hw_breakpoint.c 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2007 Alan Stern
 * Copyright (C) 2009 IBM Corporation
18
 * Copyright (C) 2009 Frederic Weisbecker <fweisbec@gmail.com>
19 20 21 22
 *
 * Authors: Alan Stern <stern@rowland.harvard.edu>
 *          K.Prasad <prasad@linux.vnet.ibm.com>
 *          Frederic Weisbecker <fweisbec@gmail.com>
23 24 25 26 27 28 29
 */

/*
 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
 * using the CPU's debug registers.
 */

30 31
#include <linux/perf_event.h>
#include <linux/hw_breakpoint.h>
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
#include <linux/irqflags.h>
#include <linux/notifier.h>
#include <linux/kallsyms.h>
#include <linux/kprobes.h>
#include <linux/percpu.h>
#include <linux/kdebug.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/smp.h>

#include <asm/hw_breakpoint.h>
#include <asm/processor.h>
#include <asm/debugreg.h>

48
/* Per cpu debug control register value */
49 50
DEFINE_PER_CPU(unsigned long, cpu_dr7);
EXPORT_PER_CPU_SYMBOL(cpu_dr7);
51 52 53

/* Per cpu debug address registers values */
static DEFINE_PER_CPU(unsigned long, cpu_debugreg[HBP_NUM]);
54 55

/*
56 57
 * Stores the breakpoints currently in use on each breakpoint address
 * register for each cpus
58
 */
59
static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM]);
60 61


62 63
static inline unsigned long
__encode_dr7(int drnum, unsigned int len, unsigned int type)
64 65 66 67 68
{
	unsigned long bp_info;

	bp_info = (len | type) & 0xf;
	bp_info <<= (DR_CONTROL_SHIFT + drnum * DR_CONTROL_SIZE);
69 70
	bp_info |= (DR_GLOBAL_ENABLE << (drnum * DR_ENABLE_SIZE));

71 72 73
	return bp_info;
}

74 75 76 77 78 79 80 81 82
/*
 * Encode the length, type, Exact, and Enable bits for a particular breakpoint
 * as stored in debug register 7.
 */
unsigned long encode_dr7(int drnum, unsigned int len, unsigned int type)
{
	return __encode_dr7(drnum, len, type) | DR_GLOBAL_SLOWDOWN;
}

83 84 85 86 87
/*
 * Decode the length and type bits for a particular breakpoint as
 * stored in debug register 7.  Return the "enabled" status.
 */
int decode_dr7(unsigned long dr7, int bpnum, unsigned *len, unsigned *type)
88
{
89
	int bp_info = dr7 >> (DR_CONTROL_SHIFT + bpnum * DR_CONTROL_SIZE);
90

91 92
	*len = (bp_info & 0xc) | 0x40;
	*type = (bp_info & 0x3) | 0x80;
93

94
	return (dr7 >> (bpnum * DR_ENABLE_SIZE)) & 0x3;
95 96 97
}

/*
98 99 100 101 102 103 104
 * Install a perf counter breakpoint.
 *
 * We seek a free debug address register and use it for this
 * breakpoint. Eventually we enable it in the debug control register.
 *
 * Atomic: we hold the counter->ctx->lock and we only handle variables
 * and registers local to this cpu.
105
 */
106
int arch_install_hw_breakpoint(struct perf_event *bp)
107
{
108 109 110 111 112 113 114 115 116 117 118
	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
	unsigned long *dr7;
	int i;

	for (i = 0; i < HBP_NUM; i++) {
		struct perf_event **slot = &__get_cpu_var(bp_per_reg[i]);

		if (!*slot) {
			*slot = bp;
			break;
		}
119 120
	}

121 122 123 124 125 126
	if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
		return -EBUSY;

	set_debugreg(info->address, i);
	__get_cpu_var(cpu_debugreg[i]) = info->address;

127
	dr7 = &__get_cpu_var(cpu_dr7);
128 129 130 131 132
	*dr7 |= encode_dr7(i, info->len, info->type);

	set_debugreg(*dr7, 7);

	return 0;
133 134 135
}

/*
136 137 138 139 140 141 142
 * Uninstall the breakpoint contained in the given counter.
 *
 * First we search the debug address register it uses and then we disable
 * it.
 *
 * Atomic: we hold the counter->ctx->lock and we only handle variables
 * and registers local to this cpu.
143
 */
144
void arch_uninstall_hw_breakpoint(struct perf_event *bp)
145
{
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
	unsigned long *dr7;
	int i;

	for (i = 0; i < HBP_NUM; i++) {
		struct perf_event **slot = &__get_cpu_var(bp_per_reg[i]);

		if (*slot == bp) {
			*slot = NULL;
			break;
		}
	}

	if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
		return;
161

162
	dr7 = &__get_cpu_var(cpu_dr7);
163
	*dr7 &= ~__encode_dr7(i, info->len, info->type);
164 165

	set_debugreg(*dr7, 7);
166 167 168 169 170 171 172
}

static int get_hbp_len(u8 hbp_len)
{
	unsigned int len_in_bytes = 0;

	switch (hbp_len) {
173
	case X86_BREAKPOINT_LEN_1:
174 175
		len_in_bytes = 1;
		break;
176
	case X86_BREAKPOINT_LEN_2:
177 178
		len_in_bytes = 2;
		break;
179
	case X86_BREAKPOINT_LEN_4:
180 181 182
		len_in_bytes = 4;
		break;
#ifdef CONFIG_X86_64
183
	case X86_BREAKPOINT_LEN_8:
184 185 186 187 188 189 190 191 192 193
		len_in_bytes = 8;
		break;
#endif
	}
	return len_in_bytes;
}

/*
 * Check for virtual address in kernel space.
 */
194
int arch_check_bp_in_kernelspace(struct perf_event *bp)
195 196
{
	unsigned int len;
197 198
	unsigned long va;
	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
199

200 201
	va = info->address;
	len = get_hbp_len(info->len);
202 203 204 205

	return (va >= TASK_SIZE) && ((va + len - 1) >= TASK_SIZE);
}

206 207
int arch_bp_generic_fields(int x86_len, int x86_type,
			   int *gen_len, int *gen_type)
208
{
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
	/* Len */
	switch (x86_len) {
	case X86_BREAKPOINT_LEN_1:
		*gen_len = HW_BREAKPOINT_LEN_1;
		break;
	case X86_BREAKPOINT_LEN_2:
		*gen_len = HW_BREAKPOINT_LEN_2;
		break;
	case X86_BREAKPOINT_LEN_4:
		*gen_len = HW_BREAKPOINT_LEN_4;
		break;
#ifdef CONFIG_X86_64
	case X86_BREAKPOINT_LEN_8:
		*gen_len = HW_BREAKPOINT_LEN_8;
		break;
#endif
	default:
		return -EINVAL;
	}
228

229 230 231 232
	/* Type */
	switch (x86_type) {
	case X86_BREAKPOINT_EXECUTE:
		*gen_type = HW_BREAKPOINT_X;
233
		break;
234 235
	case X86_BREAKPOINT_WRITE:
		*gen_type = HW_BREAKPOINT_W;
236
		break;
237 238
	case X86_BREAKPOINT_RW:
		*gen_type = HW_BREAKPOINT_W | HW_BREAKPOINT_R;
239 240
		break;
	default:
241
		return -EINVAL;
242 243
	}

244 245 246 247 248 249 250 251 252 253 254 255
	return 0;
}


static int arch_build_bp_info(struct perf_event *bp)
{
	struct arch_hw_breakpoint *info = counter_arch_bp(bp);

	info->address = bp->attr.bp_addr;

	/* Len */
	switch (bp->attr.bp_len) {
256
	case HW_BREAKPOINT_LEN_1:
257
		info->len = X86_BREAKPOINT_LEN_1;
258 259
		break;
	case HW_BREAKPOINT_LEN_2:
260
		info->len = X86_BREAKPOINT_LEN_2;
261 262
		break;
	case HW_BREAKPOINT_LEN_4:
263
		info->len = X86_BREAKPOINT_LEN_4;
264 265 266
		break;
#ifdef CONFIG_X86_64
	case HW_BREAKPOINT_LEN_8:
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
		info->len = X86_BREAKPOINT_LEN_8;
		break;
#endif
	default:
		return -EINVAL;
	}

	/* Type */
	switch (bp->attr.bp_type) {
	case HW_BREAKPOINT_W:
		info->type = X86_BREAKPOINT_WRITE;
		break;
	case HW_BREAKPOINT_W | HW_BREAKPOINT_R:
		info->type = X86_BREAKPOINT_RW;
		break;
	case HW_BREAKPOINT_X:
		info->type = X86_BREAKPOINT_EXECUTE;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}
/*
 * Validate the arch-specific HW Breakpoint register settings
 */
294
int arch_validate_hwbkpt_settings(struct perf_event *bp)
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
{
	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
	unsigned int align;
	int ret;


	ret = arch_build_bp_info(bp);
	if (ret)
		return ret;

	ret = -EINVAL;

	switch (info->len) {
	case X86_BREAKPOINT_LEN_1:
		align = 0;
		break;
	case X86_BREAKPOINT_LEN_2:
		align = 1;
		break;
	case X86_BREAKPOINT_LEN_4:
		align = 3;
		break;
#ifdef CONFIG_X86_64
	case X86_BREAKPOINT_LEN_8:
319 320 321 322 323 324 325 326 327 328 329
		align = 7;
		break;
#endif
	default:
		return ret;
	}

	/*
	 * Check that the low-order bits of the address are appropriate
	 * for the alignment implied by len.
	 */
330
	if (info->address & align)
331 332 333 334 335
		return -EINVAL;

	return 0;
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
/*
 * Dump the debug register contents to the user.
 * We can't dump our per cpu values because it
 * may contain cpu wide breakpoint, something that
 * doesn't belong to the current task.
 *
 * TODO: include non-ptrace user breakpoints (perf)
 */
void aout_dump_debugregs(struct user *dump)
{
	int i;
	int dr7 = 0;
	struct perf_event *bp;
	struct arch_hw_breakpoint *info;
	struct thread_struct *thread = &current->thread;

	for (i = 0; i < HBP_NUM; i++) {
		bp = thread->ptrace_bps[i];

		if (bp && !bp->attr.disabled) {
			dump->u_debugreg[i] = bp->attr.bp_addr;
			info = counter_arch_bp(bp);
			dr7 |= encode_dr7(i, info->len, info->type);
		} else {
			dump->u_debugreg[i] = 0;
		}
	}

	dump->u_debugreg[4] = 0;
	dump->u_debugreg[5] = 0;
	dump->u_debugreg[6] = current->thread.debugreg6;

	dump->u_debugreg[7] = dr7;
}
370
EXPORT_SYMBOL_GPL(aout_dump_debugregs);
371

372 373 374 375
/*
 * Release the user breakpoints used by ptrace
 */
void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
376
{
377 378 379 380 381 382 383
	int i;
	struct thread_struct *t = &tsk->thread;

	for (i = 0; i < HBP_NUM; i++) {
		unregister_hw_breakpoint(t->ptrace_bps[i]);
		t->ptrace_bps[i] = NULL;
	}
384 385
}

386
void hw_breakpoint_restore(void)
387
{
388 389 390 391 392
	set_debugreg(__get_cpu_var(cpu_debugreg[0]), 0);
	set_debugreg(__get_cpu_var(cpu_debugreg[1]), 1);
	set_debugreg(__get_cpu_var(cpu_debugreg[2]), 2);
	set_debugreg(__get_cpu_var(cpu_debugreg[3]), 3);
	set_debugreg(current->thread.debugreg6, 6);
393
	set_debugreg(__get_cpu_var(cpu_dr7), 7);
394
}
395
EXPORT_SYMBOL_GPL(hw_breakpoint_restore);
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412

/*
 * Handle debug exception notifications.
 *
 * Return value is either NOTIFY_STOP or NOTIFY_DONE as explained below.
 *
 * NOTIFY_DONE returned if one of the following conditions is true.
 * i) When the causative address is from user-space and the exception
 * is a valid one, i.e. not triggered as a result of lazy debug register
 * switching
 * ii) When there are more bits than trap<n> set in DR6 register (such
 * as BD, BS or BT) indicating that more than one debug condition is
 * met and requires some more action in do_debug().
 *
 * NOTIFY_STOP returned for all other cases
 *
 */
413
static int __kprobes hw_breakpoint_handler(struct die_args *args)
414 415
{
	int i, cpu, rc = NOTIFY_STOP;
416
	struct perf_event *bp;
417 418 419 420 421 422
	unsigned long dr7, dr6;
	unsigned long *dr6_p;

	/* The DR6 value is pointed by args->err */
	dr6_p = (unsigned long *)ERR_PTR(args->err);
	dr6 = *dr6_p;
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

	/* Do an early return if no trap bits are set in DR6 */
	if ((dr6 & DR_TRAP_BITS) == 0)
		return NOTIFY_DONE;

	get_debugreg(dr7, 7);
	/* Disable breakpoints during exception handling */
	set_debugreg(0UL, 7);
	/*
	 * Assert that local interrupts are disabled
	 * Reset the DRn bits in the virtualized register value.
	 * The ptrace trigger routine will add in whatever is needed.
	 */
	current->thread.debugreg6 &= ~DR_TRAP_BITS;
	cpu = get_cpu();

	/* Handle all the breakpoints that were triggered */
	for (i = 0; i < HBP_NUM; ++i) {
		if (likely(!(dr6 & (DR_TRAP0 << i))))
			continue;
443

444
		/*
445 446 447 448
		 * The counter may be concurrently released but that can only
		 * occur from a call_rcu() path. We can then safely fetch
		 * the breakpoint, use its callback, touch its counter
		 * while we are in an rcu_read_lock() path.
449
		 */
450 451 452
		rcu_read_lock();

		bp = per_cpu(bp_per_reg[i], cpu);
453 454 455 456 457
		/*
		 * Reset the 'i'th TRAP bit in dr6 to denote completion of
		 * exception handling
		 */
		(*dr6_p) &= ~(DR_TRAP0 << i);
458 459
		/*
		 * bp can be NULL due to lazy debug register switching
460
		 * or due to concurrent perf counter removing.
461
		 */
462 463 464 465 466
		if (!bp) {
			rcu_read_unlock();
			break;
		}

467
		perf_bp_event(bp, args->regs);
468

469
		rcu_read_unlock();
470
	}
471 472 473 474 475 476 477
	/*
	 * Further processing in do_debug() is needed for a) user-space
	 * breakpoints (to generate signals) and b) when the system has
	 * taken exception due to multiple causes
	 */
	if ((current->thread.debugreg6 & DR_TRAP_BITS) ||
	    (dr6 & (~DR_TRAP_BITS)))
478 479 480
		rc = NOTIFY_DONE;

	set_debugreg(dr7, 7);
481
	put_cpu();
482

483 484 485 486 487 488 489 490 491 492 493 494 495 496
	return rc;
}

/*
 * Handle debug exception notifications.
 */
int __kprobes hw_breakpoint_exceptions_notify(
		struct notifier_block *unused, unsigned long val, void *data)
{
	if (val != DIE_DEBUG)
		return NOTIFY_DONE;

	return hw_breakpoint_handler(data);
}
497 498 499 500 501

void hw_breakpoint_pmu_read(struct perf_event *bp)
{
	/* TODO */
}