
	pgtable = pte_alloc_one(vma->vm_mm, haddr);
552
	if (unlikely(!pgtable)) {
553
		mem_cgroup_cancel_charge(page, memcg, true);
554
		put_page(page);
555
		return VM_FAULT_OOM;
556
	}
557 558

	clear_huge_page(page, haddr, HPAGE_PMD_NR);
559 560 561 562 563
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
564 565
	__SetPageUptodate(page);

K
Kirill A. Shutemov 已提交
566 567 568
	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
	if (unlikely(!pmd_none(*fe->pmd))) {
		spin_unlock(fe->ptl);
569
		mem_cgroup_cancel_charge(page, memcg, true);
570
		put_page(page);
K
Kirill A. Shutemov 已提交
571
		pte_free(vma->vm_mm, pgtable);
572 573
	} else {
		pmd_t entry;
574 575 576 577 578

		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
			int ret;

K
Kirill A. Shutemov 已提交
579
			spin_unlock(fe->ptl);
580
			mem_cgroup_cancel_charge(page, memcg, true);
581
			put_page(page);
K
Kirill A. Shutemov 已提交
582 583
			pte_free(vma->vm_mm, pgtable);
			ret = handle_userfault(fe, VM_UFFD_MISSING);
584 585 586 587
			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			return ret;
		}

588 589
		entry = mk_huge_pmd(page, vma->vm_page_prot);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
590
		page_add_new_anon_rmap(page, vma, haddr, true);
591
		mem_cgroup_commit_charge(page, memcg, false, true);
592
		lru_cache_add_active_or_unevictable(page, vma);
K
Kirill A. Shutemov 已提交
593 594 595 596 597
		pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
		atomic_long_inc(&vma->vm_mm->nr_ptes);
		spin_unlock(fe->ptl);
598
		count_vm_event(THP_FAULT_ALLOC);
599 600
	}

601
	return 0;
602 603
}

604
/*
605 606
 * If THP defrag is set to always then directly reclaim/compact as necessary
 * If set to defer then do only background reclaim/compact and defer to khugepaged
607
 * If set to madvise and the VMA is flagged then directly reclaim/compact
608
 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
609 610 611
 */
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
{
612 613 614 615 616 617 618 619 620 621 622 623 624
	bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);

	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
				&transparent_hugepage_flags) && vma_madvised)
		return GFP_TRANSHUGE;
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
						&transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
						&transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);

	return GFP_TRANSHUGE_LIGHT;
625 626
}

627
/* Caller must hold page table lock. */
628
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
629
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
630
		struct page *zero_page)
631 632
{
	pmd_t entry;
A
Andrew Morton 已提交
633 634
	if (!pmd_none(*pmd))
		return false;
635
	entry = mk_pmd(zero_page, vma->vm_page_prot);
636
	entry = pmd_mkhuge(entry);
637 638
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
639
	set_pmd_at(mm, haddr, pmd, entry);
640
	atomic_long_inc(&mm->nr_ptes);
A
Andrew Morton 已提交
641
	return true;
642 643
}

K
Kirill A. Shutemov 已提交
644
int do_huge_pmd_anonymous_page(struct fault_env *fe)
645
{
K
Kirill A. Shutemov 已提交
646
	struct vm_area_struct *vma = fe->vma;
647
	gfp_t gfp;
648
	struct page *page;
K
Kirill A. Shutemov 已提交
649
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
650

651
	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
652
		return VM_FAULT_FALLBACK;
653 654
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
655
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
656
		return VM_FAULT_OOM;
K
Kirill A. Shutemov 已提交
657 658
	if (!(fe->flags & FAULT_FLAG_WRITE) &&
			!mm_forbids_zeropage(vma->vm_mm) &&
659 660 661 662
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
663
		int ret;
K
Kirill A. Shutemov 已提交
664
		pgtable = pte_alloc_one(vma->vm_mm, haddr);
665
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
666
			return VM_FAULT_OOM;
667
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
668
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
669
			pte_free(vma->vm_mm, pgtable);
670
			count_vm_event(THP_FAULT_FALLBACK);
671
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
672
		}
K
Kirill A. Shutemov 已提交
673
		fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
674 675
		ret = 0;
		set = false;
K
Kirill A. Shutemov 已提交
676
		if (pmd_none(*fe->pmd)) {
677
			if (userfaultfd_missing(vma)) {
K
Kirill A. Shutemov 已提交
678 679
				spin_unlock(fe->ptl);
				ret = handle_userfault(fe, VM_UFFD_MISSING);
680 681
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
682 683 684
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
						   haddr, fe->pmd, zero_page);
				spin_unlock(fe->ptl);
685 686 687
				set = true;
			}
		} else
K
Kirill A. Shutemov 已提交
688
			spin_unlock(fe->ptl);
689
		if (!set)
K
Kirill A. Shutemov 已提交
690
			pte_free(vma->vm_mm, pgtable);
691
		return ret;
692
	}
693
	gfp = alloc_hugepage_direct_gfpmask(vma);
694
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
695 696
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
697
		return VM_FAULT_FALLBACK;
698
	}
699
	prep_transhuge_page(page);
K
Kirill A. Shutemov 已提交
700
	return __do_huge_pmd_anonymous_page(fe, page, gfp);
701 702
}

703
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
704
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
M
Matthew Wilcox 已提交
705 706 707 708 709 710
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
711 712 713
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
714 715 716
	if (write) {
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
717
	}
718 719
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
M
Matthew Wilcox 已提交
720 721 722 723
	spin_unlock(ptl);
}

int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
724
			pmd_t *pmd, pfn_t pfn, bool write)
M
Matthew Wilcox 已提交
725 726 727 728 729 730 731 732 733 734 735
{
	pgprot_t pgprot = vma->vm_page_prot;
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
736
	BUG_ON(!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
737 738 739 740 741

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
	if (track_pfn_insert(vma, &pgprot, pfn))
		return VM_FAULT_SIGBUS;
742 743
	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
744
}
745
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
M
Matthew Wilcox 已提交
746

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
		pmd_t *pmd)
{
	pmd_t _pmd;

	/*
	 * We should set the dirty bit only for FOLL_WRITE but for now
	 * the dirty bit in the pmd is meaningless.  And if the dirty
	 * bit will become meaningful and we'll only set it with
	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
	 * set the young bit, instead of the current set_pmd_at.
	 */
	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
				pmd, _pmd,  1))
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
		pmd_t *pmd, int flags)
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct dev_pagemap *pgmap;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

	if (flags & FOLL_WRITE && !pmd_write(*pmd))
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
		touch_pmd(vma, addr, pmd);

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
	pgmap = get_dev_pagemap(pfn, NULL);
	if (!pgmap)
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);
	put_dev_pagemap(pgmap);

	return page;
}

804 805 806 807
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
808
	spinlock_t *dst_ptl, *src_ptl;
809 810
	struct page *src_page;
	pmd_t pmd;
811
	pgtable_t pgtable = NULL;
812
	int ret = -ENOMEM;
813

814 815 816 817 818 819 820
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

	pgtable = pte_alloc_one(dst_mm, addr);
	if (unlikely(!pgtable))
		goto out;
821

822 823 824
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
825 826 827

	ret = -EAGAIN;
	pmd = *src_pmd;
828
	if (unlikely(!pmd_trans_huge(pmd))) {
829 830 831
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
832
	/*
833
	 * When page table lock is held, the huge zero pmd should not be
834 835 836 837
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
838
		struct page *zero_page;
839 840 841 842 843
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
844
		zero_page = mm_get_huge_zero_page(dst_mm);
845
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
846
				zero_page);
847 848 849
		ret = 0;
		goto out_unlock;
	}
850

851 852 853 854 855 856 857
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
	atomic_long_inc(&dst_mm->nr_ptes);
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
858 859 860 861 862 863 864

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
865 866
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
867 868 869 870
out:
	return ret;
}

K
Kirill A. Shutemov 已提交
871
void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
872 873 874 875
{
	pmd_t entry;
	unsigned long haddr;

K
Kirill A. Shutemov 已提交
876 877
	fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
878 879 880
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
K
Kirill A. Shutemov 已提交
881 882 883 884
	haddr = fe->address & HPAGE_PMD_MASK;
	if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
				fe->flags & FAULT_FLAG_WRITE))
		update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
885 886

unlock:
K
Kirill A. Shutemov 已提交
887
	spin_unlock(fe->ptl);
888 889
}

K
Kirill A. Shutemov 已提交
890 891
static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
		struct page *page)
892
{
K
Kirill A. Shutemov 已提交
893 894
	struct vm_area_struct *vma = fe->vma;
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
895
	struct mem_cgroup *memcg;
896 897 898 899
	pgtable_t pgtable;
	pmd_t _pmd;
	int ret = 0, i;
	struct page **pages;
900 901
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
902 903 904 905 906 907 908 909 910

	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
			GFP_KERNEL);
	if (unlikely(!pages)) {
		ret |= VM_FAULT_OOM;
		goto out;
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
911
		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
K
Kirill A. Shutemov 已提交
912 913
					       __GFP_OTHER_NODE, vma,
					       fe->address, page_to_nid(page));
A
Andrea Arcangeli 已提交
914
		if (unlikely(!pages[i] ||
K
Kirill A. Shutemov 已提交
915 916
			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
				     GFP_KERNEL, &memcg, false))) {
A
Andrea Arcangeli 已提交
917
			if (pages[i])
918
				put_page(pages[i]);
A
Andrea Arcangeli 已提交
919
			while (--i >= 0) {
920 921
				memcg = (void *)page_private(pages[i]);
				set_page_private(pages[i], 0);
922 923
				mem_cgroup_cancel_charge(pages[i], memcg,
						false);
A
Andrea Arcangeli 已提交
924 925
				put_page(pages[i]);
			}
926 927 928 929
			kfree(pages);
			ret |= VM_FAULT_OOM;
			goto out;
		}
930
		set_page_private(pages[i], (unsigned long)memcg);
931 932 933 934
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		copy_user_highpage(pages[i], page + i,
935
				   haddr + PAGE_SIZE * i, vma);
936 937 938 939
		__SetPageUptodate(pages[i]);
		cond_resched();
	}

940 941
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
942
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
943

K
Kirill A. Shutemov 已提交
944 945
	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
946
		goto out_free_pages;
947
	VM_BUG_ON_PAGE(!PageHead(page), page);
948

K
Kirill A. Shutemov 已提交
949
	pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
950 951
	/* leave pmd empty until pte is filled */

K
Kirill A. Shutemov 已提交
952 953
	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
	pmd_populate(vma->vm_mm, &_pmd, pgtable);
954 955

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
K
Kirill A. Shutemov 已提交
956
		pte_t entry;
957 958
		entry = mk_pte(pages[i], vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
959 960
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
K
Kirill A. Shutemov 已提交
961
		page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
962
		mem_cgroup_commit_charge(pages[i], memcg, false, false);
963
		lru_cache_add_active_or_unevictable(pages[i], vma);
K
Kirill A. Shutemov 已提交
964 965 966 967
		fe->pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*fe->pte));
		set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
		pte_unmap(fe->pte);
968 969 970 971
	}
	kfree(pages);

	smp_wmb(); /* make pte visible before pmd */
K
Kirill A. Shutemov 已提交
972
	pmd_populate(vma->vm_mm, fe->pmd, pgtable);
973
	page_remove_rmap(page, true);
K
Kirill A. Shutemov 已提交
974
	spin_unlock(fe->ptl);
975

K
Kirill A. Shutemov 已提交
976
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
977

978 979 980 981 982 983 984
	ret |= VM_FAULT_WRITE;
	put_page(page);

out:
	return ret;

out_free_pages:
K
Kirill A. Shutemov 已提交
985 986
	spin_unlock(fe->ptl);
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
A
Andrea Arcangeli 已提交
987
	for (i = 0; i < HPAGE_PMD_NR; i++) {
988 989
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
990
		mem_cgroup_cancel_charge(pages[i], memcg, false);
991
		put_page(pages[i]);
A
Andrea Arcangeli 已提交
992
	}
993 994 995 996
	kfree(pages);
	goto out;
}

K
Kirill A. Shutemov 已提交
997
int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
998
{
K
Kirill A. Shutemov 已提交
999
	struct vm_area_struct *vma = fe->vma;
1000
	struct page *page = NULL, *new_page;
1001
	struct mem_cgroup *memcg;
K
Kirill A. Shutemov 已提交
1002
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1003 1004
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
1005
	gfp_t huge_gfp;			/* for allocation and charge */
K
Kirill A. Shutemov 已提交
1006
	int ret = 0;
1007

K
Kirill A. Shutemov 已提交
1008
	fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
1009
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1010 1011
	if (is_huge_zero_pmd(orig_pmd))
		goto alloc;
K
Kirill A. Shutemov 已提交
1012 1013
	spin_lock(fe->ptl);
	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1014 1015 1016
		goto out_unlock;

	page = pmd_page(orig_pmd);
1017
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1018 1019
	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
1020
	 * part.
1021
	 */
1022
	if (page_trans_huge_mapcount(page, NULL) == 1) {
1023 1024 1025
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
K
Kirill A. Shutemov 已提交
1026 1027
		if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry,  1))
			update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1028 1029 1030
		ret |= VM_FAULT_WRITE;
		goto out_unlock;
	}
1031
	get_page(page);
K
Kirill A. Shutemov 已提交
1032
	spin_unlock(fe->ptl);
1033
alloc:
1034
	if (transparent_hugepage_enabled(vma) &&
1035
	    !transparent_hugepage_debug_cow()) {
1036
		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1037
		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1038
	} else
1039 1040
		new_page = NULL;

1041 1042 1043
	if (likely(new_page)) {
		prep_transhuge_page(new_page);
	} else {
1044
		if (!page) {
K
Kirill A. Shutemov 已提交
1045
			split_huge_pmd(vma, fe->pmd, fe->address);
1046
			ret |= VM_FAULT_FALLBACK;
1047
		} else {
K
Kirill A. Shutemov 已提交
1048
			ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
1049
			if (ret & VM_FAULT_OOM) {
K
Kirill A. Shutemov 已提交
1050
				split_huge_pmd(vma, fe->pmd, fe->address);
1051 1052
				ret |= VM_FAULT_FALLBACK;
			}
1053
			put_page(page);
1054
		}
1055
		count_vm_event(THP_FAULT_FALLBACK);
1056 1057 1058
		goto out;
	}

K
Kirill A. Shutemov 已提交
1059 1060
	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
					huge_gfp, &memcg, true))) {
A
Andrea Arcangeli 已提交
1061
		put_page(new_page);
K
Kirill A. Shutemov 已提交
1062 1063
		split_huge_pmd(vma, fe->pmd, fe->address);
		if (page)
1064
			put_page(page);
1065
		ret |= VM_FAULT_FALLBACK;
1066
		count_vm_event(THP_FAULT_FALLBACK);
A
Andrea Arcangeli 已提交
1067 1068 1069
		goto out;
	}

1070 1071
	count_vm_event(THP_FAULT_ALLOC);

1072
	if (!page)
1073 1074 1075
		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
	else
		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1076 1077
	__SetPageUptodate(new_page);

1078 1079
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
1080
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1081

K
Kirill A. Shutemov 已提交
1082
	spin_lock(fe->ptl);
1083
	if (page)
1084
		put_page(page);
K
Kirill A. Shutemov 已提交
1085 1086
	if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
		spin_unlock(fe->ptl);
1087
		mem_cgroup_cancel_charge(new_page, memcg, true);
1088
		put_page(new_page);
1089
		goto out_mn;
A
Andrea Arcangeli 已提交
1090
	} else {
1091
		pmd_t entry;
1092 1093
		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
K
Kirill A. Shutemov 已提交
1094
		pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1095
		page_add_new_anon_rmap(new_page, vma, haddr, true);
1096
		mem_cgroup_commit_charge(new_page, memcg, false, true);
1097
		lru_cache_add_active_or_unevictable(new_page, vma);
K
Kirill A. Shutemov 已提交
1098 1099
		set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
		update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1100
		if (!page) {
K
Kirill A. Shutemov 已提交
1101
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1102
		} else {
1103
			VM_BUG_ON_PAGE(!PageHead(page), page);
1104
			page_remove_rmap(page, true);
1105 1106
			put_page(page);
		}
1107 1108
		ret |= VM_FAULT_WRITE;
	}
K
Kirill A. Shutemov 已提交
1109
	spin_unlock(fe->ptl);
1110
out_mn:
K
Kirill A. Shutemov 已提交
1111
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1112 1113
out:
	return ret;
1114
out_unlock:
K
Kirill A. Shutemov 已提交
1115
	spin_unlock(fe->ptl);
1116
	return ret;
1117 1118
}

1119
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1120 1121 1122 1123
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1124
	struct mm_struct *mm = vma->vm_mm;
1125 1126
	struct page *page = NULL;

1127
	assert_spin_locked(pmd_lockptr(mm, pmd));
1128 1129 1130 1131

	if (flags & FOLL_WRITE && !pmd_write(*pmd))
		goto out;

1132 1133 1134 1135
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1136
	/* Full NUMA hinting faults to serialise migration in fault paths */
1137
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1138 1139
		goto out;

1140
	page = pmd_page(*pmd);
1141
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1142 1143
	if (flags & FOLL_TOUCH)
		touch_pmd(vma, addr, pmd);
E
Eric B Munson 已提交
1144
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1145 1146 1147 1148
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1149 1150
		 * For anon THP:
		 *
1151 1152 1153 1154 1155 1156 1157
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1158 1159 1160 1161 1162 1163
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1164
		 */
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		lru_add_drain();
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1176
	}
1177
skip_mlock:
1178
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1179
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1180
	if (flags & FOLL_GET)
1181
		get_page(page);
1182 1183 1184 1185 1186

out:
	return page;
}

1187
/* NUMA hinting page fault entry point for trans huge pmds */
K
Kirill A. Shutemov 已提交
1188
int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
1189
{
K
Kirill A. Shutemov 已提交
1190
	struct vm_area_struct *vma = fe->vma;
1191
	struct anon_vma *anon_vma = NULL;
1192
	struct page *page;
K
Kirill A. Shutemov 已提交
1193
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1194
	int page_nid = -1, this_nid = numa_node_id();
1195
	int target_nid, last_cpupid = -1;
1196 1197
	bool page_locked;
	bool migrated = false;
1198
	bool was_writable;
1199
	int flags = 0;
1200

K
Kirill A. Shutemov 已提交
1201 1202
	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
	if (unlikely(!pmd_same(pmd, *fe->pmd)))
1203 1204
		goto out_unlock;

1205 1206 1207 1208 1209
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
K
Kirill A. Shutemov 已提交
1210 1211 1212
	if (unlikely(pmd_trans_migrating(*fe->pmd))) {
		page = pmd_page(*fe->pmd);
		spin_unlock(fe->ptl);
1213
		wait_on_page_locked(page);
1214 1215 1216
		goto out;
	}

1217
	page = pmd_page(pmd);
1218
	BUG_ON(is_huge_zero_page(page));
1219
	page_nid = page_to_nid(page);
1220
	last_cpupid = page_cpupid_last(page);
1221
	count_vm_numa_event(NUMA_HINT_FAULTS);
1222
	if (page_nid == this_nid) {
1223
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1224 1225
		flags |= TNF_FAULT_LOCAL;
	}
1226

1227
	/* See similar comment in do_numa_page for explanation */
1228
	if (!pmd_write(pmd))
1229 1230
		flags |= TNF_NO_GROUP;

1231 1232 1233 1234
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1235 1236 1237 1238
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
	if (target_nid == -1) {
		/* If the page was locked, there are no parallel migrations */
1239
		if (page_locked)
1240
			goto clear_pmdnuma;
1241
	}
1242

1243
	/* Migration could have started since the pmd_trans_migrating check */
1244
	if (!page_locked) {
K
Kirill A. Shutemov 已提交
1245
		spin_unlock(fe->ptl);
1246
		wait_on_page_locked(page);
1247
		page_nid = -1;
1248 1249 1250
		goto out;
	}

1251 1252 1253 1254
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1255
	get_page(page);
K
Kirill A. Shutemov 已提交
1256
	spin_unlock(fe->ptl);
1257
	anon_vma = page_lock_anon_vma_read(page);
1258

P
Peter Zijlstra 已提交
1259
	/* Confirm the PMD did not change while page_table_lock was released */
K
Kirill A. Shutemov 已提交
1260 1261
	spin_lock(fe->ptl);
	if (unlikely(!pmd_same(pmd, *fe->pmd))) {
1262 1263
		unlock_page(page);
		put_page(page);
1264
		page_nid = -1;
1265
		goto out_unlock;
1266
	}
1267

1268 1269 1270 1271 1272 1273 1274
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
		page_nid = -1;
		goto clear_pmdnuma;
	}

1275 1276
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1277
	 * and access rights restored.
1278
	 */
K
Kirill A. Shutemov 已提交
1279 1280 1281
	spin_unlock(fe->ptl);
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
				fe->pmd, pmd, fe->address, page, target_nid);
1282 1283
	if (migrated) {
		flags |= TNF_MIGRATED;
1284
		page_nid = target_nid;
1285 1286
	} else
		flags |= TNF_MIGRATE_FAIL;
1287

1288
	goto out;
1289
clear_pmdnuma:
1290
	BUG_ON(!PageLocked(page));
1291
	was_writable = pmd_write(pmd);
1292
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1293
	pmd = pmd_mkyoung(pmd);
1294 1295
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
K
Kirill A. Shutemov 已提交
1296 1297
	set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
	update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1298
	unlock_page(page);
1299
out_unlock:
K
Kirill A. Shutemov 已提交
1300
	spin_unlock(fe->ptl);
1301 1302 1303 1304 1305

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1306
	if (page_nid != -1)
K
Kirill A. Shutemov 已提交
1307
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
1308

1309 1310 1311
	return 0;
}

1312 1313 1314 1315 1316
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1317 1318 1319 1320 1321 1322
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1323
	bool ret = false;
1324

1325 1326
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1327
		goto out_unlocked;
1328 1329

	orig_pmd = *pmd;
1330
	if (is_huge_zero_pmd(orig_pmd))
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
		goto out;

	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1351
		split_huge_page(page);
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
		put_page(page);
		unlock_page(page);
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (PageActive(page))
		deactivate_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
1373
	ret = true;
1374 1375 1376 1377 1378 1379
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1380
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1381
		 pmd_t *pmd, unsigned long addr)
1382
{
1383
	pmd_t orig_pmd;
1384
	spinlock_t *ptl;
1385

1386 1387
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	if (vma_is_dax(vma)) {
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1401
			tlb_remove_page(tlb, pmd_page(orig_pmd));
1402 1403 1404 1405
	} else if (is_huge_zero_pmd(orig_pmd)) {
		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
		atomic_long_dec(&tlb->mm->nr_ptes);
		spin_unlock(ptl);
1406
		tlb_remove_page(tlb, pmd_page(orig_pmd));
1407 1408
	} else {
		struct page *page = pmd_page(orig_pmd);
1409
		page_remove_rmap(page, true);
1410 1411
		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
		VM_BUG_ON_PAGE(!PageHead(page), page);
1412 1413 1414 1415 1416 1417 1418 1419 1420
		if (PageAnon(page)) {
			pgtable_t pgtable;
			pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
			pte_free(tlb->mm, pgtable);
			atomic_long_dec(&tlb->mm->nr_ptes);
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
		}
1421
		spin_unlock(ptl);
1422
		tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1423
	}
1424
	return 1;
1425 1426
}

1427
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1428
		  unsigned long new_addr, unsigned long old_end,
1429
		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1430
{
1431
	spinlock_t *old_ptl, *new_ptl;
1432 1433
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1434
	bool force_flush = false;
1435 1436 1437

	if ((old_addr & ~HPAGE_PMD_MASK) ||
	    (new_addr & ~HPAGE_PMD_MASK) ||
1438
	    old_end - old_addr < HPAGE_PMD_SIZE)
1439
		return false;
1440 1441 1442 1443 1444 1445 1446

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1447
		return false;
1448 1449
	}

1450 1451 1452 1453
	/*
	 * We don't have to worry about the ordering of src and dst
	 * ptlocks because exclusive mmap_sem prevents deadlock.
	 */
1454 1455
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1456 1457 1458
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1459 1460
		if (pmd_present(*old_pmd) && pmd_dirty(*old_pmd))
			force_flush = true;
1461
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1462
		VM_BUG_ON(!pmd_none(*new_pmd));
1463

1464 1465
		if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
				vma_is_anonymous(vma)) {
1466
			pgtable_t pgtable;
1467 1468 1469
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1470 1471 1472
		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1473 1474 1475 1476
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
		else
			*need_flush = true;
1477
		spin_unlock(old_ptl);
1478
		return true;
1479
	}
1480
	return false;
1481 1482
}

1483 1484 1485 1486 1487 1488
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1489
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1490
		unsigned long addr, pgprot_t newprot, int prot_numa)
1491 1492
{
	struct mm_struct *mm = vma->vm_mm;
1493
	spinlock_t *ptl;
1494 1495
	int ret = 0;

1496 1497
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
1498
		pmd_t entry;
1499
		bool preserve_write = prot_numa && pmd_write(*pmd);
1500
		ret = 1;
1501 1502 1503 1504 1505 1506 1507 1508

		/*
		 * Avoid trapping faults against the zero page. The read-only
		 * data is likely to be read-cached on the local CPU and
		 * local/remote hits to the zero page are not interesting.
		 */
		if (prot_numa && is_huge_zero_pmd(*pmd)) {
			spin_unlock(ptl);
1509
			return ret;
1510 1511
		}

1512
		if (!prot_numa || !pmd_protnone(*pmd)) {
1513
			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1514
			entry = pmd_modify(entry, newprot);
1515 1516
			if (preserve_write)
				entry = pmd_mkwrite(entry);
1517 1518
			ret = HPAGE_PMD_NR;
			set_pmd_at(mm, addr, pmd, entry);
1519 1520
			BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
					pmd_write(entry));
1521
		}
1522
		spin_unlock(ptl);
1523 1524 1525 1526 1527 1528
	}

	return ret;
}

/*
1529
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1530
 *
1531 1532
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1533
 */
1534
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1535
{
1536 1537
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1538
	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1539 1540 1541
		return ptl;
	spin_unlock(ptl);
	return NULL;
1542 1543
}

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

	/* leave pmd empty until pte is filled */
	pmdp_huge_clear_flush_notify(vma, haddr, pmd);

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1572
		unsigned long haddr, bool freeze)
1573 1574 1575 1576 1577
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
	pmd_t _pmd;
1578
	bool young, write, dirty, soft_dirty;
1579
	unsigned long addr;
1580 1581 1582 1583 1584
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1585
	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1586 1587 1588

	count_vm_event(THP_SPLIT_PMD);

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
		if (vma_is_dax(vma))
			return;
		page = pmd_page(_pmd);
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1599 1600 1601 1602 1603 1604 1605
		return;
	} else if (is_huge_zero_pmd(*pmd)) {
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

	page = pmd_page(*pmd);
	VM_BUG_ON_PAGE(!page_count(page), page);
1606
	page_ref_add(page, HPAGE_PMD_NR - 1);
1607 1608
	write = pmd_write(*pmd);
	young = pmd_young(*pmd);
1609
	dirty = pmd_dirty(*pmd);
1610
	soft_dirty = pmd_soft_dirty(*pmd);
1611

1612
	pmdp_huge_split_prepare(vma, haddr, pmd);
1613 1614 1615
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

1616
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1617 1618 1619 1620 1621 1622
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
1623 1624 1625 1626
		if (freeze) {
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
1627 1628
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
1629
		} else {
1630
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
1631
			entry = maybe_mkwrite(entry, vma);
1632 1633 1634 1635
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
1636 1637
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
1638
		}
1639 1640
		if (dirty)
			SetPageDirty(page + i);
1641
		pte = pte_offset_map(&_pmd, addr);
1642
		BUG_ON(!pte_none(*pte));
1643
		set_pte_at(mm, addr, pte, entry);
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
		atomic_inc(&page[i]._mapcount);
		pte_unmap(pte);
	}

	/*
	 * Set PG_double_map before dropping compound_mapcount to avoid
	 * false-negative page_mapped().
	 */
	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			atomic_inc(&page[i]._mapcount);
	}

	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
		/* Last compound_mapcount is gone. */
1659
		__dec_node_page_state(page, NR_ANON_THPS);
1660 1661 1662 1663 1664 1665 1666 1667
		if (TestClearPageDoubleMap(page)) {
			/* No need in mapcount reference anymore */
			for (i = 0; i < HPAGE_PMD_NR; i++)
				atomic_dec(&page[i]._mapcount);
		}
	}

	smp_wmb(); /* make pte visible before pmd */
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
	 * 383 on page 93. Intel should be safe but is also warns that it's
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * and pmd_trans_splitting must remain set at all times on the pmd
	 * until the split is complete for this pmd), then we flush the SMP TLB
	 * and finally we write the non-huge version of the pmd entry with
	 * pmd_populate.
	 */
	pmdp_invalidate(vma, haddr, pmd);
1690
	pmd_populate(mm, pmd, pgtable);
1691 1692

	if (freeze) {
1693
		for (i = 0; i < HPAGE_PMD_NR; i++) {
1694 1695 1696 1697
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
1698 1699 1700
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1701
		unsigned long address, bool freeze, struct page *page)
1702 1703 1704 1705 1706 1707 1708
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PMD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
	ptl = pmd_lock(mm, pmd);
1709 1710 1711 1712 1713 1714 1715 1716 1717

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
	if (page && page != pmd_page(*pmd))
	        goto out;

1718
	if (pmd_trans_huge(*pmd)) {
1719
		page = pmd_page(*pmd);
1720
		if (PageMlocked(page))
1721
			clear_page_mlock(page);
1722
	} else if (!pmd_devmap(*pmd))
1723
		goto out;
1724
	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
1725
out:
1726 1727 1728 1729
	spin_unlock(ptl);
	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
}

1730 1731
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
1732
{
1733 1734
	pgd_t *pgd;
	pud_t *pud;
1735 1736
	pmd_t *pmd;

1737
	pgd = pgd_offset(vma->vm_mm, address);
1738 1739 1740 1741 1742 1743 1744 1745
	if (!pgd_present(*pgd))
		return;

	pud = pud_offset(pgd, address);
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
1746

1747
	__split_huge_pmd(vma, pmd, address, freeze, page);
1748 1749
}

1750
void vma_adjust_trans_huge(struct vm_area_struct *vma,
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1763
		split_huge_pmd_address(vma, start, false, NULL);
1764 1765 1766 1767 1768 1769 1770 1771 1772

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1773
		split_huge_pmd_address(vma, end, false, NULL);
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
	 * vm_next->vm_start isn't page aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
		nstart += adjust_next << PAGE_SHIFT;
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1787
			split_huge_pmd_address(next, nstart, false, NULL);
1788 1789
	}
}
1790

1791
static void freeze_page(struct page *page)
1792
{
1793 1794
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
		TTU_RMAP_LOCKED;
1795
	int i, ret;
1796 1797 1798

	VM_BUG_ON_PAGE(!PageHead(page), page);

1799 1800 1801
	if (PageAnon(page))
		ttu_flags |= TTU_MIGRATION;

1802 1803 1804 1805 1806 1807
	/* We only need TTU_SPLIT_HUGE_PMD once */
	ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
	for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
		/* Cut short if the page is unmapped */
		if (page_count(page) == 1)
			return;
1808

1809
		ret = try_to_unmap(page + i, ttu_flags);
1810
	}
1811
	VM_BUG_ON_PAGE(ret, page + i - 1);
1812 1813
}

1814
static void unfreeze_page(struct page *page)
1815
{
1816
	int i;
1817

1818 1819
	for (i = 0; i < HPAGE_PMD_NR; i++)
		remove_migration_ptes(page + i, page + i, true);
1820 1821
}

1822
static void __split_huge_page_tail(struct page *head, int tail,
1823 1824 1825 1826
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

1827
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1828
	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
1829 1830

	/*
1831
	 * tail_page->_refcount is zero and not changing from under us. But
1832
	 * get_page_unless_zero() may be running from under us on the
1833 1834
	 * tail_page. If we used atomic_set() below instead of atomic_inc() or
	 * atomic_add(), we would then run atomic_set() concurrently with
1835 1836 1837 1838
	 * get_page_unless_zero(), and atomic_set() is implemented in C not
	 * using locked ops. spin_unlock on x86 sometime uses locked ops
	 * because of PPro errata 66, 92, so unless somebody can guarantee
	 * atomic_set() here would be safe on all archs (and not only on x86),
1839
	 * it's safer to use atomic_inc()/atomic_add().
1840
	 */
1841 1842 1843 1844 1845 1846
	if (PageAnon(head)) {
		page_ref_inc(page_tail);
	} else {
		/* Additional pin to radix tree */
		page_ref_add(page_tail, 2);
	}
1847 1848 1849 1850 1851 1852 1853 1854 1855

	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
			 (1L << PG_locked) |
1856 1857
			 (1L << PG_unevictable) |
			 (1L << PG_dirty)));
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872

	/*
	 * After clearing PageTail the gup refcount can be released.
	 * Page flags also must be visible before we make the page non-compound.
	 */
	smp_wmb();

	clear_compound_head(page_tail);

	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	/* ->mapping in first tail page is compound_mapcount */
1873
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1874 1875 1876 1877 1878 1879 1880 1881
			page_tail);
	page_tail->mapping = head->mapping;

	page_tail->index = head->index + tail;
	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
	lru_add_page_tail(head, page_tail, lruvec, list);
}

1882 1883
static void __split_huge_page(struct page *page, struct list_head *list,
		unsigned long flags)
1884 1885 1886 1887
{
	struct page *head = compound_head(page);
	struct zone *zone = page_zone(head);
	struct lruvec *lruvec;
1888
	pgoff_t end = -1;
1889
	int i;
1890

M
Mel Gorman 已提交
1891
	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
1892 1893 1894 1895

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

1896 1897 1898 1899
	if (!PageAnon(page))
		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);

	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1900
		__split_huge_page_tail(head, i, lruvec, list);
1901 1902 1903 1904
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
			__ClearPageDirty(head + i);
			__delete_from_page_cache(head + i, NULL);
1905 1906
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
1907 1908 1909
			put_page(head + i);
		}
	}
1910 1911

	ClearPageCompound(head);
1912 1913 1914 1915 1916 1917 1918 1919 1920
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
		page_ref_inc(head);
	} else {
		/* Additional pin to radix tree */
		page_ref_add(head, 2);
		spin_unlock(&head->mapping->tree_lock);
	}

1921
	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
1922

1923
	unfreeze_page(head);
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

1942 1943
int total_mapcount(struct page *page)
{
K
Kirill A. Shutemov 已提交
1944
	int i, compound, ret;
1945 1946 1947 1948 1949 1950

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
1951
	compound = compound_mapcount(page);
1952
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
1953 1954
		return compound;
	ret = compound;
1955 1956
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
1957 1958 1959
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
1960 1961 1962 1963 1964
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2045
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2046 2047 2048
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2049
	bool mlocked;
2050
	unsigned long flags;
2051 2052 2053 2054 2055 2056

	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
	VM_BUG_ON_PAGE(!PageCompound(page), page);

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
	if (PageAnon(head)) {
		/*
		 * The caller does not necessarily hold an mmap_sem that would
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
		extra_pins = 0;
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		/* Addidional pins from radix tree */
		extra_pins = HPAGE_PMD_NR;
		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2087 2088 2089 2090 2091 2092
	}

	/*
	 * Racy check if we can split the page, before freeze_page() will
	 * split PMDs
	 */
2093
	if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2094 2095 2096 2097
		ret = -EBUSY;
		goto out_unlock;
	}

2098
	mlocked = PageMlocked(page);
2099
	freeze_page(head);
2100 2101
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2102 2103 2104 2105
	/* Make sure the page is not on per-CPU pagevec as it takes pin */
	if (mlocked)
		lru_add_drain();

2106
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2107
	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123

	if (mapping) {
		void **pslot;

		spin_lock(&mapping->tree_lock);
		pslot = radix_tree_lookup_slot(&mapping->page_tree,
				page_index(head));
		/*
		 * Check if the head page is present in radix tree.
		 * We assume all tail are present too, if head is there.
		 */
		if (radix_tree_deref_slot_protected(pslot,
					&mapping->tree_lock) != head)
			goto fail;
	}

2124
	/* Prevent deferred_split_scan() touching ->_refcount */
2125
	spin_lock(&pgdata->split_queue_lock);
2126 2127
	count = page_count(head);
	mapcount = total_mapcount(head);
2128
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2129
		if (!list_empty(page_deferred_list(head))) {
2130
			pgdata->split_queue_len--;
2131 2132
			list_del(page_deferred_list(head));
		}
2133
		if (mapping)
2134
			__dec_node_page_state(page, NR_SHMEM_THPS);
2135 2136
		spin_unlock(&pgdata->split_queue_lock);
		__split_huge_page(page, list, flags);
2137 2138
		ret = 0;
	} else {
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
		spin_unlock(&pgdata->split_queue_lock);
fail:		if (mapping)
			spin_unlock(&mapping->tree_lock);
2150
		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2151
		unfreeze_page(head);
2152 2153 2154 2155
		ret = -EBUSY;
	}

out_unlock:
2156 2157 2158 2159 2160 2161
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2162 2163 2164 2165
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2166 2167 2168

void free_transhuge_page(struct page *page)
{
2169
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2170 2171
	unsigned long flags;

2172
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2173
	if (!list_empty(page_deferred_list(page))) {
2174
		pgdata->split_queue_len--;
2175 2176
		list_del(page_deferred_list(page));
	}
2177
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2178 2179 2180 2181 2182
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2183
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2184 2185 2186 2187
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2188
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2189
	if (list_empty(page_deferred_list(page))) {
2190
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2191 2192
		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
		pgdata->split_queue_len++;
2193
	}
2194
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2195 2196 2197 2198 2199
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2200
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2201
	return ACCESS_ONCE(pgdata->split_queue_len);
2202 2203 2204 2205 2206
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2207
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2208 2209 2210 2211 2212
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2213
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2214
	/* Take pin on all head pages to avoid freeing them under us */
2215
	list_for_each_safe(pos, next, &pgdata->split_queue) {
2216 2217
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2218 2219 2220 2221
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2222
			list_del_init(page_deferred_list(page));
2223
			pgdata->split_queue_len--;
2224
		}
2225 2226
		if (!--sc->nr_to_scan)
			break;
2227
	}
2228
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
		lock_page(page);
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
		put_page(page);
	}

2240 2241 2242
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
	list_splice_tail(&list, &pgdata->split_queue);
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2243

2244 2245 2246 2247 2248 2249 2250
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
	if (!split && list_empty(&pgdata->split_queue))
		return SHRINK_STOP;
	return split;
2251 2252 2253 2254 2255 2256
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2257
	.flags = SHRINKER_NUMA_AWARE,
2258
};
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2284
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

2297
	pr_info("%lu of %lu THP split\n", split, total);
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307

	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
	void *ret;

2308
	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2309 2310 2311 2312 2313 2314 2315
			&split_huge_pages_fops);
	if (!ret)
		pr_warn("Failed to create split_huge_pages in debugfs");
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif