ima_crypto.c 15.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Copyright (C) 2005,2006,2007,2008 IBM Corporation
 *
 * Authors:
 * Mimi Zohar <zohar@us.ibm.com>
 * Kylene Hall <kjhall@us.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, version 2 of the License.
 *
 * File: ima_crypto.c
13
 *	Calculates md5/sha1 file hash, template hash, boot-aggreate hash
14 15
 */

16 17
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

18
#include <linux/kernel.h>
19 20
#include <linux/moduleparam.h>
#include <linux/ratelimit.h>
21 22 23 24
#include <linux/file.h>
#include <linux/crypto.h>
#include <linux/scatterlist.h>
#include <linux/err.h>
25
#include <linux/slab.h>
26
#include <crypto/hash.h>
27

28 29
#include "ima.h"

30 31 32 33 34
/* minimum file size for ahash use */
static unsigned long ima_ahash_minsize;
module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644);
MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use");

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/* default is 0 - 1 page. */
static int ima_maxorder;
static unsigned int ima_bufsize = PAGE_SIZE;

static int param_set_bufsize(const char *val, const struct kernel_param *kp)
{
	unsigned long long size;
	int order;

	size = memparse(val, NULL);
	order = get_order(size);
	if (order >= MAX_ORDER)
		return -EINVAL;
	ima_maxorder = order;
	ima_bufsize = PAGE_SIZE << order;
	return 0;
}

53
static const struct kernel_param_ops param_ops_bufsize = {
54 55 56 57 58 59 60 61
	.set = param_set_bufsize,
	.get = param_get_uint,
};
#define param_check_bufsize(name, p) __param_check(name, p, unsigned int)

module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644);
MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size");

62
static struct crypto_shash *ima_shash_tfm;
63
static struct crypto_ahash *ima_ahash_tfm;
64

65
int __init ima_init_crypto(void)
66
{
67
	long rc;
68

69
	ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0);
70 71
	if (IS_ERR(ima_shash_tfm)) {
		rc = PTR_ERR(ima_shash_tfm);
72 73
		pr_err("Can not allocate %s (reason: %ld)\n",
		       hash_algo_name[ima_hash_algo], rc);
74 75
		return rc;
	}
76 77
	pr_info("Allocated hash algorithm: %s\n",
		hash_algo_name[ima_hash_algo]);
78
	return 0;
79 80
}

81 82 83 84 85
static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo)
{
	struct crypto_shash *tfm = ima_shash_tfm;
	int rc;

86 87 88 89
	if (algo < 0 || algo >= HASH_ALGO__LAST)
		algo = ima_hash_algo;

	if (algo != ima_hash_algo) {
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
		tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0);
		if (IS_ERR(tfm)) {
			rc = PTR_ERR(tfm);
			pr_err("Can not allocate %s (reason: %d)\n",
			       hash_algo_name[algo], rc);
		}
	}
	return tfm;
}

static void ima_free_tfm(struct crypto_shash *tfm)
{
	if (tfm != ima_shash_tfm)
		crypto_free_shash(tfm);
}

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
/**
 * ima_alloc_pages() - Allocate contiguous pages.
 * @max_size:       Maximum amount of memory to allocate.
 * @allocated_size: Returned size of actual allocation.
 * @last_warn:      Should the min_size allocation warn or not.
 *
 * Tries to do opportunistic allocation for memory first trying to allocate
 * max_size amount of memory and then splitting that until zero order is
 * reached. Allocation is tried without generating allocation warnings unless
 * last_warn is set. Last_warn set affects only last allocation of zero order.
 *
 * By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL)
 *
 * Return pointer to allocated memory, or NULL on failure.
 */
static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size,
			     int last_warn)
{
	void *ptr;
	int order = ima_maxorder;
126
	gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY;
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

	if (order)
		order = min(get_order(max_size), order);

	for (; order; order--) {
		ptr = (void *)__get_free_pages(gfp_mask, order);
		if (ptr) {
			*allocated_size = PAGE_SIZE << order;
			return ptr;
		}
	}

	/* order is zero - one page */

	gfp_mask = GFP_KERNEL;

	if (!last_warn)
		gfp_mask |= __GFP_NOWARN;

	ptr = (void *)__get_free_pages(gfp_mask, 0);
	if (ptr) {
		*allocated_size = PAGE_SIZE;
		return ptr;
	}

	*allocated_size = 0;
	return NULL;
}

/**
 * ima_free_pages() - Free pages allocated by ima_alloc_pages().
 * @ptr:  Pointer to allocated pages.
 * @size: Size of allocated buffer.
 */
static void ima_free_pages(void *ptr, size_t size)
{
	if (!ptr)
		return;
	free_pages((unsigned long)ptr, get_order(size));
}

168 169 170 171 172
static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo)
{
	struct crypto_ahash *tfm = ima_ahash_tfm;
	int rc;

M
Mimi Zohar 已提交
173 174 175 176
	if (algo < 0 || algo >= HASH_ALGO__LAST)
		algo = ima_hash_algo;

	if (algo != ima_hash_algo || !tfm) {
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
		tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0);
		if (!IS_ERR(tfm)) {
			if (algo == ima_hash_algo)
				ima_ahash_tfm = tfm;
		} else {
			rc = PTR_ERR(tfm);
			pr_err("Can not allocate %s (reason: %d)\n",
			       hash_algo_name[algo], rc);
		}
	}
	return tfm;
}

static void ima_free_atfm(struct crypto_ahash *tfm)
{
	if (tfm != ima_ahash_tfm)
		crypto_free_ahash(tfm);
}

196
static inline int ahash_wait(int err, struct crypto_wait *wait)
197 198
{

199
	err = crypto_wait_req(err, wait);
200

201
	if (err)
202 203 204 205 206 207 208 209 210 211
		pr_crit_ratelimited("ahash calculation failed: err: %d\n", err);

	return err;
}

static int ima_calc_file_hash_atfm(struct file *file,
				   struct ima_digest_data *hash,
				   struct crypto_ahash *tfm)
{
	loff_t i_size, offset;
212 213
	char *rbuf[2] = { NULL, };
	int rc, read = 0, rbuf_len, active = 0, ahash_rc = 0;
214 215
	struct ahash_request *req;
	struct scatterlist sg[1];
216
	struct crypto_wait wait;
217
	size_t rbuf_size[2];
218 219 220 221 222 223 224

	hash->length = crypto_ahash_digestsize(tfm);

	req = ahash_request_alloc(tfm, GFP_KERNEL);
	if (!req)
		return -ENOMEM;

225
	crypto_init_wait(&wait);
226 227
	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
				   CRYPTO_TFM_REQ_MAY_SLEEP,
228
				   crypto_req_done, &wait);
229

230
	rc = ahash_wait(crypto_ahash_init(req), &wait);
231 232 233 234 235 236 237 238
	if (rc)
		goto out1;

	i_size = i_size_read(file_inode(file));

	if (i_size == 0)
		goto out2;

239 240 241 242
	/*
	 * Try to allocate maximum size of memory.
	 * Fail if even a single page cannot be allocated.
	 */
243 244
	rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1);
	if (!rbuf[0]) {
245 246 247 248
		rc = -ENOMEM;
		goto out1;
	}

249 250 251 252 253 254 255 256 257 258 259
	/* Only allocate one buffer if that is enough. */
	if (i_size > rbuf_size[0]) {
		/*
		 * Try to allocate secondary buffer. If that fails fallback to
		 * using single buffering. Use previous memory allocation size
		 * as baseline for possible allocation size.
		 */
		rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0],
					  &rbuf_size[1], 0);
	}

260 261 262 263 264 265
	if (!(file->f_mode & FMODE_READ)) {
		file->f_mode |= FMODE_READ;
		read = 1;
	}

	for (offset = 0; offset < i_size; offset += rbuf_len) {
266 267 268 269 270
		if (!rbuf[1] && offset) {
			/* Not using two buffers, and it is not the first
			 * read/request, wait for the completion of the
			 * previous ahash_update() request.
			 */
271
			rc = ahash_wait(ahash_rc, &wait);
272 273 274 275 276
			if (rc)
				goto out3;
		}
		/* read buffer */
		rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]);
277 278
		rc = integrity_kernel_read(file, offset, rbuf[active],
					   rbuf_len);
279 280 281 282 283 284 285 286
		if (rc != rbuf_len)
			goto out3;

		if (rbuf[1] && offset) {
			/* Using two buffers, and it is not the first
			 * read/request, wait for the completion of the
			 * previous ahash_update() request.
			 */
287
			rc = ahash_wait(ahash_rc, &wait);
288 289
			if (rc)
				goto out3;
290 291
		}

292
		sg_init_one(&sg[0], rbuf[active], rbuf_len);
293 294
		ahash_request_set_crypt(req, sg, NULL, rbuf_len);

295 296 297 298
		ahash_rc = crypto_ahash_update(req);

		if (rbuf[1])
			active = !active; /* swap buffers, if we use two */
299
	}
300
	/* wait for the last update request to complete */
301
	rc = ahash_wait(ahash_rc, &wait);
302
out3:
303 304
	if (read)
		file->f_mode &= ~FMODE_READ;
305 306
	ima_free_pages(rbuf[0], rbuf_size[0]);
	ima_free_pages(rbuf[1], rbuf_size[1]);
307 308 309
out2:
	if (!rc) {
		ahash_request_set_crypt(req, NULL, hash->digest, 0);
310
		rc = ahash_wait(crypto_ahash_final(req), &wait);
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
	}
out1:
	ahash_request_free(req);
	return rc;
}

static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash)
{
	struct crypto_ahash *tfm;
	int rc;

	tfm = ima_alloc_atfm(hash->algo);
	if (IS_ERR(tfm))
		return PTR_ERR(tfm);

	rc = ima_calc_file_hash_atfm(file, hash, tfm);

	ima_free_atfm(tfm);

	return rc;
}

333 334 335
static int ima_calc_file_hash_tfm(struct file *file,
				  struct ima_digest_data *hash,
				  struct crypto_shash *tfm)
336
{
M
Mimi Zohar 已提交
337
	loff_t i_size, offset = 0;
338
	char *rbuf;
M
Mimi Zohar 已提交
339
	int rc, read = 0;
340
	SHASH_DESC_ON_STACK(shash, tfm);
341

342 343
	shash->tfm = tfm;
	shash->flags = 0;
344

345 346
	hash->length = crypto_shash_digestsize(tfm);

347
	rc = crypto_shash_init(shash);
348 349 350
	if (rc != 0)
		return rc;

351 352 353
	i_size = i_size_read(file_inode(file));

	if (i_size == 0)
354
		goto out;
355 356 357 358 359

	rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL);
	if (!rbuf)
		return -ENOMEM;

M
Mimi Zohar 已提交
360 361 362 363
	if (!(file->f_mode & FMODE_READ)) {
		file->f_mode |= FMODE_READ;
		read = 1;
	}
364

365 366 367
	while (offset < i_size) {
		int rbuf_len;

368
		rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE);
369 370 371 372
		if (rbuf_len < 0) {
			rc = rbuf_len;
			break;
		}
M
Mimi Zohar 已提交
373 374
		if (rbuf_len == 0)
			break;
375 376
		offset += rbuf_len;

377
		rc = crypto_shash_update(shash, rbuf, rbuf_len);
378 379 380
		if (rc)
			break;
	}
M
Mimi Zohar 已提交
381 382
	if (read)
		file->f_mode &= ~FMODE_READ;
383
	kfree(rbuf);
384
out:
385
	if (!rc)
386
		rc = crypto_shash_final(shash, hash->digest);
387 388 389
	return rc;
}

390
static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash)
391
{
392
	struct crypto_shash *tfm;
393 394
	int rc;

395 396 397
	tfm = ima_alloc_tfm(hash->algo);
	if (IS_ERR(tfm))
		return PTR_ERR(tfm);
398 399 400

	rc = ima_calc_file_hash_tfm(file, hash, tfm);

401
	ima_free_tfm(tfm);
402 403 404 405

	return rc;
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
/*
 * ima_calc_file_hash - calculate file hash
 *
 * Asynchronous hash (ahash) allows using HW acceleration for calculating
 * a hash. ahash performance varies for different data sizes on different
 * crypto accelerators. shash performance might be better for smaller files.
 * The 'ima.ahash_minsize' module parameter allows specifying the best
 * minimum file size for using ahash on the system.
 *
 * If the ima.ahash_minsize parameter is not specified, this function uses
 * shash for the hash calculation.  If ahash fails, it falls back to using
 * shash.
 */
int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash)
{
	loff_t i_size;
	int rc;

424 425 426 427 428 429 430 431 432 433
	/*
	 * For consistency, fail file's opened with the O_DIRECT flag on
	 * filesystems mounted with/without DAX option.
	 */
	if (file->f_flags & O_DIRECT) {
		hash->length = hash_digest_size[ima_hash_algo];
		hash->algo = ima_hash_algo;
		return -EINVAL;
	}

434 435 436 437 438 439 440 441 442 443 444
	i_size = i_size_read(file_inode(file));

	if (ima_ahash_minsize && i_size >= ima_ahash_minsize) {
		rc = ima_calc_file_ahash(file, hash);
		if (!rc)
			return 0;
	}

	return ima_calc_file_shash(file, hash);
}

445
/*
446
 * Calculate the hash of template data
447
 */
448
static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data,
449
					 struct ima_template_desc *td,
450 451 452
					 int num_fields,
					 struct ima_digest_data *hash,
					 struct crypto_shash *tfm)
453
{
454
	SHASH_DESC_ON_STACK(shash, tfm);
455
	int rc, i;
456

457 458
	shash->tfm = tfm;
	shash->flags = 0;
459

460
	hash->length = crypto_shash_digestsize(tfm);
461

462
	rc = crypto_shash_init(shash);
463 464 465 466
	if (rc != 0)
		return rc;

	for (i = 0; i < num_fields; i++) {
467 468 469
		u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 };
		u8 *data_to_hash = field_data[i].data;
		u32 datalen = field_data[i].len;
470 471
		u32 datalen_to_hash =
		    !ima_canonical_fmt ? datalen : cpu_to_le32(datalen);
472

473
		if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) {
474
			rc = crypto_shash_update(shash,
475 476
						(const u8 *) &datalen_to_hash,
						sizeof(datalen_to_hash));
477 478
			if (rc)
				break;
479 480 481 482
		} else if (strcmp(td->fields[i]->field_id, "n") == 0) {
			memcpy(buffer, data_to_hash, datalen);
			data_to_hash = buffer;
			datalen = IMA_EVENT_NAME_LEN_MAX + 1;
483
		}
484
		rc = crypto_shash_update(shash, data_to_hash, datalen);
485 486 487 488 489
		if (rc)
			break;
	}

	if (!rc)
490
		rc = crypto_shash_final(shash, hash->digest);
491 492

	return rc;
493 494
}

495 496
int ima_calc_field_array_hash(struct ima_field_data *field_data,
			      struct ima_template_desc *desc, int num_fields,
497
			      struct ima_digest_data *hash)
498 499 500 501 502 503 504 505
{
	struct crypto_shash *tfm;
	int rc;

	tfm = ima_alloc_tfm(hash->algo);
	if (IS_ERR(tfm))
		return PTR_ERR(tfm);

506 507
	rc = ima_calc_field_array_hash_tfm(field_data, desc, num_fields,
					   hash, tfm);
508 509 510 511 512 513

	ima_free_tfm(tfm);

	return rc;
}

514 515 516 517 518 519
static int calc_buffer_ahash_atfm(const void *buf, loff_t len,
				  struct ima_digest_data *hash,
				  struct crypto_ahash *tfm)
{
	struct ahash_request *req;
	struct scatterlist sg;
520
	struct crypto_wait wait;
521 522 523 524 525 526 527 528
	int rc, ahash_rc = 0;

	hash->length = crypto_ahash_digestsize(tfm);

	req = ahash_request_alloc(tfm, GFP_KERNEL);
	if (!req)
		return -ENOMEM;

529
	crypto_init_wait(&wait);
530 531
	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
				   CRYPTO_TFM_REQ_MAY_SLEEP,
532
				   crypto_req_done, &wait);
533

534
	rc = ahash_wait(crypto_ahash_init(req), &wait);
535 536 537 538 539 540 541 542 543
	if (rc)
		goto out;

	sg_init_one(&sg, buf, len);
	ahash_request_set_crypt(req, &sg, NULL, len);

	ahash_rc = crypto_ahash_update(req);

	/* wait for the update request to complete */
544
	rc = ahash_wait(ahash_rc, &wait);
545 546
	if (!rc) {
		ahash_request_set_crypt(req, NULL, hash->digest, 0);
547
		rc = ahash_wait(crypto_ahash_final(req), &wait);
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
	}
out:
	ahash_request_free(req);
	return rc;
}

static int calc_buffer_ahash(const void *buf, loff_t len,
			     struct ima_digest_data *hash)
{
	struct crypto_ahash *tfm;
	int rc;

	tfm = ima_alloc_atfm(hash->algo);
	if (IS_ERR(tfm))
		return PTR_ERR(tfm);

	rc = calc_buffer_ahash_atfm(buf, len, hash, tfm);

	ima_free_atfm(tfm);

	return rc;
}

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
static int calc_buffer_shash_tfm(const void *buf, loff_t size,
				struct ima_digest_data *hash,
				struct crypto_shash *tfm)
{
	SHASH_DESC_ON_STACK(shash, tfm);
	unsigned int len;
	int rc;

	shash->tfm = tfm;
	shash->flags = 0;

	hash->length = crypto_shash_digestsize(tfm);

	rc = crypto_shash_init(shash);
	if (rc != 0)
		return rc;

	while (size) {
		len = size < PAGE_SIZE ? size : PAGE_SIZE;
		rc = crypto_shash_update(shash, buf, len);
		if (rc)
			break;
		buf += len;
		size -= len;
	}

	if (!rc)
		rc = crypto_shash_final(shash, hash->digest);
	return rc;
}

602 603
static int calc_buffer_shash(const void *buf, loff_t len,
			     struct ima_digest_data *hash)
604 605 606 607 608 609 610 611 612 613 614 615 616 617
{
	struct crypto_shash *tfm;
	int rc;

	tfm = ima_alloc_tfm(hash->algo);
	if (IS_ERR(tfm))
		return PTR_ERR(tfm);

	rc = calc_buffer_shash_tfm(buf, len, hash, tfm);

	ima_free_tfm(tfm);
	return rc;
}

618 619 620 621 622 623 624 625 626 627 628 629 630 631
int ima_calc_buffer_hash(const void *buf, loff_t len,
			 struct ima_digest_data *hash)
{
	int rc;

	if (ima_ahash_minsize && len >= ima_ahash_minsize) {
		rc = calc_buffer_ahash(buf, len, hash);
		if (!rc)
			return 0;
	}

	return calc_buffer_shash(buf, len, hash);
}

632
static void __init ima_pcrread(int idx, u8 *pcr)
633 634 635 636
{
	if (!ima_used_chip)
		return;

637
	if (tpm_pcr_read(ima_tpm_chip, idx, pcr) != 0)
638
		pr_err("Error Communicating to TPM chip\n");
639 640 641 642 643
}

/*
 * Calculate the boot aggregate hash
 */
644 645
static int __init ima_calc_boot_aggregate_tfm(char *digest,
					      struct crypto_shash *tfm)
646
{
647
	u8 pcr_i[TPM_DIGEST_SIZE];
648
	int rc, i;
649
	SHASH_DESC_ON_STACK(shash, tfm);
650

651 652
	shash->tfm = tfm;
	shash->flags = 0;
653

654
	rc = crypto_shash_init(shash);
655 656 657 658 659 660 661
	if (rc != 0)
		return rc;

	/* cumulative sha1 over tpm registers 0-7 */
	for (i = TPM_PCR0; i < TPM_PCR8; i++) {
		ima_pcrread(i, pcr_i);
		/* now accumulate with current aggregate */
662
		rc = crypto_shash_update(shash, pcr_i, TPM_DIGEST_SIZE);
663 664
	}
	if (!rc)
665
		crypto_shash_final(shash, digest);
666 667
	return rc;
}
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684

int __init ima_calc_boot_aggregate(struct ima_digest_data *hash)
{
	struct crypto_shash *tfm;
	int rc;

	tfm = ima_alloc_tfm(hash->algo);
	if (IS_ERR(tfm))
		return PTR_ERR(tfm);

	hash->length = crypto_shash_digestsize(tfm);
	rc = ima_calc_boot_aggregate_tfm(hash->digest, tfm);

	ima_free_tfm(tfm);

	return rc;
}