44x_tlb.c 13.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * Copyright IBM Corp. 2007
 *
 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
 */

#include <linux/types.h>
#include <linux/string.h>
22
#include <linux/kvm.h>
23 24
#include <linux/kvm_host.h>
#include <linux/highmem.h>
25 26

#include <asm/tlbflush.h>
27 28
#include <asm/mmu-44x.h>
#include <asm/kvm_ppc.h>
29
#include <asm/kvm_44x.h>
30
#include "timing.h"
31 32 33

#include "44x_tlb.h"

34 35 36 37 38 39 40
#ifndef PPC44x_TLBE_SIZE
#define PPC44x_TLBE_SIZE	PPC44x_TLB_4K
#endif

#define PAGE_SIZE_4K (1<<12)
#define PAGE_MASK_4K (~(PAGE_SIZE_4K - 1))

41 42
#define PPC44x_TLB_UATTR_MASK \
	(PPC44x_TLB_U0|PPC44x_TLB_U1|PPC44x_TLB_U2|PPC44x_TLB_U3)
43 44 45
#define PPC44x_TLB_USER_PERM_MASK (PPC44x_TLB_UX|PPC44x_TLB_UR|PPC44x_TLB_UW)
#define PPC44x_TLB_SUPER_PERM_MASK (PPC44x_TLB_SX|PPC44x_TLB_SR|PPC44x_TLB_SW)

46 47 48 49 50 51 52 53 54 55
#ifdef DEBUG
void kvmppc_dump_tlbs(struct kvm_vcpu *vcpu)
{
	struct kvmppc_44x_tlbe *tlbe;
	int i;

	printk("vcpu %d TLB dump:\n", vcpu->vcpu_id);
	printk("| %2s | %3s | %8s | %8s | %8s |\n",
			"nr", "tid", "word0", "word1", "word2");

56
	for (i = 0; i < ARRAY_SIZE(vcpu_44x->guest_tlb); i++) {
57
		tlbe = &vcpu_44x->guest_tlb[i];
58 59 60 61 62 63 64 65
		if (tlbe->word0 & PPC44x_TLB_VALID)
			printk(" G%2d |  %02X | %08X | %08X | %08X |\n",
			       i, tlbe->tid, tlbe->word0, tlbe->word1,
			       tlbe->word2);
	}
}
#endif

66 67 68 69 70 71 72 73 74 75 76
static inline void kvmppc_44x_tlbie(unsigned int index)
{
	/* 0 <= index < 64, so the V bit is clear and we can use the index as
	 * word0. */
	asm volatile(
		"tlbwe %[index], %[index], 0\n"
	:
	: [index] "r"(index)
	);
}

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
static inline void kvmppc_44x_tlbre(unsigned int index,
                                    struct kvmppc_44x_tlbe *tlbe)
{
	asm volatile(
		"tlbre %[word0], %[index], 0\n"
		"mfspr %[tid], %[sprn_mmucr]\n"
		"andi. %[tid], %[tid], 0xff\n"
		"tlbre %[word1], %[index], 1\n"
		"tlbre %[word2], %[index], 2\n"
		: [word0] "=r"(tlbe->word0),
		  [word1] "=r"(tlbe->word1),
		  [word2] "=r"(tlbe->word2),
		  [tid]   "=r"(tlbe->tid)
		: [index] "r"(index),
		  [sprn_mmucr] "i"(SPRN_MMUCR)
		: "cc"
	);
}

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
static inline void kvmppc_44x_tlbwe(unsigned int index,
                                    struct kvmppc_44x_tlbe *stlbe)
{
	unsigned long tmp;

	asm volatile(
		"mfspr %[tmp], %[sprn_mmucr]\n"
		"rlwimi %[tmp], %[tid], 0, 0xff\n"
		"mtspr %[sprn_mmucr], %[tmp]\n"
		"tlbwe %[word0], %[index], 0\n"
		"tlbwe %[word1], %[index], 1\n"
		"tlbwe %[word2], %[index], 2\n"
		: [tmp]   "=&r"(tmp)
		: [word0] "r"(stlbe->word0),
		  [word1] "r"(stlbe->word1),
		  [word2] "r"(stlbe->word2),
		  [tid]   "r"(stlbe->tid),
		  [index] "r"(index),
		  [sprn_mmucr] "i"(SPRN_MMUCR)
	);
}

118 119
static u32 kvmppc_44x_tlb_shadow_attrib(u32 attrib, int usermode)
{
120 121
	/* We only care about the guest's permission and user bits. */
	attrib &= PPC44x_TLB_PERM_MASK|PPC44x_TLB_UATTR_MASK;
122 123 124 125 126 127 128 129 130 131 132

	if (!usermode) {
		/* Guest is in supervisor mode, so we need to translate guest
		 * supervisor permissions into user permissions. */
		attrib &= ~PPC44x_TLB_USER_PERM_MASK;
		attrib |= (attrib & PPC44x_TLB_SUPER_PERM_MASK) << 3;
	}

	/* Make sure host can always access this memory. */
	attrib |= PPC44x_TLB_SX|PPC44x_TLB_SR|PPC44x_TLB_SW;

133 134 135
	/* WIMGE = 0b00100 */
	attrib |= PPC44x_TLB_M;

136 137 138
	return attrib;
}

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/* Load shadow TLB back into hardware. */
void kvmppc_44x_tlb_load(struct kvm_vcpu *vcpu)
{
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
	int i;

	for (i = 0; i <= tlb_44x_hwater; i++) {
		struct kvmppc_44x_tlbe *stlbe = &vcpu_44x->shadow_tlb[i];

		if (get_tlb_v(stlbe) && get_tlb_ts(stlbe))
			kvmppc_44x_tlbwe(i, stlbe);
	}
}

static void kvmppc_44x_tlbe_set_modified(struct kvmppc_vcpu_44x *vcpu_44x,
                                         unsigned int i)
{
	vcpu_44x->shadow_tlb_mod[i] = 1;
}

/* Save hardware TLB to the vcpu, and invalidate all guest mappings. */
void kvmppc_44x_tlb_put(struct kvm_vcpu *vcpu)
{
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
	int i;

	for (i = 0; i <= tlb_44x_hwater; i++) {
		struct kvmppc_44x_tlbe *stlbe = &vcpu_44x->shadow_tlb[i];

		if (vcpu_44x->shadow_tlb_mod[i])
			kvmppc_44x_tlbre(i, stlbe);

		if (get_tlb_v(stlbe) && get_tlb_ts(stlbe))
			kvmppc_44x_tlbie(i);
	}
}


177 178 179 180
/* Search the guest TLB for a matching entry. */
int kvmppc_44x_tlb_index(struct kvm_vcpu *vcpu, gva_t eaddr, unsigned int pid,
                         unsigned int as)
{
181
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
182 183 184
	int i;

	/* XXX Replace loop with fancy data structures. */
185
	for (i = 0; i < ARRAY_SIZE(vcpu_44x->guest_tlb); i++) {
186
		struct kvmppc_44x_tlbe *tlbe = &vcpu_44x->guest_tlb[i];
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
		unsigned int tid;

		if (eaddr < get_tlb_eaddr(tlbe))
			continue;

		if (eaddr > get_tlb_end(tlbe))
			continue;

		tid = get_tlb_tid(tlbe);
		if (tid && (tid != pid))
			continue;

		if (!get_tlb_v(tlbe))
			continue;

		if (get_tlb_ts(tlbe) != as)
			continue;

		return i;
	}

	return -1;
}

211
int kvmppc_44x_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
212 213 214
{
	unsigned int as = !!(vcpu->arch.msr & MSR_IS);

215
	return kvmppc_44x_tlb_index(vcpu, eaddr, vcpu->arch.pid, as);
216 217
}

218
int kvmppc_44x_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
219 220 221
{
	unsigned int as = !!(vcpu->arch.msr & MSR_DS);

222
	return kvmppc_44x_tlb_index(vcpu, eaddr, vcpu->arch.pid, as);
223 224
}

225 226
static void kvmppc_44x_shadow_release(struct kvmppc_vcpu_44x *vcpu_44x,
                                      unsigned int stlb_index)
227
{
228
	struct kvmppc_44x_shadow_ref *ref = &vcpu_44x->shadow_refs[stlb_index];
229

230 231
	if (!ref->page)
		return;
232

233 234 235 236
	/* Discard from the TLB. */
	/* Note: we could actually invalidate a host mapping, if the host overwrote
	 * this TLB entry since we inserted a guest mapping. */
	kvmppc_44x_tlbie(stlb_index);
237

238 239 240 241 242
	/* Now release the page. */
	if (ref->writeable)
		kvm_release_page_dirty(ref->page);
	else
		kvm_release_page_clean(ref->page);
243

244 245 246 247 248
	ref->page = NULL;

	/* XXX set tlb_44x_index to stlb_index? */

	KVMTRACE_1D(STLB_INVAL, &vcpu_44x->vcpu, stlb_index, handler);
249 250
}

251
void kvmppc_core_destroy_mmu(struct kvm_vcpu *vcpu)
252
{
253
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
254
	int i;
255

256 257
	for (i = 0; i <= tlb_44x_hwater; i++)
		kvmppc_44x_shadow_release(vcpu_44x, i);
258 259
}

260 261 262 263 264 265 266 267 268 269 270 271 272
/**
 * kvmppc_mmu_map -- create a host mapping for guest memory
 *
 * If the guest wanted a larger page than the host supports, only the first
 * host page is mapped here and the rest are demand faulted.
 *
 * If the guest wanted a smaller page than the host page size, we map only the
 * guest-size page (i.e. not a full host page mapping).
 *
 * Caller must ensure that the specified guest TLB entry is safe to insert into
 * the shadow TLB.
 */
void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 gvaddr, gpa_t gpaddr, u64 asid,
273
                    u32 flags, u32 max_bytes, unsigned int gtlb_index)
274
{
275
	struct kvmppc_44x_tlbe stlbe;
276
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
277
	struct kvmppc_44x_shadow_ref *ref;
278 279
	struct page *new_page;
	hpa_t hpaddr;
280
	gfn_t gfn;
281 282
	unsigned int victim;

283 284 285 286 287 288 289 290
	/* Select TLB entry to clobber. Indirectly guard against races with the TLB
	 * miss handler by disabling interrupts. */
	local_irq_disable();
	victim = ++tlb_44x_index;
	if (victim > tlb_44x_hwater)
		victim = 0;
	tlb_44x_index = victim;
	local_irq_enable();
291 292

	/* Get reference to new page. */
293
	gfn = gpaddr >> PAGE_SHIFT;
294 295
	new_page = gfn_to_page(vcpu->kvm, gfn);
	if (is_error_page(new_page)) {
H
Hollis Blanchard 已提交
296
		printk(KERN_ERR "Couldn't get guest page for gfn %lx!\n", gfn);
297 298 299 300 301
		kvm_release_page_clean(new_page);
		return;
	}
	hpaddr = page_to_phys(new_page);

302 303
	/* Invalidate any previous shadow mappings. */
	kvmppc_44x_shadow_release(vcpu_44x, victim);
304 305 306 307 308 309 310 311

	/* XXX Make sure (va, size) doesn't overlap any other
	 * entries. 440x6 user manual says the result would be
	 * "undefined." */

	/* XXX what about AS? */

	/* Force TS=1 for all guest mappings. */
312
	stlbe.word0 = PPC44x_TLB_VALID | PPC44x_TLB_TS;
313 314 315 316

	if (max_bytes >= PAGE_SIZE) {
		/* Guest mapping is larger than or equal to host page size. We can use
		 * a "native" host mapping. */
317
		stlbe.word0 |= (gvaddr & PAGE_MASK) | PPC44x_TLBE_SIZE;
318 319 320 321 322
	} else {
		/* Guest mapping is smaller than host page size. We must restrict the
		 * size of the mapping to be at most the smaller of the two, but for
		 * simplicity we fall back to a 4K mapping (this is probably what the
		 * guest is using anyways). */
323
		stlbe.word0 |= (gvaddr & PAGE_MASK_4K) | PPC44x_TLB_4K;
324 325 326 327 328 329 330

		/* 'hpaddr' is a host page, which is larger than the mapping we're
		 * inserting here. To compensate, we must add the in-page offset to the
		 * sub-page. */
		hpaddr |= gpaddr & (PAGE_MASK ^ PAGE_MASK_4K);
	}

331 332
	stlbe.word1 = (hpaddr & 0xfffffc00) | ((hpaddr >> 32) & 0xf);
	stlbe.word2 = kvmppc_44x_tlb_shadow_attrib(flags,
333
	                                            vcpu->arch.msr & MSR_PR);
334 335 336 337 338 339 340 341 342 343
	stlbe.tid = !(asid & 0xff);

	/* Keep track of the reference so we can properly release it later. */
	ref = &vcpu_44x->shadow_refs[victim];
	ref->page = new_page;
	ref->gtlb_index = gtlb_index;
	ref->writeable = !!(stlbe.word2 & PPC44x_TLB_UW);
	ref->tid = stlbe.tid;

	/* Insert shadow mapping into hardware TLB. */
344
	kvmppc_44x_tlbe_set_modified(vcpu_44x, victim);
345 346 347
	kvmppc_44x_tlbwe(victim, &stlbe);
	KVMTRACE_5D(STLB_WRITE, vcpu, victim, stlbe.tid, stlbe.word0, stlbe.word1,
	            stlbe.word2, handler);
348 349
}

350 351 352 353
/* For a particular guest TLB entry, invalidate the corresponding host TLB
 * mappings and release the host pages. */
static void kvmppc_44x_invalidate(struct kvm_vcpu *vcpu,
                                  unsigned int gtlb_index)
354
{
355
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
356 357
	int i;

358 359 360 361
	for (i = 0; i < ARRAY_SIZE(vcpu_44x->shadow_refs); i++) {
		struct kvmppc_44x_shadow_ref *ref = &vcpu_44x->shadow_refs[i];
		if (ref->gtlb_index == gtlb_index)
			kvmppc_44x_shadow_release(vcpu_44x, i);
362 363 364 365
	}
}

void kvmppc_mmu_priv_switch(struct kvm_vcpu *vcpu, int usermode)
366 367 368 369 370
{
	vcpu->arch.shadow_pid = !usermode;
}

void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 new_pid)
371
{
372
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
373 374
	int i;

375 376 377 378 379 380 381 382 383
	if (unlikely(vcpu->arch.pid == new_pid))
		return;

	vcpu->arch.pid = new_pid;

	/* Guest userspace runs with TID=0 mappings and PID=0, to make sure it
	 * can't access guest kernel mappings (TID=1). When we switch to a new
	 * guest PID, which will also use host PID=0, we must discard the old guest
	 * userspace mappings. */
384 385 386 387 388
	for (i = 0; i < ARRAY_SIZE(vcpu_44x->shadow_refs); i++) {
		struct kvmppc_44x_shadow_ref *ref = &vcpu_44x->shadow_refs[i];

		if (ref->tid == 0)
			kvmppc_44x_shadow_release(vcpu_44x, i);
389 390
	}
}
391 392

static int tlbe_is_host_safe(const struct kvm_vcpu *vcpu,
393
                             const struct kvmppc_44x_tlbe *tlbe)
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
{
	gpa_t gpa;

	if (!get_tlb_v(tlbe))
		return 0;

	/* Does it match current guest AS? */
	/* XXX what about IS != DS? */
	if (get_tlb_ts(tlbe) != !!(vcpu->arch.msr & MSR_IS))
		return 0;

	gpa = get_tlb_raddr(tlbe);
	if (!gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT))
		/* Mapping is not for RAM. */
		return 0;

	return 1;
}

413
int kvmppc_44x_emul_tlbwe(struct kvm_vcpu *vcpu, u8 ra, u8 rs, u8 ws)
414
{
415
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
416
	struct kvmppc_44x_tlbe *tlbe;
417
	unsigned int gtlb_index;
418

419 420 421
	gtlb_index = vcpu->arch.gpr[ra];
	if (gtlb_index > KVM44x_GUEST_TLB_SIZE) {
		printk("%s: index %d\n", __func__, gtlb_index);
422 423 424 425
		kvmppc_dump_vcpu(vcpu);
		return EMULATE_FAIL;
	}

426
	tlbe = &vcpu_44x->guest_tlb[gtlb_index];
427

428 429 430
	/* Invalidate shadow mappings for the about-to-be-clobbered TLB entry. */
	if (tlbe->word0 & PPC44x_TLB_VALID)
		kvmppc_44x_invalidate(vcpu, gtlb_index);
431 432 433

	switch (ws) {
	case PPC44x_TLB_PAGEID:
434
		tlbe->tid = get_mmucr_stid(vcpu);
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
		tlbe->word0 = vcpu->arch.gpr[rs];
		break;

	case PPC44x_TLB_XLAT:
		tlbe->word1 = vcpu->arch.gpr[rs];
		break;

	case PPC44x_TLB_ATTRIB:
		tlbe->word2 = vcpu->arch.gpr[rs];
		break;

	default:
		return EMULATE_FAIL;
	}

	if (tlbe_is_host_safe(vcpu, tlbe)) {
451 452
		u64 asid;
		gva_t eaddr;
453 454 455 456
		gpa_t gpaddr;
		u32 flags;
		u32 bytes;

457
		eaddr = get_tlb_eaddr(tlbe);
458 459 460 461 462 463 464
		gpaddr = get_tlb_raddr(tlbe);

		/* Use the advertised page size to mask effective and real addrs. */
		bytes = get_tlb_bytes(tlbe);
		eaddr &= ~(bytes - 1);
		gpaddr &= ~(bytes - 1);

465 466 467
		asid = (tlbe->word0 & PPC44x_TLB_TS) | tlbe->tid;
		flags = tlbe->word2 & 0xffff;

468
		kvmppc_mmu_map(vcpu, eaddr, gpaddr, asid, flags, bytes, gtlb_index);
469 470
	}

471 472
	KVMTRACE_5D(GTLB_WRITE, vcpu, gtlb_index, tlbe->tid, tlbe->word0,
	            tlbe->word1, tlbe->word2, handler);
473

474
	kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS);
475 476 477
	return EMULATE_DONE;
}

478
int kvmppc_44x_emul_tlbsx(struct kvm_vcpu *vcpu, u8 rt, u8 ra, u8 rb, u8 rc)
479 480
{
	u32 ea;
481
	int gtlb_index;
482 483 484 485 486 487 488
	unsigned int as = get_mmucr_sts(vcpu);
	unsigned int pid = get_mmucr_stid(vcpu);

	ea = vcpu->arch.gpr[rb];
	if (ra)
		ea += vcpu->arch.gpr[ra];

489
	gtlb_index = kvmppc_44x_tlb_index(vcpu, ea, pid, as);
490
	if (rc) {
491
		if (gtlb_index < 0)
492 493 494 495
			vcpu->arch.cr &= ~0x20000000;
		else
			vcpu->arch.cr |= 0x20000000;
	}
496
	vcpu->arch.gpr[rt] = gtlb_index;
497

498
	kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS);
499 500
	return EMULATE_DONE;
}