hwmgr.c 15.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright 2015 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */
#include "linux/delay.h"
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include "cgs_common.h"
#include "power_state.h"
#include "hwmgr.h"
30 31 32
#include "pppcielanes.h"
#include "pp_debug.h"
#include "ppatomctrl.h"
33 34 35
#include "ppsmc.h"

#define VOLTAGE_SCALE               4
36

37 38
extern int cz_hwmgr_init(struct pp_hwmgr *hwmgr);
extern int tonga_hwmgr_init(struct pp_hwmgr *hwmgr);
39
extern int fiji_hwmgr_init(struct pp_hwmgr *hwmgr);
40
extern int polaris10_hwmgr_init(struct pp_hwmgr *hwmgr);
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
int hwmgr_init(struct amd_pp_init *pp_init, struct pp_instance *handle)
{
	struct pp_hwmgr *hwmgr;

	if ((handle == NULL) || (pp_init == NULL))
		return -EINVAL;

	hwmgr = kzalloc(sizeof(struct pp_hwmgr), GFP_KERNEL);
	if (hwmgr == NULL)
		return -ENOMEM;

	handle->hwmgr = hwmgr;
	hwmgr->smumgr = handle->smu_mgr;
	hwmgr->device = pp_init->device;
	hwmgr->chip_family = pp_init->chip_family;
	hwmgr->chip_id = pp_init->chip_id;
	hwmgr->hw_revision = pp_init->rev_id;
	hwmgr->usec_timeout = AMD_MAX_USEC_TIMEOUT;
	hwmgr->power_source = PP_PowerSource_AC;

	switch (hwmgr->chip_family) {
63 64 65
	case AMD_FAMILY_CZ:
		cz_hwmgr_init(hwmgr);
		break;
66 67 68 69 70
	case AMD_FAMILY_VI:
		switch (hwmgr->chip_id) {
		case CHIP_TONGA:
			tonga_hwmgr_init(hwmgr);
			break;
71 72 73
		case CHIP_FIJI:
			fiji_hwmgr_init(hwmgr);
			break;
74 75 76
		case CHIP_POLARIS11:
		case CHIP_POLARIS10:
			polaris10_hwmgr_init(hwmgr);
77
			break;
78 79 80 81
		default:
			return -EINVAL;
		}
		break;
82 83 84 85 86 87 88 89 90 91 92 93 94 95
	default:
		return -EINVAL;
	}

	phm_init_dynamic_caps(hwmgr);

	return 0;
}

int hwmgr_fini(struct pp_hwmgr *hwmgr)
{
	if (hwmgr == NULL || hwmgr->ps == NULL)
		return -EINVAL;

96 97 98 99 100 101 102
	/* do hwmgr finish*/
	kfree(hwmgr->backend);

	kfree(hwmgr->start_thermal_controller.function_list);

	kfree(hwmgr->set_temperature_range.function_list);

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
	kfree(hwmgr->ps);
	kfree(hwmgr);
	return 0;
}

int hw_init_power_state_table(struct pp_hwmgr *hwmgr)
{
	int result;
	unsigned int i;
	unsigned int table_entries;
	struct pp_power_state *state;
	int size;

	if (hwmgr->hwmgr_func->get_num_of_pp_table_entries == NULL)
		return -EINVAL;

	if (hwmgr->hwmgr_func->get_power_state_size == NULL)
		return -EINVAL;

	hwmgr->num_ps = table_entries = hwmgr->hwmgr_func->get_num_of_pp_table_entries(hwmgr);

	hwmgr->ps_size = size = hwmgr->hwmgr_func->get_power_state_size(hwmgr) +
					  sizeof(struct pp_power_state);

	hwmgr->ps = kzalloc(size * table_entries, GFP_KERNEL);

129 130 131
	if (hwmgr->ps == NULL)
		return -ENOMEM;

132 133 134 135
	state = hwmgr->ps;

	for (i = 0; i < table_entries; i++) {
		result = hwmgr->hwmgr_func->get_pp_table_entry(hwmgr, i, state);
136

137 138 139 140 141 142 143 144 145
		if (state->classification.flags & PP_StateClassificationFlag_Boot) {
			hwmgr->boot_ps = state;
			hwmgr->current_ps = hwmgr->request_ps = state;
		}

		state->id = i + 1; /* assigned unique num for every power state id */

		if (state->classification.flags & PP_StateClassificationFlag_Uvd)
			hwmgr->uvd_ps = state;
146
		state = (struct pp_power_state *)((unsigned long)state + size);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	}

	return 0;
}


/**
 * Returns once the part of the register indicated by the mask has
 * reached the given value.
 */
int phm_wait_on_register(struct pp_hwmgr *hwmgr, uint32_t index,
			 uint32_t value, uint32_t mask)
{
	uint32_t i;
	uint32_t cur_value;

	if (hwmgr == NULL || hwmgr->device == NULL) {
		printk(KERN_ERR "[ powerplay ] Invalid Hardware Manager!");
		return -EINVAL;
	}

	for (i = 0; i < hwmgr->usec_timeout; i++) {
		cur_value = cgs_read_register(hwmgr->device, index);
		if ((cur_value & mask) == (value & mask))
			break;
		udelay(1);
	}

	/* timeout means wrong logic*/
	if (i == hwmgr->usec_timeout)
		return -1;
	return 0;
}

int phm_wait_for_register_unequal(struct pp_hwmgr *hwmgr,
				uint32_t index, uint32_t value, uint32_t mask)
{
	uint32_t i;
	uint32_t cur_value;

	if (hwmgr == NULL || hwmgr->device == NULL) {
		printk(KERN_ERR "[ powerplay ] Invalid Hardware Manager!");
		return -EINVAL;
	}

	for (i = 0; i < hwmgr->usec_timeout; i++) {
		cur_value = cgs_read_register(hwmgr->device, index);
		if ((cur_value & mask) != (value & mask))
			break;
		udelay(1);
	}

	/* timeout means wrong logic*/
	if (i == hwmgr->usec_timeout)
		return -1;
	return 0;
}


/**
 * Returns once the part of the register indicated by the mask has
 * reached the given value.The indirect space is described by giving
 * the memory-mapped index of the indirect index register.
 */
void phm_wait_on_indirect_register(struct pp_hwmgr *hwmgr,
				uint32_t indirect_port,
				uint32_t index,
				uint32_t value,
				uint32_t mask)
{
	if (hwmgr == NULL || hwmgr->device == NULL) {
		printk(KERN_ERR "[ powerplay ] Invalid Hardware Manager!");
		return;
	}

	cgs_write_register(hwmgr->device, indirect_port, index);
	phm_wait_on_register(hwmgr, indirect_port + 1, mask, value);
}

void phm_wait_for_indirect_register_unequal(struct pp_hwmgr *hwmgr,
					uint32_t indirect_port,
					uint32_t index,
					uint32_t value,
					uint32_t mask)
{
	if (hwmgr == NULL || hwmgr->device == NULL) {
		printk(KERN_ERR "[ powerplay ] Invalid Hardware Manager!");
		return;
	}

	cgs_write_register(hwmgr->device, indirect_port, index);
	phm_wait_for_register_unequal(hwmgr, indirect_port + 1,
				      value, mask);
}
241 242 243 244 245 246 247 248 249 250

bool phm_cf_want_uvd_power_gating(struct pp_hwmgr *hwmgr)
{
	return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating);
}

bool phm_cf_want_vce_power_gating(struct pp_hwmgr *hwmgr)
{
	return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating);
}
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578


int phm_trim_voltage_table(struct pp_atomctrl_voltage_table *vol_table)
{
	uint32_t i, j;
	uint16_t vvalue;
	bool found = false;
	struct pp_atomctrl_voltage_table *table;

	PP_ASSERT_WITH_CODE((NULL != vol_table),
			"Voltage Table empty.", return -EINVAL);

	table = kzalloc(sizeof(struct pp_atomctrl_voltage_table),
			GFP_KERNEL);

	if (NULL == table)
		return -EINVAL;

	table->mask_low = vol_table->mask_low;
	table->phase_delay = vol_table->phase_delay;

	for (i = 0; i < vol_table->count; i++) {
		vvalue = vol_table->entries[i].value;
		found = false;

		for (j = 0; j < table->count; j++) {
			if (vvalue == table->entries[j].value) {
				found = true;
				break;
			}
		}

		if (!found) {
			table->entries[table->count].value = vvalue;
			table->entries[table->count].smio_low =
					vol_table->entries[i].smio_low;
			table->count++;
		}
	}

	memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table));
	kfree(table);

	return 0;
}

int phm_get_svi2_mvdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
		phm_ppt_v1_clock_voltage_dependency_table *dep_table)
{
	uint32_t i;
	int result;

	PP_ASSERT_WITH_CODE((0 != dep_table->count),
			"Voltage Dependency Table empty.", return -EINVAL);

	PP_ASSERT_WITH_CODE((NULL != vol_table),
			"vol_table empty.", return -EINVAL);

	vol_table->mask_low = 0;
	vol_table->phase_delay = 0;
	vol_table->count = dep_table->count;

	for (i = 0; i < dep_table->count; i++) {
		vol_table->entries[i].value = dep_table->entries[i].mvdd;
		vol_table->entries[i].smio_low = 0;
	}

	result = phm_trim_voltage_table(vol_table);
	PP_ASSERT_WITH_CODE((0 == result),
			"Failed to trim MVDD table.", return result);

	return 0;
}

int phm_get_svi2_vddci_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
		phm_ppt_v1_clock_voltage_dependency_table *dep_table)
{
	uint32_t i;
	int result;

	PP_ASSERT_WITH_CODE((0 != dep_table->count),
			"Voltage Dependency Table empty.", return -EINVAL);

	PP_ASSERT_WITH_CODE((NULL != vol_table),
			"vol_table empty.", return -EINVAL);

	vol_table->mask_low = 0;
	vol_table->phase_delay = 0;
	vol_table->count = dep_table->count;

	for (i = 0; i < dep_table->count; i++) {
		vol_table->entries[i].value = dep_table->entries[i].vddci;
		vol_table->entries[i].smio_low = 0;
	}

	result = phm_trim_voltage_table(vol_table);
	PP_ASSERT_WITH_CODE((0 == result),
			"Failed to trim VDDCI table.", return result);

	return 0;
}

int phm_get_svi2_vdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
		phm_ppt_v1_voltage_lookup_table *lookup_table)
{
	int i = 0;

	PP_ASSERT_WITH_CODE((0 != lookup_table->count),
			"Voltage Lookup Table empty.", return -EINVAL);

	PP_ASSERT_WITH_CODE((NULL != vol_table),
			"vol_table empty.", return -EINVAL);

	vol_table->mask_low = 0;
	vol_table->phase_delay = 0;

	vol_table->count = lookup_table->count;

	for (i = 0; i < vol_table->count; i++) {
		vol_table->entries[i].value = lookup_table->entries[i].us_vdd;
		vol_table->entries[i].smio_low = 0;
	}

	return 0;
}

void phm_trim_voltage_table_to_fit_state_table(uint32_t max_vol_steps,
				struct pp_atomctrl_voltage_table *vol_table)
{
	unsigned int i, diff;

	if (vol_table->count <= max_vol_steps)
		return;

	diff = vol_table->count - max_vol_steps;

	for (i = 0; i < max_vol_steps; i++)
		vol_table->entries[i] = vol_table->entries[i + diff];

	vol_table->count = max_vol_steps;

	return;
}

int phm_reset_single_dpm_table(void *table,
				uint32_t count, int max)
{
	int i;

	struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;

	PP_ASSERT_WITH_CODE(count <= max,
			"Fatal error, can not set up single DPM table entries to exceed max number!",
			   );

	dpm_table->count = count;
	for (i = 0; i < max; i++)
		dpm_table->dpm_level[i].enabled = false;

	return 0;
}

void phm_setup_pcie_table_entry(
	void *table,
	uint32_t index, uint32_t pcie_gen,
	uint32_t pcie_lanes)
{
	struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
	dpm_table->dpm_level[index].value = pcie_gen;
	dpm_table->dpm_level[index].param1 = pcie_lanes;
	dpm_table->dpm_level[index].enabled = 1;
}

int32_t phm_get_dpm_level_enable_mask_value(void *table)
{
	int32_t i;
	int32_t mask = 0;
	struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;

	for (i = dpm_table->count; i > 0; i--) {
		mask = mask << 1;
		if (dpm_table->dpm_level[i - 1].enabled)
			mask |= 0x1;
		else
			mask &= 0xFFFFFFFE;
	}

	return mask;
}

uint8_t phm_get_voltage_index(
		struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage)
{
	uint8_t count = (uint8_t) (lookup_table->count);
	uint8_t i;

	PP_ASSERT_WITH_CODE((NULL != lookup_table),
			"Lookup Table empty.", return 0);
	PP_ASSERT_WITH_CODE((0 != count),
			"Lookup Table empty.", return 0);

	for (i = 0; i < lookup_table->count; i++) {
		/* find first voltage equal or bigger than requested */
		if (lookup_table->entries[i].us_vdd >= voltage)
			return i;
	}
	/* voltage is bigger than max voltage in the table */
	return i - 1;
}

uint16_t phm_find_closest_vddci(struct pp_atomctrl_voltage_table *vddci_table, uint16_t vddci)
{
	uint32_t  i;

	for (i = 0; i < vddci_table->count; i++) {
		if (vddci_table->entries[i].value >= vddci)
			return vddci_table->entries[i].value;
	}

	PP_ASSERT_WITH_CODE(false,
			"VDDCI is larger than max VDDCI in VDDCI Voltage Table!",
			return vddci_table->entries[i].value);
}

int phm_find_boot_level(void *table,
		uint32_t value, uint32_t *boot_level)
{
	int result = -EINVAL;
	uint32_t i;
	struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;

	for (i = 0; i < dpm_table->count; i++) {
		if (value == dpm_table->dpm_level[i].value) {
			*boot_level = i;
			result = 0;
		}
	}

	return result;
}

int phm_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
	phm_ppt_v1_voltage_lookup_table *lookup_table,
	uint16_t virtual_voltage_id, int32_t *sclk)
{
	uint8_t entryId;
	uint8_t voltageId;
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)(hwmgr->pptable);

	PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL);

	/* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
	for (entryId = 0; entryId < table_info->vdd_dep_on_sclk->count; entryId++) {
		voltageId = table_info->vdd_dep_on_sclk->entries[entryId].vddInd;
		if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id)
			break;
	}

	PP_ASSERT_WITH_CODE(entryId < table_info->vdd_dep_on_sclk->count,
			"Can't find requested voltage id in vdd_dep_on_sclk table!",
			return -EINVAL;
			);

	*sclk = table_info->vdd_dep_on_sclk->entries[entryId].clk;

	return 0;
}

/**
 * Initialize Dynamic State Adjustment Rule Settings
 *
 * @param    hwmgr  the address of the powerplay hardware manager.
 */
int phm_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr)
{
	uint32_t table_size;
	struct phm_clock_voltage_dependency_table *table_clk_vlt;
	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);

	/* initialize vddc_dep_on_dal_pwrl table */
	table_size = sizeof(uint32_t) + 4 * sizeof(struct phm_clock_voltage_dependency_record);
	table_clk_vlt = (struct phm_clock_voltage_dependency_table *)kzalloc(table_size, GFP_KERNEL);

	if (NULL == table_clk_vlt) {
		printk(KERN_ERR "[ powerplay ] Can not allocate space for vddc_dep_on_dal_pwrl! \n");
		return -ENOMEM;
	} else {
		table_clk_vlt->count = 4;
		table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_ULTRALOW;
		table_clk_vlt->entries[0].v = 0;
		table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_LOW;
		table_clk_vlt->entries[1].v = 720;
		table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_NOMINAL;
		table_clk_vlt->entries[2].v = 810;
		table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_PERFORMANCE;
		table_clk_vlt->entries[3].v = 900;
		pptable_info->vddc_dep_on_dal_pwrl = table_clk_vlt;
		hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;
	}

	return 0;
}

int phm_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
{
	if (NULL != hwmgr->dyn_state.vddc_dep_on_dal_pwrl) {
		kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
		hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
	}

	if (NULL != hwmgr->backend) {
		kfree(hwmgr->backend);
		hwmgr->backend = NULL;
	}

	return 0;
}

uint32_t phm_get_lowest_enabled_level(struct pp_hwmgr *hwmgr, uint32_t mask)
{
	uint32_t level = 0;

	while (0 == (mask & (1 << level)))
		level++;

	return level;
}
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613

void phm_apply_dal_min_voltage_request(struct pp_hwmgr *hwmgr)
{
	struct phm_ppt_v1_information *table_info =
			(struct phm_ppt_v1_information *)hwmgr->pptable;
	struct phm_clock_voltage_dependency_table *table =
				table_info->vddc_dep_on_dal_pwrl;
	struct phm_ppt_v1_clock_voltage_dependency_table *vddc_table;
	enum PP_DAL_POWERLEVEL dal_power_level = hwmgr->dal_power_level;
	uint32_t req_vddc = 0, req_volt, i;

	if (!table || table->count <= 0
		|| dal_power_level < PP_DAL_POWERLEVEL_ULTRALOW
		|| dal_power_level > PP_DAL_POWERLEVEL_PERFORMANCE)
		return;

	for (i = 0; i < table->count; i++) {
		if (dal_power_level == table->entries[i].clk) {
			req_vddc = table->entries[i].v;
			break;
		}
	}

	vddc_table = table_info->vdd_dep_on_sclk;
	for (i = 0; i < vddc_table->count; i++) {
		if (req_vddc <= vddc_table->entries[i].vddc) {
			req_volt = (((uint32_t)vddc_table->entries[i].vddc) * VOLTAGE_SCALE);
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_VddC_Request, req_volt);
			return;
		}
	}
	printk(KERN_ERR "DAL requested level can not"
			" found a available voltage in VDDC DPM Table \n");
}