i8254.c 14.9 KB
Newer Older
S
Sheng Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * 8253/8254 interval timer emulation
 *
 * Copyright (c) 2003-2004 Fabrice Bellard
 * Copyright (c) 2006 Intel Corporation
 * Copyright (c) 2007 Keir Fraser, XenSource Inc
 * Copyright (c) 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 * Authors:
 *   Sheng Yang <sheng.yang@intel.com>
 *   Based on QEMU and Xen.
 */

#include <linux/kvm_host.h>

#include "irq.h"
#include "i8254.h"

#ifndef CONFIG_X86_64
R
Roman Zippel 已提交
38
#define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
S
Sheng Yang 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
#else
#define mod_64(x, y) ((x) % (y))
#endif

#define RW_STATE_LSB 1
#define RW_STATE_MSB 2
#define RW_STATE_WORD0 3
#define RW_STATE_WORD1 4

/* Compute with 96 bit intermediate result: (a*b)/c */
static u64 muldiv64(u64 a, u32 b, u32 c)
{
	union {
		u64 ll;
		struct {
			u32 low, high;
		} l;
	} u, res;
	u64 rl, rh;

	u.ll = a;
	rl = (u64)u.l.low * (u64)b;
	rh = (u64)u.l.high * (u64)b;
	rh += (rl >> 32);
R
Roman Zippel 已提交
63 64
	res.l.high = div64_u64(rh, c);
	res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
S
Sheng Yang 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
	return res.ll;
}

static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
{
	struct kvm_kpit_channel_state *c =
		&kvm->arch.vpit->pit_state.channels[channel];

	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));

	switch (c->mode) {
	default:
	case 0:
	case 4:
		/* XXX: just disable/enable counting */
		break;
	case 1:
	case 2:
	case 3:
	case 5:
		/* Restart counting on rising edge. */
		if (c->gate < val)
			c->count_load_time = ktime_get();
		break;
	}

	c->gate = val;
}

int pit_get_gate(struct kvm *kvm, int channel)
{
	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));

	return kvm->arch.vpit->pit_state.channels[channel].gate;
}

static int pit_get_count(struct kvm *kvm, int channel)
{
	struct kvm_kpit_channel_state *c =
		&kvm->arch.vpit->pit_state.channels[channel];
	s64 d, t;
	int counter;

	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));

	t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
	d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);

	switch (c->mode) {
	case 0:
	case 1:
	case 4:
	case 5:
		counter = (c->count - d) & 0xffff;
		break;
	case 3:
		/* XXX: may be incorrect for odd counts */
		counter = c->count - (mod_64((2 * d), c->count));
		break;
	default:
		counter = c->count - mod_64(d, c->count);
		break;
	}
	return counter;
}

static int pit_get_out(struct kvm *kvm, int channel)
{
	struct kvm_kpit_channel_state *c =
		&kvm->arch.vpit->pit_state.channels[channel];
	s64 d, t;
	int out;

	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));

	t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
	d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);

	switch (c->mode) {
	default:
	case 0:
		out = (d >= c->count);
		break;
	case 1:
		out = (d < c->count);
		break;
	case 2:
		out = ((mod_64(d, c->count) == 0) && (d != 0));
		break;
	case 3:
		out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
		break;
	case 4:
	case 5:
		out = (d == c->count);
		break;
	}

	return out;
}

static void pit_latch_count(struct kvm *kvm, int channel)
{
	struct kvm_kpit_channel_state *c =
		&kvm->arch.vpit->pit_state.channels[channel];

	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));

	if (!c->count_latched) {
		c->latched_count = pit_get_count(kvm, channel);
		c->count_latched = c->rw_mode;
	}
}

static void pit_latch_status(struct kvm *kvm, int channel)
{
	struct kvm_kpit_channel_state *c =
		&kvm->arch.vpit->pit_state.channels[channel];

	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));

	if (!c->status_latched) {
		/* TODO: Return NULL COUNT (bit 6). */
		c->status = ((pit_get_out(kvm, channel) << 7) |
				(c->rw_mode << 4) |
				(c->mode << 1) |
				c->bcd);
		c->status_latched = 1;
	}
}

int __pit_timer_fn(struct kvm_kpit_state *ps)
{
	struct kvm_vcpu *vcpu0 = ps->pit->kvm->vcpus[0];
	struct kvm_kpit_timer *pt = &ps->pit_timer;

	atomic_inc(&pt->pending);
	smp_mb__after_atomic_inc();
	/* FIXME: handle case where the guest is in guest mode */
	if (vcpu0 && waitqueue_active(&vcpu0->wq)) {
205
		vcpu0->arch.mp_state = KVM_MP_STATE_RUNNABLE;
S
Sheng Yang 已提交
206 207 208 209 210 211 212 213 214
		wake_up_interruptible(&vcpu0->wq);
	}

	pt->timer.expires = ktime_add_ns(pt->timer.expires, pt->period);
	pt->scheduled = ktime_to_ns(pt->timer.expires);

	return (pt->period == 0 ? 0 : 1);
}

215 216 217 218 219 220 221 222 223 224
int pit_has_pending_timer(struct kvm_vcpu *vcpu)
{
	struct kvm_pit *pit = vcpu->kvm->arch.vpit;

	if (pit && vcpu->vcpu_id == 0)
		return atomic_read(&pit->pit_state.pit_timer.pending);

	return 0;
}

S
Sheng Yang 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
{
	struct kvm_kpit_state *ps;
	int restart_timer = 0;

	ps = container_of(data, struct kvm_kpit_state, pit_timer.timer);

	restart_timer = __pit_timer_fn(ps);

	if (restart_timer)
		return HRTIMER_RESTART;
	else
		return HRTIMER_NORESTART;
}

static void destroy_pit_timer(struct kvm_kpit_timer *pt)
{
	pr_debug("pit: execute del timer!\n");
	hrtimer_cancel(&pt->timer);
}

static void create_pit_timer(struct kvm_kpit_timer *pt, u32 val, int is_period)
{
	s64 interval;

	interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);

	pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);

	/* TODO The new value only affected after the retriggered */
	hrtimer_cancel(&pt->timer);
	pt->period = (is_period == 0) ? 0 : interval;
	pt->timer.function = pit_timer_fn;
	atomic_set(&pt->pending, 0);

	hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
		      HRTIMER_MODE_ABS);
}

static void pit_load_count(struct kvm *kvm, int channel, u32 val)
{
	struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;

	WARN_ON(!mutex_is_locked(&ps->lock));

	pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);

	/*
	 * Though spec said the state of 8254 is undefined after power-up,
	 * seems some tricky OS like Windows XP depends on IRQ0 interrupt
	 * when booting up.
	 * So here setting initialize rate for it, and not a specific number
	 */
	if (val == 0)
		val = 0x10000;

	ps->channels[channel].count_load_time = ktime_get();
	ps->channels[channel].count = val;

	if (channel != 0)
		return;

	/* Two types of timer
	 * mode 1 is one shot, mode 2 is period, otherwise del timer */
	switch (ps->channels[0].mode) {
	case 1:
M
Marcelo Tosatti 已提交
291 292
        /* FIXME: enhance mode 4 precision */
	case 4:
S
Sheng Yang 已提交
293 294 295 296 297 298 299 300 301 302
		create_pit_timer(&ps->pit_timer, val, 0);
		break;
	case 2:
		create_pit_timer(&ps->pit_timer, val, 1);
		break;
	default:
		destroy_pit_timer(&ps->pit_timer);
	}
}

303 304 305 306 307 308 309
void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
{
	mutex_lock(&kvm->arch.vpit->pit_state.lock);
	pit_load_count(kvm, channel, val);
	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
}

S
Sheng Yang 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
static void pit_ioport_write(struct kvm_io_device *this,
			     gpa_t addr, int len, const void *data)
{
	struct kvm_pit *pit = (struct kvm_pit *)this->private;
	struct kvm_kpit_state *pit_state = &pit->pit_state;
	struct kvm *kvm = pit->kvm;
	int channel, access;
	struct kvm_kpit_channel_state *s;
	u32 val = *(u32 *) data;

	val  &= 0xff;
	addr &= KVM_PIT_CHANNEL_MASK;

	mutex_lock(&pit_state->lock);

	if (val != 0)
		pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
			  (unsigned int)addr, len, val);

	if (addr == 3) {
		channel = val >> 6;
		if (channel == 3) {
			/* Read-Back Command. */
			for (channel = 0; channel < 3; channel++) {
				s = &pit_state->channels[channel];
				if (val & (2 << channel)) {
					if (!(val & 0x20))
						pit_latch_count(kvm, channel);
					if (!(val & 0x10))
						pit_latch_status(kvm, channel);
				}
			}
		} else {
			/* Select Counter <channel>. */
			s = &pit_state->channels[channel];
			access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
			if (access == 0) {
				pit_latch_count(kvm, channel);
			} else {
				s->rw_mode = access;
				s->read_state = access;
				s->write_state = access;
				s->mode = (val >> 1) & 7;
				if (s->mode > 5)
					s->mode -= 4;
				s->bcd = val & 1;
			}
		}
	} else {
		/* Write Count. */
		s = &pit_state->channels[addr];
		switch (s->write_state) {
		default:
		case RW_STATE_LSB:
			pit_load_count(kvm, addr, val);
			break;
		case RW_STATE_MSB:
			pit_load_count(kvm, addr, val << 8);
			break;
		case RW_STATE_WORD0:
			s->write_latch = val;
			s->write_state = RW_STATE_WORD1;
			break;
		case RW_STATE_WORD1:
			pit_load_count(kvm, addr, s->write_latch | (val << 8));
			s->write_state = RW_STATE_WORD0;
			break;
		}
	}

	mutex_unlock(&pit_state->lock);
}

static void pit_ioport_read(struct kvm_io_device *this,
			    gpa_t addr, int len, void *data)
{
	struct kvm_pit *pit = (struct kvm_pit *)this->private;
	struct kvm_kpit_state *pit_state = &pit->pit_state;
	struct kvm *kvm = pit->kvm;
	int ret, count;
	struct kvm_kpit_channel_state *s;

	addr &= KVM_PIT_CHANNEL_MASK;
	s = &pit_state->channels[addr];

	mutex_lock(&pit_state->lock);

	if (s->status_latched) {
		s->status_latched = 0;
		ret = s->status;
	} else if (s->count_latched) {
		switch (s->count_latched) {
		default:
		case RW_STATE_LSB:
			ret = s->latched_count & 0xff;
			s->count_latched = 0;
			break;
		case RW_STATE_MSB:
			ret = s->latched_count >> 8;
			s->count_latched = 0;
			break;
		case RW_STATE_WORD0:
			ret = s->latched_count & 0xff;
			s->count_latched = RW_STATE_MSB;
			break;
		}
	} else {
		switch (s->read_state) {
		default:
		case RW_STATE_LSB:
			count = pit_get_count(kvm, addr);
			ret = count & 0xff;
			break;
		case RW_STATE_MSB:
			count = pit_get_count(kvm, addr);
			ret = (count >> 8) & 0xff;
			break;
		case RW_STATE_WORD0:
			count = pit_get_count(kvm, addr);
			ret = count & 0xff;
			s->read_state = RW_STATE_WORD1;
			break;
		case RW_STATE_WORD1:
			count = pit_get_count(kvm, addr);
			ret = (count >> 8) & 0xff;
			s->read_state = RW_STATE_WORD0;
			break;
		}
	}

	if (len > sizeof(ret))
		len = sizeof(ret);
	memcpy(data, (char *)&ret, len);

	mutex_unlock(&pit_state->lock);
}

static int pit_in_range(struct kvm_io_device *this, gpa_t addr)
{
	return ((addr >= KVM_PIT_BASE_ADDRESS) &&
		(addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
}

static void speaker_ioport_write(struct kvm_io_device *this,
				 gpa_t addr, int len, const void *data)
{
	struct kvm_pit *pit = (struct kvm_pit *)this->private;
	struct kvm_kpit_state *pit_state = &pit->pit_state;
	struct kvm *kvm = pit->kvm;
	u32 val = *(u32 *) data;

	mutex_lock(&pit_state->lock);
	pit_state->speaker_data_on = (val >> 1) & 1;
	pit_set_gate(kvm, 2, val & 1);
	mutex_unlock(&pit_state->lock);
}

static void speaker_ioport_read(struct kvm_io_device *this,
				gpa_t addr, int len, void *data)
{
	struct kvm_pit *pit = (struct kvm_pit *)this->private;
	struct kvm_kpit_state *pit_state = &pit->pit_state;
	struct kvm *kvm = pit->kvm;
	unsigned int refresh_clock;
	int ret;

	/* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
	refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;

	mutex_lock(&pit_state->lock);
	ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
		(pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
	if (len > sizeof(ret))
		len = sizeof(ret);
	memcpy(data, (char *)&ret, len);
	mutex_unlock(&pit_state->lock);
}

static int speaker_in_range(struct kvm_io_device *this, gpa_t addr)
{
	return (addr == KVM_SPEAKER_BASE_ADDRESS);
}

493
void kvm_pit_reset(struct kvm_pit *pit)
S
Sheng Yang 已提交
494 495
{
	int i;
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
	struct kvm_kpit_channel_state *c;

	mutex_lock(&pit->pit_state.lock);
	for (i = 0; i < 3; i++) {
		c = &pit->pit_state.channels[i];
		c->mode = 0xff;
		c->gate = (i != 2);
		pit_load_count(pit->kvm, i, 0);
	}
	mutex_unlock(&pit->pit_state.lock);

	atomic_set(&pit->pit_state.pit_timer.pending, 0);
	pit->pit_state.inject_pending = 1;
}

struct kvm_pit *kvm_create_pit(struct kvm *kvm)
{
S
Sheng Yang 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
	struct kvm_pit *pit;
	struct kvm_kpit_state *pit_state;

	pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
	if (!pit)
		return NULL;

	mutex_init(&pit->pit_state.lock);
	mutex_lock(&pit->pit_state.lock);

	/* Initialize PIO device */
	pit->dev.read = pit_ioport_read;
	pit->dev.write = pit_ioport_write;
	pit->dev.in_range = pit_in_range;
	pit->dev.private = pit;
	kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);

	pit->speaker_dev.read = speaker_ioport_read;
	pit->speaker_dev.write = speaker_ioport_write;
	pit->speaker_dev.in_range = speaker_in_range;
	pit->speaker_dev.private = pit;
	kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);

	kvm->arch.vpit = pit;
	pit->kvm = kvm;

	pit_state = &pit->pit_state;
	pit_state->pit = pit;
	hrtimer_init(&pit_state->pit_timer.timer,
		     CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	mutex_unlock(&pit->pit_state.lock);

545
	kvm_pit_reset(pit);
S
Sheng Yang 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613

	return pit;
}

void kvm_free_pit(struct kvm *kvm)
{
	struct hrtimer *timer;

	if (kvm->arch.vpit) {
		mutex_lock(&kvm->arch.vpit->pit_state.lock);
		timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
		hrtimer_cancel(timer);
		mutex_unlock(&kvm->arch.vpit->pit_state.lock);
		kfree(kvm->arch.vpit);
	}
}

void __inject_pit_timer_intr(struct kvm *kvm)
{
	mutex_lock(&kvm->lock);
	kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 1);
	kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 0);
	kvm_pic_set_irq(pic_irqchip(kvm), 0, 1);
	kvm_pic_set_irq(pic_irqchip(kvm), 0, 0);
	mutex_unlock(&kvm->lock);
}

void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
{
	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_kpit_state *ps;

	if (vcpu && pit) {
		ps = &pit->pit_state;

		/* Try to inject pending interrupts when:
		 * 1. Pending exists
		 * 2. Last interrupt was accepted or waited for too long time*/
		if (atomic_read(&ps->pit_timer.pending) &&
		    (ps->inject_pending ||
		    (jiffies - ps->last_injected_time
				>= KVM_MAX_PIT_INTR_INTERVAL))) {
			ps->inject_pending = 0;
			__inject_pit_timer_intr(kvm);
			ps->last_injected_time = jiffies;
		}
	}
}

void kvm_pit_timer_intr_post(struct kvm_vcpu *vcpu, int vec)
{
	struct kvm_arch *arch = &vcpu->kvm->arch;
	struct kvm_kpit_state *ps;

	if (vcpu && arch->vpit) {
		ps = &arch->vpit->pit_state;
		if (atomic_read(&ps->pit_timer.pending) &&
		(((arch->vpic->pics[0].imr & 1) == 0 &&
		  arch->vpic->pics[0].irq_base == vec) ||
		  (arch->vioapic->redirtbl[0].fields.vector == vec &&
		  arch->vioapic->redirtbl[0].fields.mask != 1))) {
			ps->inject_pending = 1;
			atomic_dec(&ps->pit_timer.pending);
			ps->channels[0].count_load_time = ktime_get();
		}
	}
}