blk-throttle.c 45.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
#include "blk-cgroup.h"
13
#include "blk.h"
14 15 16 17 18 19 20 21 22 23

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

/* Throttling is performed over 100ms slice and after that slice is renewed */
static unsigned long throtl_slice = HZ/10;	/* 100 ms */

T
Tejun Heo 已提交
24
static struct blkcg_policy blkcg_policy_throtl;
25

26 27 28
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

58
struct throtl_service_queue {
59 60
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

61 62 63 64
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
65
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
66 67 68 69 70 71
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
72 73 74 75
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
76
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
77 78
};

79 80
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
81
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
82 83
};

84 85
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

86 87 88 89 90 91 92 93
/* Per-cpu group stats */
struct tg_stats_cpu {
	/* total bytes transferred */
	struct blkg_rwstat		service_bytes;
	/* total IOs serviced, post merge */
	struct blkg_rwstat		serviced;
};

94
struct throtl_grp {
95 96 97
	/* must be the first member */
	struct blkg_policy_data pd;

98
	/* active throtl group service_queue member */
99 100
	struct rb_node rb_node;

101 102 103
	/* throtl_data this group belongs to */
	struct throtl_data *td;

104 105 106
	/* this group's service queue */
	struct throtl_service_queue service_queue;

107 108 109 110 111 112 113 114 115 116 117
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

118 119 120 121 122 123 124 125 126
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

127 128 129
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

130 131 132
	/* bytes per second rate limits */
	uint64_t bps[2];

133 134 135
	/* IOPS limits */
	unsigned int iops[2];

136 137
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
138 139
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
140 141 142 143

	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
144

145 146 147 148 149
	/* Per cpu stats pointer */
	struct tg_stats_cpu __percpu *stats_cpu;

	/* List of tgs waiting for per cpu stats memory to be allocated */
	struct list_head stats_alloc_node;
150 151 152 153 154
};

struct throtl_data
{
	/* service tree for active throtl groups */
155
	struct throtl_service_queue service_queue;
156 157 158 159 160 161 162

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/*
V
Vivek Goyal 已提交
163
	 * number of total undestroyed groups
164 165 166 167
	 */
	unsigned int nr_undestroyed_grps;

	/* Work for dispatching throttled bios */
168
	struct work_struct dispatch_work;
169 170
};

171 172 173 174 175 176 177
/* list and work item to allocate percpu group stats */
static DEFINE_SPINLOCK(tg_stats_alloc_lock);
static LIST_HEAD(tg_stats_alloc_list);

static void tg_stats_alloc_fn(struct work_struct *);
static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);

178 179
static void throtl_pending_timer_fn(unsigned long arg);

180 181 182 183 184
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
185
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
186
{
187
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
188 189
}

T
Tejun Heo 已提交
190
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
191
{
192
	return pd_to_blkg(&tg->pd);
193 194
}

T
Tejun Heo 已提交
195 196 197 198 199
static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
{
	return blkg_to_tg(td->queue->root_blkg);
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * A service_queue can be embeded in either a throtl_grp or throtl_data.
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 *
 * TODO: this should be made a function and name formatting should happen
 * after testing whether blktrace is enabled.
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
	if ((__tg)) {							\
		char __pbuf[128];					\
T
Tejun Heo 已提交
251
									\
252 253 254 255 256
		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
257
} while (0)
258

259 260 261 262 263 264
static void tg_stats_init(struct tg_stats_cpu *tg_stats)
{
	blkg_rwstat_init(&tg_stats->service_bytes);
	blkg_rwstat_init(&tg_stats->serviced);
}

265 266
/*
 * Worker for allocating per cpu stat for tgs. This is scheduled on the
267
 * system_wq once there are some groups on the alloc_list waiting for
268 269 270 271 272 273 274 275 276 277
 * allocation.
 */
static void tg_stats_alloc_fn(struct work_struct *work)
{
	static struct tg_stats_cpu *stats_cpu;	/* this fn is non-reentrant */
	struct delayed_work *dwork = to_delayed_work(work);
	bool empty = false;

alloc_stats:
	if (!stats_cpu) {
278 279
		int cpu;

280 281 282
		stats_cpu = alloc_percpu(struct tg_stats_cpu);
		if (!stats_cpu) {
			/* allocation failed, try again after some time */
283
			schedule_delayed_work(dwork, msecs_to_jiffies(10));
284 285
			return;
		}
286 287
		for_each_possible_cpu(cpu)
			tg_stats_init(per_cpu_ptr(stats_cpu, cpu));
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
	}

	spin_lock_irq(&tg_stats_alloc_lock);

	if (!list_empty(&tg_stats_alloc_list)) {
		struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
							 struct throtl_grp,
							 stats_alloc_node);
		swap(tg->stats_cpu, stats_cpu);
		list_del_init(&tg->stats_alloc_node);
	}

	empty = list_empty(&tg_stats_alloc_list);
	spin_unlock_irq(&tg_stats_alloc_lock);
	if (!empty)
		goto alloc_stats;
}

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

389
/* init a service_queue, assumes the caller zeroed it */
390 391
static void throtl_service_queue_init(struct throtl_service_queue *sq,
				      struct throtl_service_queue *parent_sq)
392
{
393 394
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
395
	sq->pending_tree = RB_ROOT;
396
	sq->parent_sq = parent_sq;
397 398 399 400 401 402 403
	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
		    (unsigned long)sq);
}

static void throtl_service_queue_exit(struct throtl_service_queue *sq)
{
	del_timer_sync(&sq->pending_timer);
404 405
}

T
Tejun Heo 已提交
406
static void throtl_pd_init(struct blkcg_gq *blkg)
407
{
408
	struct throtl_grp *tg = blkg_to_tg(blkg);
409
	struct throtl_data *td = blkg->q->td;
410
	struct throtl_service_queue *parent_sq;
411
	unsigned long flags;
412
	int rw;
413

414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
	/*
	 * If sane_hierarchy is enabled, we switch to properly hierarchical
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
	 * If sane_hierarchy is not enabled, the broken flat hierarchy
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
	parent_sq = &td->service_queue;

	if (cgroup_sane_behavior(blkg->blkcg->css.cgroup) && blkg->parent)
		parent_sq = &blkg_to_tg(blkg->parent)->service_queue;

	throtl_service_queue_init(&tg->service_queue, parent_sq);

434 435 436 437 438
	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

439
	RB_CLEAR_NODE(&tg->rb_node);
440
	tg->td = td;
441

442 443 444 445
	tg->bps[READ] = -1;
	tg->bps[WRITE] = -1;
	tg->iops[READ] = -1;
	tg->iops[WRITE] = -1;
446 447 448 449 450 451

	/*
	 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
	 * but percpu allocator can't be called from IO path.  Queue tg on
	 * tg_stats_alloc_list and allocate from work item.
	 */
452
	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
453
	list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
454
	schedule_delayed_work(&tg_stats_alloc_work, 0);
455
	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
456 457
}

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
				    (tg->bps[rw] != -1 || tg->iops[rw] != -1);
}

static void throtl_pd_online(struct blkcg_gq *blkg)
{
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
	tg_update_has_rules(blkg_to_tg(blkg));
}

T
Tejun Heo 已提交
482
static void throtl_pd_exit(struct blkcg_gq *blkg)
483 484
{
	struct throtl_grp *tg = blkg_to_tg(blkg);
485
	unsigned long flags;
486

487
	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
488
	list_del_init(&tg->stats_alloc_node);
489
	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
490 491

	free_percpu(tg->stats_cpu);
492 493

	throtl_service_queue_exit(&tg->service_queue);
494 495
}

T
Tejun Heo 已提交
496
static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
497 498 499 500 501 502 503 504 505 506 507 508 509
{
	struct throtl_grp *tg = blkg_to_tg(blkg);
	int cpu;

	if (tg->stats_cpu == NULL)
		return;

	for_each_possible_cpu(cpu) {
		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);

		blkg_rwstat_reset(&sc->service_bytes);
		blkg_rwstat_reset(&sc->serviced);
	}
510 511
}

T
Tejun Heo 已提交
512 513
static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
					   struct blkcg *blkcg)
514
{
515
	/*
T
Tejun Heo 已提交
516 517
	 * This is the common case when there are no blkcgs.  Avoid lookup
	 * in this case
518
	 */
T
Tejun Heo 已提交
519
	if (blkcg == &blkcg_root)
T
Tejun Heo 已提交
520
		return td_root_tg(td);
521

522
	return blkg_to_tg(blkg_lookup(blkcg, td->queue));
523 524
}

525
static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
T
Tejun Heo 已提交
526
						  struct blkcg *blkcg)
527
{
528
	struct request_queue *q = td->queue;
529
	struct throtl_grp *tg = NULL;
530

531
	/*
T
Tejun Heo 已提交
532 533
	 * This is the common case when there are no blkcgs.  Avoid lookup
	 * in this case
534
	 */
T
Tejun Heo 已提交
535
	if (blkcg == &blkcg_root) {
T
Tejun Heo 已提交
536
		tg = td_root_tg(td);
537
	} else {
T
Tejun Heo 已提交
538
		struct blkcg_gq *blkg;
539

540
		blkg = blkg_lookup_create(blkcg, q);
541

542 543
		/* if %NULL and @q is alive, fall back to root_tg */
		if (!IS_ERR(blkg))
544
			tg = blkg_to_tg(blkg);
B
Bart Van Assche 已提交
545
		else if (!blk_queue_dying(q))
T
Tejun Heo 已提交
546
			tg = td_root_tg(td);
547 548
	}

549 550 551
	return tg;
}

552 553
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
554 555
{
	/* Service tree is empty */
556
	if (!parent_sq->nr_pending)
557 558
		return NULL;

559 560
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
561

562 563
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
564 565 566 567 568 569 570 571 572 573

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

574 575
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
576
{
577 578 579 580
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
581 582
}

583
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
584 585 586
{
	struct throtl_grp *tg;

587
	tg = throtl_rb_first(parent_sq);
588 589 590
	if (!tg)
		return;

591
	parent_sq->first_pending_disptime = tg->disptime;
592 593
}

594
static void tg_service_queue_add(struct throtl_grp *tg)
595
{
596
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
597
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
616
		parent_sq->first_pending = &tg->rb_node;
617 618

	rb_link_node(&tg->rb_node, parent, node);
619
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
620 621
}

622
static void __throtl_enqueue_tg(struct throtl_grp *tg)
623
{
624
	tg_service_queue_add(tg);
625
	tg->flags |= THROTL_TG_PENDING;
626
	tg->service_queue.parent_sq->nr_pending++;
627 628
}

629
static void throtl_enqueue_tg(struct throtl_grp *tg)
630
{
631
	if (!(tg->flags & THROTL_TG_PENDING))
632
		__throtl_enqueue_tg(tg);
633 634
}

635
static void __throtl_dequeue_tg(struct throtl_grp *tg)
636
{
637
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
638
	tg->flags &= ~THROTL_TG_PENDING;
639 640
}

641
static void throtl_dequeue_tg(struct throtl_grp *tg)
642
{
643
	if (tg->flags & THROTL_TG_PENDING)
644
		__throtl_dequeue_tg(tg);
645 646
}

647
/* Call with queue lock held */
648 649
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
650
{
651 652 653
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
654 655
}

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
676
{
677
	/* any pending children left? */
678
	if (!sq->nr_pending)
679
		return true;
680

681
	update_min_dispatch_time(sq);
682

683
	/* is the next dispatch time in the future? */
684
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
685
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
686
		return true;
687 688
	}

689 690
	/* tell the caller to continue dispatching */
	return false;
691 692
}

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

	tg->slice_end[rw] = jiffies + throtl_slice;
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

715
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
716 717
{
	tg->bytes_disp[rw] = 0;
718
	tg->io_disp[rw] = 0;
719 720
	tg->slice_start[rw] = jiffies;
	tg->slice_end[rw] = jiffies + throtl_slice;
721 722 723 724
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
725 726
}

727 728
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
729 730 731 732
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
}

733 734
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
735 736
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
737 738 739 740
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
741 742 743
}

/* Determine if previously allocated or extended slice is complete or not */
744
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
745 746
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
747
		return false;
748 749 750 751 752

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
753
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
754
{
755 756
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
757 758 759 760 761 762 763 764

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
765
	if (throtl_slice_used(tg, rw))
766 767
		return;

768 769 770 771 772 773 774 775
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

776
	throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
777

778 779 780 781 782 783
	time_elapsed = jiffies - tg->slice_start[rw];

	nr_slices = time_elapsed / throtl_slice;

	if (!nr_slices)
		return;
784 785 786
	tmp = tg->bps[rw] * throtl_slice * nr_slices;
	do_div(tmp, HZ);
	bytes_trim = tmp;
787

788
	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
789

790
	if (!bytes_trim && !io_trim)
791 792 793 794 795 796 797
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

798 799 800 801 802
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

803 804
	tg->slice_start[rw] += nr_slices * throtl_slice;

805 806 807 808
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
809 810
}

811 812
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
813 814
{
	bool rw = bio_data_dir(bio);
815
	unsigned int io_allowed;
816
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
817
	u64 tmp;
818

819
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
820

821 822 823 824 825 826
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

827 828 829 830 831 832 833 834 835 836 837 838 839 840
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
841 842

	if (tg->io_disp[rw] + 1 <= io_allowed) {
843 844
		if (wait)
			*wait = 0;
845
		return true;
846 847
	}

848 849 850 851 852 853 854 855 856 857 858 859 860
	/* Calc approx time to dispatch */
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

861 862
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
863 864
{
	bool rw = bio_data_dir(bio);
865
	u64 bytes_allowed, extra_bytes, tmp;
866
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
867 868 869 870 871 872 873 874 875

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

876 877
	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);
878
	bytes_allowed = tmp;
879

880
	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
881 882
		if (wait)
			*wait = 0;
883
		return true;
884 885 886
	}

	/* Calc approx time to dispatch */
887
	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
888 889 890 891 892 893 894 895 896 897 898 899
	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
900 901 902 903 904 905 906
	return 0;
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
907 908
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
909 910 911 912 913 914 915 916 917 918
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
919
	BUG_ON(tg->service_queue.nr_queued[rw] &&
920
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
921

922 923 924 925
	/* If tg->bps = -1, then BW is unlimited */
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
		if (wait)
			*wait = 0;
926
		return true;
927 928 929 930 931 932 933
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
	 * long since now.
	 */
934 935
	if (throtl_slice_used(tg, rw))
		throtl_start_new_slice(tg, rw);
936 937
	else {
		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
938
			throtl_extend_slice(tg, rw, jiffies + throtl_slice);
939 940
	}

941 942
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
943 944 945 946 947 948 949 950 951 952 953
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
954
		throtl_extend_slice(tg, rw, jiffies + max_wait);
955 956 957 958

	return 0;
}

T
Tejun Heo 已提交
959
static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
960 961
					 int rw)
{
962 963
	struct throtl_grp *tg = blkg_to_tg(blkg);
	struct tg_stats_cpu *stats_cpu;
964 965 966
	unsigned long flags;

	/* If per cpu stats are not allocated yet, don't do any accounting. */
967
	if (tg->stats_cpu == NULL)
968 969 970 971 972 973 974 975 976
		return;

	/*
	 * Disabling interrupts to provide mutual exclusion between two
	 * writes on same cpu. It probably is not needed for 64bit. Not
	 * optimizing that case yet.
	 */
	local_irq_save(flags);

977
	stats_cpu = this_cpu_ptr(tg->stats_cpu);
978 979 980 981 982 983 984

	blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
	blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);

	local_irq_restore(flags);
}

985 986 987 988 989
static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	/* Charge the bio to the group */
990
	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
991
	tg->io_disp[rw]++;
992

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
	/*
	 * REQ_THROTTLED is used to prevent the same bio to be throttled
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 *
	 * Dispatch stats aren't recursive and each @bio should only be
	 * accounted by the @tg it was originally associated with.  Let's
	 * update the stats when setting REQ_THROTTLED for the first time
	 * which is guaranteed to be for the @bio's original tg.
	 */
	if (!(bio->bi_rw & REQ_THROTTLED)) {
		bio->bi_rw |= REQ_THROTTLED;
1006 1007
		throtl_update_dispatch_stats(tg_to_blkg(tg),
					     bio->bi_iter.bi_size, bio->bi_rw);
1008
	}
1009 1010
}

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
1022
{
1023
	struct throtl_service_queue *sq = &tg->service_queue;
1024 1025
	bool rw = bio_data_dir(bio);

1026 1027 1028
	if (!qn)
		qn = &tg->qnode_on_self[rw];

1029 1030 1031 1032 1033 1034 1035 1036 1037
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

1038 1039
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

1040
	sq->nr_queued[rw]++;
1041
	throtl_enqueue_tg(tg);
1042 1043
}

1044
static void tg_update_disptime(struct throtl_grp *tg)
1045
{
1046
	struct throtl_service_queue *sq = &tg->service_queue;
1047 1048 1049
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

1050
	if ((bio = throtl_peek_queued(&sq->queued[READ])))
1051
		tg_may_dispatch(tg, bio, &read_wait);
1052

1053
	if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1054
		tg_may_dispatch(tg, bio, &write_wait);
1055 1056 1057 1058 1059

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
1060
	throtl_dequeue_tg(tg);
1061
	tg->disptime = disptime;
1062
	throtl_enqueue_tg(tg);
1063 1064 1065

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1066 1067
}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

1078
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1079
{
1080
	struct throtl_service_queue *sq = &tg->service_queue;
1081 1082
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1083
	struct throtl_grp *tg_to_put = NULL;
1084 1085
	struct bio *bio;

1086 1087 1088 1089 1090 1091 1092
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1093
	sq->nr_queued[rw]--;
1094 1095

	throtl_charge_bio(tg, bio);
1096 1097 1098 1099 1100 1101 1102 1103 1104

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
1105
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1106
		start_parent_slice_with_credit(tg, parent_tg, rw);
1107
	} else {
1108 1109
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
1110 1111 1112
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
1113

1114
	throtl_trim_slice(tg, rw);
1115

1116 1117
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
1118 1119
}

1120
static int throtl_dispatch_tg(struct throtl_grp *tg)
1121
{
1122
	struct throtl_service_queue *sq = &tg->service_queue;
1123 1124
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1125
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1126 1127 1128 1129
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

1130
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1131
	       tg_may_dispatch(tg, bio, NULL)) {
1132

1133
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1134 1135 1136 1137 1138 1139
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

1140
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1141
	       tg_may_dispatch(tg, bio, NULL)) {
1142

1143
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1144 1145 1146 1147 1148 1149 1150 1151 1152
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

1153
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1154 1155 1156 1157
{
	unsigned int nr_disp = 0;

	while (1) {
1158 1159
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
		struct throtl_service_queue *sq = &tg->service_queue;
1160 1161 1162 1163 1164 1165 1166

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

1167
		throtl_dequeue_tg(tg);
1168

1169
		nr_disp += throtl_dispatch_tg(tg);
1170

1171
		if (sq->nr_queued[0] || sq->nr_queued[1])
1172
			tg_update_disptime(tg);
1173 1174 1175 1176 1177 1178 1179 1180

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1181 1182 1183 1184 1185 1186 1187
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1188 1189 1190 1191 1192 1193 1194
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1195
 */
1196 1197 1198
static void throtl_pending_timer_fn(unsigned long arg)
{
	struct throtl_service_queue *sq = (void *)arg;
1199
	struct throtl_grp *tg = sq_to_tg(sq);
1200
	struct throtl_data *td = sq_to_td(sq);
1201
	struct request_queue *q = td->queue;
1202 1203
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1204
	int ret;
1205 1206

	spin_lock_irq(q->queue_lock);
1207 1208 1209
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1210

1211 1212
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1213 1214
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1215 1216 1217 1218 1219 1220

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1221

1222 1223
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1224

1225 1226 1227 1228
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1229
	}
1230

1231 1232
	if (!dispatched)
		goto out_unlock;
1233

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1250
	spin_unlock_irq(q->queue_lock);
1251
}
1252

1253 1254 1255 1256 1257 1258 1259 1260
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
1261
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1275 1276 1277
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1278 1279 1280
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1281
		blk_start_plug(&plug);
1282 1283
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1284
		blk_finish_plug(&plug);
1285 1286 1287
	}
}

1288 1289
static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
				struct blkg_policy_data *pd, int off)
1290
{
1291
	struct throtl_grp *tg = pd_to_tg(pd);
1292 1293 1294 1295
	struct blkg_rwstat rwstat = { }, tmp;
	int i, cpu;

	for_each_possible_cpu(cpu) {
1296
		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
1297 1298 1299 1300 1301 1302

		tmp = blkg_rwstat_read((void *)sc + off);
		for (i = 0; i < BLKG_RWSTAT_NR; i++)
			rwstat.cnt[i] += tmp.cnt[i];
	}

1303
	return __blkg_prfill_rwstat(sf, pd, &rwstat);
1304 1305
}

1306
static int tg_print_cpu_rwstat(struct seq_file *sf, void *v)
1307
{
1308 1309
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_cpu_rwstat,
			  &blkcg_policy_throtl, seq_cft(sf)->private, true);
1310 1311 1312
	return 0;
}

1313 1314
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1315
{
1316 1317
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1318

1319
	if (v == -1)
1320
		return 0;
1321
	return __blkg_prfill_u64(sf, pd, v);
1322 1323
}

1324 1325
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1326
{
1327 1328
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1329

1330 1331
	if (v == -1)
		return 0;
1332
	return __blkg_prfill_u64(sf, pd, v);
1333 1334
}

1335
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1336
{
1337 1338
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1339
	return 0;
1340 1341
}

1342
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1343
{
1344 1345
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1346
	return 0;
1347 1348
}

1349 1350
static int tg_set_conf(struct cgroup_subsys_state *css, struct cftype *cft,
		       const char *buf, bool is_u64)
1351
{
1352
	struct blkcg *blkcg = css_to_blkcg(css);
1353
	struct blkg_conf_ctx ctx;
1354
	struct throtl_grp *tg;
1355
	struct throtl_service_queue *sq;
1356
	struct blkcg_gq *blkg;
1357
	struct cgroup_subsys_state *pos_css;
1358 1359
	int ret;

T
Tejun Heo 已提交
1360
	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1361 1362 1363
	if (ret)
		return ret;

1364
	tg = blkg_to_tg(ctx.blkg);
1365
	sq = &tg->service_queue;
1366

1367 1368
	if (!ctx.v)
		ctx.v = -1;
1369

1370 1371 1372 1373
	if (is_u64)
		*(u64 *)((void *)tg + cft->private) = ctx.v;
	else
		*(unsigned int *)((void *)tg + cft->private) = ctx.v;
1374

1375 1376 1377 1378
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
		   tg->bps[READ], tg->bps[WRITE],
		   tg->iops[READ], tg->iops[WRITE]);
1379

1380 1381 1382 1383 1384 1385 1386
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1387
	blkg_for_each_descendant_pre(blkg, pos_css, ctx.blkg)
1388 1389
		tg_update_has_rules(blkg_to_tg(blkg));

1390 1391 1392 1393 1394 1395 1396 1397
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1398 1399
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1400

1401
	if (tg->flags & THROTL_TG_PENDING) {
1402
		tg_update_disptime(tg);
1403
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1404
	}
1405 1406

	blkg_conf_finish(&ctx);
1407
	return 0;
1408 1409
}

1410
static int tg_set_conf_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1411
			   char *buf)
1412
{
1413
	return tg_set_conf(css, cft, buf, true);
1414 1415
}

1416
static int tg_set_conf_uint(struct cgroup_subsys_state *css, struct cftype *cft,
1417
			    char *buf)
1418
{
1419
	return tg_set_conf(css, cft, buf, false);
1420 1421 1422 1423 1424
}

static struct cftype throtl_files[] = {
	{
		.name = "throttle.read_bps_device",
1425
		.private = offsetof(struct throtl_grp, bps[READ]),
1426
		.seq_show = tg_print_conf_u64,
1427
		.write_string = tg_set_conf_u64,
1428 1429 1430
	},
	{
		.name = "throttle.write_bps_device",
1431
		.private = offsetof(struct throtl_grp, bps[WRITE]),
1432
		.seq_show = tg_print_conf_u64,
1433
		.write_string = tg_set_conf_u64,
1434 1435 1436
	},
	{
		.name = "throttle.read_iops_device",
1437
		.private = offsetof(struct throtl_grp, iops[READ]),
1438
		.seq_show = tg_print_conf_uint,
1439
		.write_string = tg_set_conf_uint,
1440 1441 1442
	},
	{
		.name = "throttle.write_iops_device",
1443
		.private = offsetof(struct throtl_grp, iops[WRITE]),
1444
		.seq_show = tg_print_conf_uint,
1445
		.write_string = tg_set_conf_uint,
1446 1447 1448
	},
	{
		.name = "throttle.io_service_bytes",
1449
		.private = offsetof(struct tg_stats_cpu, service_bytes),
1450
		.seq_show = tg_print_cpu_rwstat,
1451 1452 1453
	},
	{
		.name = "throttle.io_serviced",
1454
		.private = offsetof(struct tg_stats_cpu, serviced),
1455
		.seq_show = tg_print_cpu_rwstat,
1456 1457 1458 1459
	},
	{ }	/* terminate */
};

1460
static void throtl_shutdown_wq(struct request_queue *q)
1461 1462 1463
{
	struct throtl_data *td = q->td;

1464
	cancel_work_sync(&td->dispatch_work);
1465 1466
}

T
Tejun Heo 已提交
1467
static struct blkcg_policy blkcg_policy_throtl = {
1468 1469 1470 1471
	.pd_size		= sizeof(struct throtl_grp),
	.cftypes		= throtl_files,

	.pd_init_fn		= throtl_pd_init,
1472
	.pd_online_fn		= throtl_pd_online,
1473 1474
	.pd_exit_fn		= throtl_pd_exit,
	.pd_reset_stats_fn	= throtl_pd_reset_stats,
1475 1476
};

1477
bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1478 1479
{
	struct throtl_data *td = q->td;
1480
	struct throtl_qnode *qn = NULL;
1481
	struct throtl_grp *tg;
1482
	struct throtl_service_queue *sq;
1483
	bool rw = bio_data_dir(bio);
T
Tejun Heo 已提交
1484
	struct blkcg *blkcg;
1485
	bool throttled = false;
1486

1487 1488
	/* see throtl_charge_bio() */
	if (bio->bi_rw & REQ_THROTTLED)
1489
		goto out;
1490

1491 1492 1493 1494 1495 1496
	/*
	 * A throtl_grp pointer retrieved under rcu can be used to access
	 * basic fields like stats and io rates. If a group has no rules,
	 * just update the dispatch stats in lockless manner and return.
	 */
	rcu_read_lock();
T
Tejun Heo 已提交
1497
	blkcg = bio_blkcg(bio);
1498
	tg = throtl_lookup_tg(td, blkcg);
1499
	if (tg) {
1500
		if (!tg->has_rules[rw]) {
1501
			throtl_update_dispatch_stats(tg_to_blkg(tg),
1502
					bio->bi_iter.bi_size, bio->bi_rw);
1503
			goto out_unlock_rcu;
1504 1505 1506 1507 1508 1509 1510
		}
	}

	/*
	 * Either group has not been allocated yet or it is not an unlimited
	 * IO group
	 */
1511
	spin_lock_irq(q->queue_lock);
1512
	tg = throtl_lookup_create_tg(td, blkcg);
1513 1514
	if (unlikely(!tg))
		goto out_unlock;
1515

1516 1517
	sq = &tg->service_queue;

1518 1519 1520 1521
	while (true) {
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
1522

1523 1524 1525 1526 1527
		/* if above limits, break to queue */
		if (!tg_may_dispatch(tg, bio, NULL))
			break;

		/* within limits, let's charge and dispatch directly */
1528
		throtl_charge_bio(tg, bio);
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
1541
		throtl_trim_slice(tg, rw);
1542 1543 1544 1545 1546 1547

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
1548
		qn = &tg->qnode_on_parent[rw];
1549 1550 1551 1552
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
1553 1554
	}

1555
	/* out-of-limit, queue to @tg */
1556 1557
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
1558
		   tg->bytes_disp[rw], bio->bi_iter.bi_size, tg->bps[rw],
1559 1560
		   tg->io_disp[rw], tg->iops[rw],
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1561

1562
	bio_associate_current(bio);
1563
	tg->td->nr_queued[rw]++;
1564
	throtl_add_bio_tg(bio, qn, tg);
1565
	throttled = true;
1566

1567 1568 1569 1570 1571 1572
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
1573
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1574
		tg_update_disptime(tg);
1575
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1576 1577
	}

1578
out_unlock:
1579
	spin_unlock_irq(q->queue_lock);
1580 1581
out_unlock_rcu:
	rcu_read_unlock();
1582
out:
1583 1584 1585 1586 1587 1588 1589
	/*
	 * As multiple blk-throtls may stack in the same issue path, we
	 * don't want bios to leave with the flag set.  Clear the flag if
	 * being issued.
	 */
	if (!throttled)
		bio->bi_rw &= ~REQ_THROTTLED;
1590
	return throttled;
1591 1592
}

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

1608
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
1609
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1610
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1611 1612 1613 1614
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
1625
	struct blkcg_gq *blkg;
1626
	struct cgroup_subsys_state *pos_css;
1627
	struct bio *bio;
1628
	int rw;
1629

1630
	queue_lockdep_assert_held(q);
1631
	rcu_read_lock();
1632

1633 1634 1635 1636 1637 1638
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
1639
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1640
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1641

1642 1643 1644 1645
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
1646 1647
	spin_unlock_irq(q->queue_lock);

1648
	/* all bios now should be in td->service_queue, issue them */
1649
	for (rw = READ; rw <= WRITE; rw++)
1650 1651
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
1652
			generic_make_request(bio);
1653 1654 1655 1656

	spin_lock_irq(q->queue_lock);
}

1657 1658 1659
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
1660
	int ret;
1661 1662 1663 1664 1665

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;

1666
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1667
	throtl_service_queue_init(&td->service_queue, NULL);
1668

1669
	q->td = td;
1670
	td->queue = q;
V
Vivek Goyal 已提交
1671

1672
	/* activate policy */
T
Tejun Heo 已提交
1673
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1674
	if (ret)
1675
		kfree(td);
1676
	return ret;
1677 1678 1679 1680
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
1681
	BUG_ON(!q->td);
1682
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
1683
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1684
	kfree(q->td);
1685 1686 1687 1688
}

static int __init throtl_init(void)
{
1689 1690 1691 1692
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
1693
	return blkcg_policy_register(&blkcg_policy_throtl);
1694 1695 1696
}

module_init(throtl_init);