blk-throttle.c 42.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
12
#include <linux/blk-cgroup.h>
13
#include "blk.h"
14 15 16 17 18 19 20 21 22 23

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

/* Throttling is performed over 100ms slice and after that slice is renewed */
static unsigned long throtl_slice = HZ/10;	/* 100 ms */

T
Tejun Heo 已提交
24
static struct blkcg_policy blkcg_policy_throtl;
25

26 27 28
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

58
struct throtl_service_queue {
59 60
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

61 62 63 64
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
65
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
66 67 68 69 70 71
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
72 73 74 75
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
76
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
77 78
};

79 80
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
81
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
82 83
};

84 85 86
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

struct throtl_grp {
87 88 89
	/* must be the first member */
	struct blkg_policy_data pd;

90
	/* active throtl group service_queue member */
91 92
	struct rb_node rb_node;

93 94 95
	/* throtl_data this group belongs to */
	struct throtl_data *td;

96 97 98
	/* this group's service queue */
	struct throtl_service_queue service_queue;

99 100 101 102 103 104 105 106 107 108 109
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

110 111 112 113 114 115 116 117 118
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

119 120 121
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

122 123 124
	/* bytes per second rate limits */
	uint64_t bps[2];

125 126 127
	/* IOPS limits */
	unsigned int iops[2];

128 129
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
130 131
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
132 133 134 135 136 137 138 139 140

	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
};

struct throtl_data
{
	/* service tree for active throtl groups */
141
	struct throtl_service_queue service_queue;
142 143 144 145 146 147 148

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/*
V
Vivek Goyal 已提交
149
	 * number of total undestroyed groups
150 151 152 153
	 */
	unsigned int nr_undestroyed_grps;

	/* Work for dispatching throttled bios */
154
	struct work_struct dispatch_work;
155 156
};

157 158
static void throtl_pending_timer_fn(unsigned long arg);

159 160 161 162 163
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
164
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
165
{
166
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
167 168
}

T
Tejun Heo 已提交
169
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
170
{
171
	return pd_to_blkg(&tg->pd);
172 173
}

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * A service_queue can be embeded in either a throtl_grp or throtl_data.
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
220 221
	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
		break;							\
222 223
	if ((__tg)) {							\
		char __pbuf[128];					\
T
Tejun Heo 已提交
224
									\
225 226 227 228 229
		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
230
} while (0)
231

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

315
/* init a service_queue, assumes the caller zeroed it */
316
static void throtl_service_queue_init(struct throtl_service_queue *sq)
317
{
318 319
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
320
	sq->pending_tree = RB_ROOT;
321 322 323 324
	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
		    (unsigned long)sq);
}

325 326
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
{
327
	struct throtl_grp *tg;
T
Tejun Heo 已提交
328
	int rw;
329 330 331

	tg = kzalloc_node(sizeof(*tg), gfp, node);
	if (!tg)
332
		return NULL;
333

334 335 336 337 338 339 340 341 342 343 344 345 346
	throtl_service_queue_init(&tg->service_queue);

	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

	RB_CLEAR_NODE(&tg->rb_node);
	tg->bps[READ] = -1;
	tg->bps[WRITE] = -1;
	tg->iops[READ] = -1;
	tg->iops[WRITE] = -1;

347
	return &tg->pd;
348 349
}

350
static void throtl_pd_init(struct blkg_policy_data *pd)
351
{
352 353
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkcg_gq *blkg = tg_to_blkg(tg);
354
	struct throtl_data *td = blkg->q->td;
355
	struct throtl_service_queue *sq = &tg->service_queue;
356

357
	/*
358
	 * If on the default hierarchy, we switch to properly hierarchical
359 360 361 362 363
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
364
	 * If not on the default hierarchy, the broken flat hierarchy
365 366 367 368 369
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
370
	sq->parent_sq = &td->service_queue;
371
	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
372
		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
373
	tg->td = td;
374 375
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
				    (tg->bps[rw] != -1 || tg->iops[rw] != -1);
}

391
static void throtl_pd_online(struct blkg_policy_data *pd)
392 393 394 395 396
{
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
397
	tg_update_has_rules(pd_to_tg(pd));
398 399
}

400 401
static void throtl_pd_free(struct blkg_policy_data *pd)
{
402 403
	struct throtl_grp *tg = pd_to_tg(pd);

404
	del_timer_sync(&tg->service_queue.pending_timer);
405
	kfree(tg);
406 407
}

408 409
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
410 411
{
	/* Service tree is empty */
412
	if (!parent_sq->nr_pending)
413 414
		return NULL;

415 416
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
417

418 419
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
420 421 422 423 424 425 426 427 428 429

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

430 431
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
432
{
433 434 435 436
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
437 438
}

439
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
440 441 442
{
	struct throtl_grp *tg;

443
	tg = throtl_rb_first(parent_sq);
444 445 446
	if (!tg)
		return;

447
	parent_sq->first_pending_disptime = tg->disptime;
448 449
}

450
static void tg_service_queue_add(struct throtl_grp *tg)
451
{
452
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
453
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
472
		parent_sq->first_pending = &tg->rb_node;
473 474

	rb_link_node(&tg->rb_node, parent, node);
475
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
476 477
}

478
static void __throtl_enqueue_tg(struct throtl_grp *tg)
479
{
480
	tg_service_queue_add(tg);
481
	tg->flags |= THROTL_TG_PENDING;
482
	tg->service_queue.parent_sq->nr_pending++;
483 484
}

485
static void throtl_enqueue_tg(struct throtl_grp *tg)
486
{
487
	if (!(tg->flags & THROTL_TG_PENDING))
488
		__throtl_enqueue_tg(tg);
489 490
}

491
static void __throtl_dequeue_tg(struct throtl_grp *tg)
492
{
493
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
494
	tg->flags &= ~THROTL_TG_PENDING;
495 496
}

497
static void throtl_dequeue_tg(struct throtl_grp *tg)
498
{
499
	if (tg->flags & THROTL_TG_PENDING)
500
		__throtl_dequeue_tg(tg);
501 502
}

503
/* Call with queue lock held */
504 505
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
506
{
507 508 509
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
510 511
}

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
532
{
533
	/* any pending children left? */
534
	if (!sq->nr_pending)
535
		return true;
536

537
	update_min_dispatch_time(sq);
538

539
	/* is the next dispatch time in the future? */
540
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
541
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
542
		return true;
543 544
	}

545 546
	/* tell the caller to continue dispatching */
	return false;
547 548
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

	tg->slice_end[rw] = jiffies + throtl_slice;
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

571
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
572 573
{
	tg->bytes_disp[rw] = 0;
574
	tg->io_disp[rw] = 0;
575 576
	tg->slice_start[rw] = jiffies;
	tg->slice_end[rw] = jiffies + throtl_slice;
577 578 579 580
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
581 582
}

583 584
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
585 586 587 588
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
}

589 590
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
591 592
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
593 594 595 596
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
597 598 599
}

/* Determine if previously allocated or extended slice is complete or not */
600
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
601 602
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
603
		return false;
604 605 606 607 608

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
609
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
610
{
611 612
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
613 614 615 616 617 618 619 620

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
621
	if (throtl_slice_used(tg, rw))
622 623
		return;

624 625 626 627 628 629 630 631
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

632
	throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
633

634 635 636 637 638 639
	time_elapsed = jiffies - tg->slice_start[rw];

	nr_slices = time_elapsed / throtl_slice;

	if (!nr_slices)
		return;
640 641 642
	tmp = tg->bps[rw] * throtl_slice * nr_slices;
	do_div(tmp, HZ);
	bytes_trim = tmp;
643

644
	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
645

646
	if (!bytes_trim && !io_trim)
647 648 649 650 651 652 653
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

654 655 656 657 658
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

659 660
	tg->slice_start[rw] += nr_slices * throtl_slice;

661 662 663 664
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
665 666
}

667 668
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
669 670
{
	bool rw = bio_data_dir(bio);
671
	unsigned int io_allowed;
672
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
673
	u64 tmp;
674

675
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
676

677 678 679 680 681 682
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

683 684 685 686 687 688 689 690 691 692 693 694 695 696
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
697 698

	if (tg->io_disp[rw] + 1 <= io_allowed) {
699 700
		if (wait)
			*wait = 0;
701
		return true;
702 703
	}

704 705 706 707 708 709 710 711 712 713 714 715 716
	/* Calc approx time to dispatch */
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

717 718
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
719 720
{
	bool rw = bio_data_dir(bio);
721
	u64 bytes_allowed, extra_bytes, tmp;
722
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
723 724 725 726 727 728 729 730 731

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

732 733
	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);
734
	bytes_allowed = tmp;
735

736
	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
737 738
		if (wait)
			*wait = 0;
739
		return true;
740 741 742
	}

	/* Calc approx time to dispatch */
743
	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
744 745 746 747 748 749 750 751 752 753 754 755
	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
756 757 758 759 760 761 762
	return 0;
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
763 764
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
765 766 767 768 769 770 771 772 773 774
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
775
	BUG_ON(tg->service_queue.nr_queued[rw] &&
776
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
777

778 779 780 781
	/* If tg->bps = -1, then BW is unlimited */
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
		if (wait)
			*wait = 0;
782
		return true;
783 784 785 786 787 788 789
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
	 * long since now.
	 */
790 791
	if (throtl_slice_used(tg, rw))
		throtl_start_new_slice(tg, rw);
792 793
	else {
		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
794
			throtl_extend_slice(tg, rw, jiffies + throtl_slice);
795 796
	}

797 798
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
799 800 801 802 803 804 805 806 807 808 809
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
810
		throtl_extend_slice(tg, rw, jiffies + max_wait);
811 812 813 814 815 816 817 818 819

	return 0;
}

static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	/* Charge the bio to the group */
820
	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
821
	tg->io_disp[rw]++;
822

823 824 825 826 827 828
	/*
	 * REQ_THROTTLED is used to prevent the same bio to be throttled
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 */
829
	if (!(bio->bi_rw & REQ_THROTTLED))
830
		bio->bi_rw |= REQ_THROTTLED;
831 832
}

833 834 835 836 837 838 839 840 841 842 843
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
844
{
845
	struct throtl_service_queue *sq = &tg->service_queue;
846 847
	bool rw = bio_data_dir(bio);

848 849 850
	if (!qn)
		qn = &tg->qnode_on_self[rw];

851 852 853 854 855 856 857 858 859
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

860 861
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

862
	sq->nr_queued[rw]++;
863
	throtl_enqueue_tg(tg);
864 865
}

866
static void tg_update_disptime(struct throtl_grp *tg)
867
{
868
	struct throtl_service_queue *sq = &tg->service_queue;
869 870 871
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

872
	if ((bio = throtl_peek_queued(&sq->queued[READ])))
873
		tg_may_dispatch(tg, bio, &read_wait);
874

875
	if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
876
		tg_may_dispatch(tg, bio, &write_wait);
877 878 879 880 881

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
882
	throtl_dequeue_tg(tg);
883
	tg->disptime = disptime;
884
	throtl_enqueue_tg(tg);
885 886 887

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
888 889
}

890 891 892 893 894 895 896 897 898 899
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

900
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
901
{
902
	struct throtl_service_queue *sq = &tg->service_queue;
903 904
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
905
	struct throtl_grp *tg_to_put = NULL;
906 907
	struct bio *bio;

908 909 910 911 912 913 914
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
915
	sq->nr_queued[rw]--;
916 917

	throtl_charge_bio(tg, bio);
918 919 920 921 922 923 924 925 926

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
927
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
928
		start_parent_slice_with_credit(tg, parent_tg, rw);
929
	} else {
930 931
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
932 933 934
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
935

936
	throtl_trim_slice(tg, rw);
937

938 939
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
940 941
}

942
static int throtl_dispatch_tg(struct throtl_grp *tg)
943
{
944
	struct throtl_service_queue *sq = &tg->service_queue;
945 946
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
947
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
948 949 950 951
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

952
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
953
	       tg_may_dispatch(tg, bio, NULL)) {
954

955
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
956 957 958 959 960 961
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

962
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
963
	       tg_may_dispatch(tg, bio, NULL)) {
964

965
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
966 967 968 969 970 971 972 973 974
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

975
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
976 977 978 979
{
	unsigned int nr_disp = 0;

	while (1) {
980 981
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
		struct throtl_service_queue *sq = &tg->service_queue;
982 983 984 985 986 987 988

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

989
		throtl_dequeue_tg(tg);
990

991
		nr_disp += throtl_dispatch_tg(tg);
992

993
		if (sq->nr_queued[0] || sq->nr_queued[1])
994
			tg_update_disptime(tg);
995 996 997 998 999 1000 1001 1002

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1003 1004 1005 1006 1007 1008 1009
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1010 1011 1012 1013 1014 1015 1016
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1017
 */
1018 1019 1020
static void throtl_pending_timer_fn(unsigned long arg)
{
	struct throtl_service_queue *sq = (void *)arg;
1021
	struct throtl_grp *tg = sq_to_tg(sq);
1022
	struct throtl_data *td = sq_to_td(sq);
1023
	struct request_queue *q = td->queue;
1024 1025
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1026
	int ret;
1027 1028

	spin_lock_irq(q->queue_lock);
1029 1030 1031
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1032

1033 1034
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1035 1036
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1037 1038 1039 1040 1041 1042

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1043

1044 1045
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1046

1047 1048 1049 1050
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1051
	}
1052

1053 1054
	if (!dispatched)
		goto out_unlock;
1055

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1072
	spin_unlock_irq(q->queue_lock);
1073
}
1074

1075 1076 1077 1078 1079 1080 1081 1082
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
1083
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1097 1098 1099
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1100 1101 1102
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1103
		blk_start_plug(&plug);
1104 1105
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1106
		blk_finish_plug(&plug);
1107 1108 1109
	}
}

1110 1111
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1112
{
1113 1114
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1115

1116
	if (v == -1)
1117
		return 0;
1118
	return __blkg_prfill_u64(sf, pd, v);
1119 1120
}

1121 1122
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1123
{
1124 1125
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1126

1127 1128
	if (v == -1)
		return 0;
1129
	return __blkg_prfill_u64(sf, pd, v);
1130 1131
}

1132
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1133
{
1134 1135
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1136
	return 0;
1137 1138
}

1139
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1140
{
1141 1142
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1143
	return 0;
1144 1145
}

1146
static void tg_conf_updated(struct throtl_grp *tg)
1147
{
1148
	struct throtl_service_queue *sq = &tg->service_queue;
1149
	struct cgroup_subsys_state *pos_css;
1150
	struct blkcg_gq *blkg;
1151

1152 1153 1154 1155
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
		   tg->bps[READ], tg->bps[WRITE],
		   tg->iops[READ], tg->iops[WRITE]);
1156

1157 1158 1159 1160 1161 1162 1163
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1164
	blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
1165 1166
		tg_update_has_rules(blkg_to_tg(blkg));

1167 1168 1169 1170 1171 1172 1173 1174
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1175 1176
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1177

1178
	if (tg->flags & THROTL_TG_PENDING) {
1179
		tg_update_disptime(tg);
1180
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1181
	}
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
}

static ssize_t tg_set_conf(struct kernfs_open_file *of,
			   char *buf, size_t nbytes, loff_t off, bool is_u64)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	int ret;
	u64 v;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
	if (sscanf(ctx.body, "%llu", &v) != 1)
		goto out_finish;
	if (!v)
		v = -1;

	tg = blkg_to_tg(ctx.blkg);

	if (is_u64)
		*(u64 *)((void *)tg + of_cft(of)->private) = v;
	else
		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1209

1210
	tg_conf_updated(tg);
1211 1212
	ret = 0;
out_finish:
1213
	blkg_conf_finish(&ctx);
1214
	return ret ?: nbytes;
1215 1216
}

1217 1218
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
1219
{
1220
	return tg_set_conf(of, buf, nbytes, off, true);
1221 1222
}

1223 1224
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
1225
{
1226
	return tg_set_conf(of, buf, nbytes, off, false);
1227 1228
}

1229
static struct cftype throtl_legacy_files[] = {
1230 1231
	{
		.name = "throttle.read_bps_device",
1232
		.private = offsetof(struct throtl_grp, bps[READ]),
1233
		.seq_show = tg_print_conf_u64,
1234
		.write = tg_set_conf_u64,
1235 1236 1237
	},
	{
		.name = "throttle.write_bps_device",
1238
		.private = offsetof(struct throtl_grp, bps[WRITE]),
1239
		.seq_show = tg_print_conf_u64,
1240
		.write = tg_set_conf_u64,
1241 1242 1243
	},
	{
		.name = "throttle.read_iops_device",
1244
		.private = offsetof(struct throtl_grp, iops[READ]),
1245
		.seq_show = tg_print_conf_uint,
1246
		.write = tg_set_conf_uint,
1247 1248 1249
	},
	{
		.name = "throttle.write_iops_device",
1250
		.private = offsetof(struct throtl_grp, iops[WRITE]),
1251
		.seq_show = tg_print_conf_uint,
1252
		.write = tg_set_conf_uint,
1253 1254 1255
	},
	{
		.name = "throttle.io_service_bytes",
1256 1257
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes,
1258 1259 1260
	},
	{
		.name = "throttle.io_serviced",
1261 1262
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios,
1263 1264 1265 1266
	},
	{ }	/* terminate */
};

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
static u64 tg_prfill_max(struct seq_file *sf, struct blkg_policy_data *pd,
			 int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	const char *dname = blkg_dev_name(pd->blkg);
	char bufs[4][21] = { "max", "max", "max", "max" };

	if (!dname)
		return 0;
	if (tg->bps[READ] == -1 && tg->bps[WRITE] == -1 &&
	    tg->iops[READ] == -1 && tg->iops[WRITE] == -1)
		return 0;

	if (tg->bps[READ] != -1)
		snprintf(bufs[0], sizeof(bufs[0]), "%llu", tg->bps[READ]);
	if (tg->bps[WRITE] != -1)
		snprintf(bufs[1], sizeof(bufs[1]), "%llu", tg->bps[WRITE]);
	if (tg->iops[READ] != -1)
		snprintf(bufs[2], sizeof(bufs[2]), "%u", tg->iops[READ]);
	if (tg->iops[WRITE] != -1)
		snprintf(bufs[3], sizeof(bufs[3]), "%u", tg->iops[WRITE]);

	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s\n",
		   dname, bufs[0], bufs[1], bufs[2], bufs[3]);
	return 0;
}

static int tg_print_max(struct seq_file *sf, void *v)
{
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_max,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
	return 0;
}

static ssize_t tg_set_max(struct kernfs_open_file *of,
			  char *buf, size_t nbytes, loff_t off)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	u64 v[4];
	int ret;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	tg = blkg_to_tg(ctx.blkg);

	v[0] = tg->bps[READ];
	v[1] = tg->bps[WRITE];
	v[2] = tg->iops[READ];
	v[3] = tg->iops[WRITE];

	while (true) {
		char tok[27];	/* wiops=18446744073709551616 */
		char *p;
		u64 val = -1;
		int len;

		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
			break;
		if (tok[0] == '\0')
			break;
		ctx.body += len;

		ret = -EINVAL;
		p = tok;
		strsep(&p, "=");
		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
			goto out_finish;

		ret = -ERANGE;
		if (!val)
			goto out_finish;

		ret = -EINVAL;
		if (!strcmp(tok, "rbps"))
			v[0] = val;
		else if (!strcmp(tok, "wbps"))
			v[1] = val;
		else if (!strcmp(tok, "riops"))
			v[2] = min_t(u64, val, UINT_MAX);
		else if (!strcmp(tok, "wiops"))
			v[3] = min_t(u64, val, UINT_MAX);
		else
			goto out_finish;
	}

	tg->bps[READ] = v[0];
	tg->bps[WRITE] = v[1];
	tg->iops[READ] = v[2];
	tg->iops[WRITE] = v[3];

	tg_conf_updated(tg);
	ret = 0;
out_finish:
	blkg_conf_finish(&ctx);
	return ret ?: nbytes;
}

static struct cftype throtl_files[] = {
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = tg_print_max,
		.write = tg_set_max,
	},
	{ }	/* terminate */
};

1378
static void throtl_shutdown_wq(struct request_queue *q)
1379 1380 1381
{
	struct throtl_data *td = q->td;

1382
	cancel_work_sync(&td->dispatch_work);
1383 1384
}

T
Tejun Heo 已提交
1385
static struct blkcg_policy blkcg_policy_throtl = {
1386
	.dfl_cftypes		= throtl_files,
1387
	.legacy_cftypes		= throtl_legacy_files,
1388

1389
	.pd_alloc_fn		= throtl_pd_alloc,
1390
	.pd_init_fn		= throtl_pd_init,
1391
	.pd_online_fn		= throtl_pd_online,
1392
	.pd_free_fn		= throtl_pd_free,
1393 1394
};

1395 1396
bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
		    struct bio *bio)
1397
{
1398
	struct throtl_qnode *qn = NULL;
1399
	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
1400
	struct throtl_service_queue *sq;
1401
	bool rw = bio_data_dir(bio);
1402
	bool throttled = false;
1403

1404 1405
	WARN_ON_ONCE(!rcu_read_lock_held());

1406
	/* see throtl_charge_bio() */
1407
	if ((bio->bi_rw & REQ_THROTTLED) || !tg->has_rules[rw])
1408
		goto out;
1409 1410

	spin_lock_irq(q->queue_lock);
1411 1412

	if (unlikely(blk_queue_bypass(q)))
1413
		goto out_unlock;
1414

1415 1416
	sq = &tg->service_queue;

1417 1418 1419 1420
	while (true) {
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
1421

1422 1423 1424 1425 1426
		/* if above limits, break to queue */
		if (!tg_may_dispatch(tg, bio, NULL))
			break;

		/* within limits, let's charge and dispatch directly */
1427
		throtl_charge_bio(tg, bio);
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
1440
		throtl_trim_slice(tg, rw);
1441 1442 1443 1444 1445 1446

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
1447
		qn = &tg->qnode_on_parent[rw];
1448 1449 1450 1451
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
1452 1453
	}

1454
	/* out-of-limit, queue to @tg */
1455 1456
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
1457
		   tg->bytes_disp[rw], bio->bi_iter.bi_size, tg->bps[rw],
1458 1459
		   tg->io_disp[rw], tg->iops[rw],
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1460

1461
	bio_associate_current(bio);
1462
	tg->td->nr_queued[rw]++;
1463
	throtl_add_bio_tg(bio, qn, tg);
1464
	throttled = true;
1465

1466 1467 1468 1469 1470 1471
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
1472
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1473
		tg_update_disptime(tg);
1474
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1475 1476
	}

1477
out_unlock:
1478
	spin_unlock_irq(q->queue_lock);
1479
out:
1480 1481 1482 1483 1484 1485 1486
	/*
	 * As multiple blk-throtls may stack in the same issue path, we
	 * don't want bios to leave with the flag set.  Clear the flag if
	 * being issued.
	 */
	if (!throttled)
		bio->bi_rw &= ~REQ_THROTTLED;
1487
	return throttled;
1488 1489
}

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

1505
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
1506
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1507
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1508 1509 1510 1511
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
1522
	struct blkcg_gq *blkg;
1523
	struct cgroup_subsys_state *pos_css;
1524
	struct bio *bio;
1525
	int rw;
1526

1527
	queue_lockdep_assert_held(q);
1528
	rcu_read_lock();
1529

1530 1531 1532 1533 1534 1535
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
1536
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1537
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1538

1539 1540 1541 1542
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
1543 1544
	spin_unlock_irq(q->queue_lock);

1545
	/* all bios now should be in td->service_queue, issue them */
1546
	for (rw = READ; rw <= WRITE; rw++)
1547 1548
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
1549
			generic_make_request(bio);
1550 1551 1552 1553

	spin_lock_irq(q->queue_lock);
}

1554 1555 1556
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
1557
	int ret;
1558 1559 1560 1561 1562

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;

1563
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1564
	throtl_service_queue_init(&td->service_queue);
1565

1566
	q->td = td;
1567
	td->queue = q;
V
Vivek Goyal 已提交
1568

1569
	/* activate policy */
T
Tejun Heo 已提交
1570
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1571
	if (ret)
1572
		kfree(td);
1573
	return ret;
1574 1575 1576 1577
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
1578
	BUG_ON(!q->td);
1579
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
1580
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1581
	kfree(q->td);
1582 1583 1584 1585
}

static int __init throtl_init(void)
{
1586 1587 1588 1589
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
1590
	return blkcg_policy_register(&blkcg_policy_throtl);
1591 1592 1593
}

module_init(throtl_init);