cadence_ttc_timer.c 14.5 KB
Newer Older
1
/*
2
 * This file contains driver for the Cadence Triple Timer Counter Rev 06
3
 *
4
 *  Copyright (C) 2011-2013 Xilinx
5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * based on arch/mips/kernel/time.c timer driver
 *
 * This software is licensed under the terms of the GNU General Public
 * License version 2, as published by the Free Software Foundation, and
 * may be copied, distributed, and modified under those terms.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

18
#include <linux/clk.h>
19
#include <linux/clk-provider.h>
20 21
#include <linux/interrupt.h>
#include <linux/clockchips.h>
22 23 24
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/slab.h>
25
#include <linux/sched_clock.h>
26

27
/*
28
 * This driver configures the 2 16/32-bit count-up timers as follows:
29 30 31 32 33 34 35 36 37 38 39 40 41
 *
 * T1: Timer 1, clocksource for generic timekeeping
 * T2: Timer 2, clockevent source for hrtimers
 * T3: Timer 3, <unused>
 *
 * The input frequency to the timer module for emulation is 2.5MHz which is
 * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
 * the timers are clocked at 78.125KHz (12.8 us resolution).

 * The input frequency to the timer module in silicon is configurable and
 * obtained from device tree. The pre-scaler of 32 is used.
 */

42 43 44 45
/*
 * Timer Register Offset Definitions of Timer 1, Increment base address by 4
 * and use same offsets for Timer 2
 */
46 47 48 49 50 51
#define TTC_CLK_CNTRL_OFFSET		0x00 /* Clock Control Reg, RW */
#define TTC_CNT_CNTRL_OFFSET		0x0C /* Counter Control Reg, RW */
#define TTC_COUNT_VAL_OFFSET		0x18 /* Counter Value Reg, RO */
#define TTC_INTR_VAL_OFFSET		0x24 /* Interval Count Reg, RW */
#define TTC_ISR_OFFSET		0x54 /* Interrupt Status Reg, RO */
#define TTC_IER_OFFSET		0x60 /* Interrupt Enable Reg, RW */
52

53
#define TTC_CNT_CNTRL_DISABLE_MASK	0x1
54

55
#define TTC_CLK_CNTRL_CSRC_MASK		(1 << 5)	/* clock source */
56 57
#define TTC_CLK_CNTRL_PSV_MASK		0x1e
#define TTC_CLK_CNTRL_PSV_SHIFT		1
58

59 60
/*
 * Setup the timers to use pre-scaling, using a fixed value for now that will
61 62 63 64 65 66
 * work across most input frequency, but it may need to be more dynamic
 */
#define PRESCALE_EXPONENT	11	/* 2 ^ PRESCALE_EXPONENT = PRESCALE */
#define PRESCALE		2048	/* The exponent must match this */
#define CLK_CNTRL_PRESCALE	((PRESCALE_EXPONENT - 1) << 1)
#define CLK_CNTRL_PRESCALE_EN	1
67
#define CNT_CNTRL_RESET		(1 << 4)
68

69 70
#define MAX_F_ERR 50

71
/**
72
 * struct ttc_timer - This definition defines local timer structure
73 74
 *
 * @base_addr:	Base address of timer
75
 * @freq:	Timer input clock frequency
76 77 78
 * @clk:	Associated clock source
 * @clk_rate_change_nb	Notifier block for clock rate changes
 */
79
struct ttc_timer {
80
	void __iomem *base_addr;
81
	unsigned long freq;
82 83
	struct clk *clk;
	struct notifier_block clk_rate_change_nb;
84 85
};

86 87
#define to_ttc_timer(x) \
		container_of(x, struct ttc_timer, clk_rate_change_nb)
88

89
struct ttc_timer_clocksource {
90 91
	u32			scale_clk_ctrl_reg_old;
	u32			scale_clk_ctrl_reg_new;
92
	struct ttc_timer	ttc;
93
	struct clocksource	cs;
94 95
};

96 97
#define to_ttc_timer_clksrc(x) \
		container_of(x, struct ttc_timer_clocksource, cs)
98

99 100
struct ttc_timer_clockevent {
	struct ttc_timer		ttc;
101 102 103
	struct clock_event_device	ce;
};

104 105
#define to_ttc_timer_clkevent(x) \
		container_of(x, struct ttc_timer_clockevent, ce)
106

107 108
static void __iomem *ttc_sched_clock_val_reg;

109
/**
110
 * ttc_set_interval - Set the timer interval value
111 112 113 114
 *
 * @timer:	Pointer to the timer instance
 * @cycles:	Timer interval ticks
 **/
115
static void ttc_set_interval(struct ttc_timer *timer,
116 117 118 119 120
					unsigned long cycles)
{
	u32 ctrl_reg;

	/* Disable the counter, set the counter value  and re-enable counter */
121
	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
122
	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
123
	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
124

125
	writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);
126

127 128 129 130
	/*
	 * Reset the counter (0x10) so that it starts from 0, one-shot
	 * mode makes this needed for timing to be right.
	 */
131
	ctrl_reg |= CNT_CNTRL_RESET;
132
	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
133
	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
134 135 136
}

/**
137
 * ttc_clock_event_interrupt - Clock event timer interrupt handler
138 139
 *
 * @irq:	IRQ number of the Timer
140
 * @dev_id:	void pointer to the ttc_timer instance
141 142 143
 *
 * returns: Always IRQ_HANDLED - success
 **/
144
static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
145
{
146 147
	struct ttc_timer_clockevent *ttce = dev_id;
	struct ttc_timer *timer = &ttce->ttc;
148 149

	/* Acknowledge the interrupt and call event handler */
150
	readl_relaxed(timer->base_addr + TTC_ISR_OFFSET);
151

152
	ttce->ce.event_handler(&ttce->ce);
153 154 155 156 157

	return IRQ_HANDLED;
}

/**
158
 * __ttc_clocksource_read - Reads the timer counter register
159 160 161
 *
 * returns: Current timer counter register value
 **/
162
static cycle_t __ttc_clocksource_read(struct clocksource *cs)
163
{
164
	struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;
165

166
	return (cycle_t)readl_relaxed(timer->base_addr +
167
				TTC_COUNT_VAL_OFFSET);
168 169
}

170
static u64 notrace ttc_sched_clock_read(void)
171
{
172
	return readl_relaxed(ttc_sched_clock_val_reg);
173 174
}

175
/**
176
 * ttc_set_next_event - Sets the time interval for next event
177 178 179 180 181 182
 *
 * @cycles:	Timer interval ticks
 * @evt:	Address of clock event instance
 *
 * returns: Always 0 - success
 **/
183
static int ttc_set_next_event(unsigned long cycles,
184 185
					struct clock_event_device *evt)
{
186 187
	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
	struct ttc_timer *timer = &ttce->ttc;
188

189
	ttc_set_interval(timer, cycles);
190 191 192 193
	return 0;
}

/**
194
 * ttc_set_{shutdown|oneshot|periodic} - Sets the state of timer
195 196 197
 *
 * @evt:	Address of clock event instance
 **/
198
static int ttc_shutdown(struct clock_event_device *evt)
199
{
200 201
	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
	struct ttc_timer *timer = &ttce->ttc;
202 203
	u32 ctrl_reg;

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
	return 0;
}

static int ttc_set_periodic(struct clock_event_device *evt)
{
	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
	struct ttc_timer *timer = &ttce->ttc;

	ttc_set_interval(timer,
			 DIV_ROUND_CLOSEST(ttce->ttc.freq, PRESCALE * HZ));
	return 0;
}

static int ttc_resume(struct clock_event_device *evt)
{
	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
	struct ttc_timer *timer = &ttce->ttc;
	u32 ctrl_reg;

	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
	return 0;
230 231
}

232
static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
233 234 235
		unsigned long event, void *data)
{
	struct clk_notifier_data *ndata = data;
236 237 238
	struct ttc_timer *ttc = to_ttc_timer(nb);
	struct ttc_timer_clocksource *ttccs = container_of(ttc,
			struct ttc_timer_clocksource, ttc);
239 240

	switch (event) {
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
	case PRE_RATE_CHANGE:
	{
		u32 psv;
		unsigned long factor, rate_low, rate_high;

		if (ndata->new_rate > ndata->old_rate) {
			factor = DIV_ROUND_CLOSEST(ndata->new_rate,
					ndata->old_rate);
			rate_low = ndata->old_rate;
			rate_high = ndata->new_rate;
		} else {
			factor = DIV_ROUND_CLOSEST(ndata->old_rate,
					ndata->new_rate);
			rate_low = ndata->new_rate;
			rate_high = ndata->old_rate;
		}

		if (!is_power_of_2(factor))
				return NOTIFY_BAD;

		if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR)
			return NOTIFY_BAD;

		factor = __ilog2_u32(factor);

266
		/*
267 268
		 * store timer clock ctrl register so we can restore it in case
		 * of an abort.
269
		 */
270
		ttccs->scale_clk_ctrl_reg_old =
271 272
			readl_relaxed(ttccs->ttc.base_addr +
			TTC_CLK_CNTRL_OFFSET);
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

		psv = (ttccs->scale_clk_ctrl_reg_old &
				TTC_CLK_CNTRL_PSV_MASK) >>
				TTC_CLK_CNTRL_PSV_SHIFT;
		if (ndata->new_rate < ndata->old_rate)
			psv -= factor;
		else
			psv += factor;

		/* prescaler within legal range? */
		if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT))
			return NOTIFY_BAD;

		ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old &
			~TTC_CLK_CNTRL_PSV_MASK;
		ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT;


		/* scale down: adjust divider in post-change notification */
		if (ndata->new_rate < ndata->old_rate)
			return NOTIFY_DONE;

		/* scale up: adjust divider now - before frequency change */
296 297
		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
298 299 300 301 302 303 304 305
		break;
	}
	case POST_RATE_CHANGE:
		/* scale up: pre-change notification did the adjustment */
		if (ndata->new_rate > ndata->old_rate)
			return NOTIFY_OK;

		/* scale down: adjust divider now - after frequency change */
306 307
		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
308 309
		break;

310
	case ABORT_RATE_CHANGE:
311 312 313 314 315
		/* we have to undo the adjustment in case we scale up */
		if (ndata->new_rate < ndata->old_rate)
			return NOTIFY_OK;

		/* restore original register value */
316 317
		writel_relaxed(ttccs->scale_clk_ctrl_reg_old,
			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
318
		/* fall through */
319 320 321
	default:
		return NOTIFY_DONE;
	}
322 323

	return NOTIFY_DONE;
324 325
}

326 327
static void __init ttc_setup_clocksource(struct clk *clk, void __iomem *base,
					 u32 timer_width)
328
{
329
	struct ttc_timer_clocksource *ttccs;
330 331 332 333 334 335
	int err;

	ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
	if (WARN_ON(!ttccs))
		return;

336
	ttccs->ttc.clk = clk;
337

338
	err = clk_prepare_enable(ttccs->ttc.clk);
339 340
	if (WARN_ON(err)) {
		kfree(ttccs);
341
		return;
342
	}
343

344 345
	ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);

346 347 348 349 350
	ttccs->ttc.clk_rate_change_nb.notifier_call =
		ttc_rate_change_clocksource_cb;
	ttccs->ttc.clk_rate_change_nb.next = NULL;
	if (clk_notifier_register(ttccs->ttc.clk,
				&ttccs->ttc.clk_rate_change_nb))
351
		pr_warn("Unable to register clock notifier.\n");
352

353 354
	ttccs->ttc.base_addr = base;
	ttccs->cs.name = "ttc_clocksource";
355
	ttccs->cs.rating = 200;
356
	ttccs->cs.read = __ttc_clocksource_read;
357
	ttccs->cs.mask = CLOCKSOURCE_MASK(timer_width);
358 359
	ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;

360 361 362 363 364
	/*
	 * Setup the clock source counter to be an incrementing counter
	 * with no interrupt and it rolls over at 0xFFFF. Pre-scale
	 * it by 32 also. Let it start running now.
	 */
365 366
	writel_relaxed(0x0,  ttccs->ttc.base_addr + TTC_IER_OFFSET);
	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
367
		     ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
368
	writel_relaxed(CNT_CNTRL_RESET,
369
		     ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
370

371
	err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
372 373
	if (WARN_ON(err)) {
		kfree(ttccs);
374
		return;
375
	}
376 377

	ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
378 379
	sched_clock_register(ttc_sched_clock_read, timer_width,
			     ttccs->ttc.freq / PRESCALE);
380 381
}

382
static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
383 384 385
		unsigned long event, void *data)
{
	struct clk_notifier_data *ndata = data;
386 387 388
	struct ttc_timer *ttc = to_ttc_timer(nb);
	struct ttc_timer_clockevent *ttcce = container_of(ttc,
			struct ttc_timer_clockevent, ttc);
389 390 391

	switch (event) {
	case POST_RATE_CHANGE:
392 393 394
		/* update cached frequency */
		ttc->freq = ndata->new_rate;

395 396
		clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE);

397 398 399 400 401 402 403 404
		/* fall through */
	case PRE_RATE_CHANGE:
	case ABORT_RATE_CHANGE:
	default:
		return NOTIFY_DONE;
	}
}

405
static void __init ttc_setup_clockevent(struct clk *clk,
406
						void __iomem *base, u32 irq)
407
{
408
	struct ttc_timer_clockevent *ttcce;
409
	int err;
410 411 412 413 414

	ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
	if (WARN_ON(!ttcce))
		return;

415
	ttcce->ttc.clk = clk;
416

417
	err = clk_prepare_enable(ttcce->ttc.clk);
418 419
	if (WARN_ON(err)) {
		kfree(ttcce);
420
		return;
421
	}
422

423 424 425 426 427
	ttcce->ttc.clk_rate_change_nb.notifier_call =
		ttc_rate_change_clockevent_cb;
	ttcce->ttc.clk_rate_change_nb.next = NULL;
	if (clk_notifier_register(ttcce->ttc.clk,
				&ttcce->ttc.clk_rate_change_nb))
428
		pr_warn("Unable to register clock notifier.\n");
429
	ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);
430

431 432
	ttcce->ttc.base_addr = base;
	ttcce->ce.name = "ttc_clockevent";
433
	ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
434
	ttcce->ce.set_next_event = ttc_set_next_event;
435 436 437 438
	ttcce->ce.set_state_shutdown = ttc_shutdown;
	ttcce->ce.set_state_periodic = ttc_set_periodic;
	ttcce->ce.set_state_oneshot = ttc_shutdown;
	ttcce->ce.tick_resume = ttc_resume;
439 440
	ttcce->ce.rating = 200;
	ttcce->ce.irq = irq;
441
	ttcce->ce.cpumask = cpu_possible_mask;
442

443 444 445 446 447
	/*
	 * Setup the clock event timer to be an interval timer which
	 * is prescaled by 32 using the interval interrupt. Leave it
	 * disabled for now.
	 */
448 449
	writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
450
		     ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
451
	writel_relaxed(0x1,  ttcce->ttc.base_addr + TTC_IER_OFFSET);
452

453
	err = request_irq(irq, ttc_clock_event_interrupt,
454
			  IRQF_TIMER, ttcce->ce.name, ttcce);
455 456
	if (WARN_ON(err)) {
		kfree(ttcce);
457
		return;
458
	}
459 460

	clockevents_config_and_register(&ttcce->ce,
461
			ttcce->ttc.freq / PRESCALE, 1, 0xfffe);
462 463
}

464
/**
465
 * ttc_timer_init - Initialize the timer
466 467 468
 *
 * Initializes the timer hardware and register the clock source and clock event
 * timers with Linux kernal timer framework
469
 */
470
static void __init ttc_timer_init(struct device_node *timer)
471 472 473
{
	unsigned int irq;
	void __iomem *timer_baseaddr;
474
	struct clk *clk_cs, *clk_ce;
475
	static int initialized;
476
	int clksel;
477
	u32 timer_width = 16;
478 479 480 481 482

	if (initialized)
		return;

	initialized = 1;
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500

	/*
	 * Get the 1st Triple Timer Counter (TTC) block from the device tree
	 * and use it. Note that the event timer uses the interrupt and it's the
	 * 2nd TTC hence the irq_of_parse_and_map(,1)
	 */
	timer_baseaddr = of_iomap(timer, 0);
	if (!timer_baseaddr) {
		pr_err("ERROR: invalid timer base address\n");
		BUG();
	}

	irq = irq_of_parse_and_map(timer, 1);
	if (irq <= 0) {
		pr_err("ERROR: invalid interrupt number\n");
		BUG();
	}

501 502
	of_property_read_u32(timer, "timer-width", &timer_width);

503
	clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
504 505 506 507 508 509 510
	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
	clk_cs = of_clk_get(timer, clksel);
	if (IS_ERR(clk_cs)) {
		pr_err("ERROR: timer input clock not found\n");
		BUG();
	}

511
	clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
512 513 514
	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
	clk_ce = of_clk_get(timer, clksel);
	if (IS_ERR(clk_ce)) {
515 516 517 518
		pr_err("ERROR: timer input clock not found\n");
		BUG();
	}

519
	ttc_setup_clocksource(clk_cs, timer_baseaddr, timer_width);
520
	ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
521 522 523 524

	pr_info("%s #0 at %p, irq=%d\n", timer->name, timer_baseaddr, irq);
}

525
CLOCKSOURCE_OF_DECLARE(ttc, "cdns,ttc", ttc_timer_init);