vtlb.c 14.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
/*
 * vtlb.c: guest virtual tlb handling module.
 * Copyright (c) 2004, Intel Corporation.
 *  Yaozu Dong (Eddie Dong) <Eddie.dong@intel.com>
 *  Xuefei Xu (Anthony Xu) <anthony.xu@intel.com>
 *
 * Copyright (c) 2007, Intel Corporation.
 *  Xuefei Xu (Anthony Xu) <anthony.xu@intel.com>
 *  Xiantao Zhang <xiantao.zhang@intel.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
 */

#include "vcpu.h"

#include <linux/rwsem.h>

#include <asm/tlb.h>

/*
 * Check to see if the address rid:va is translated by the TLB
 */

static int __is_tr_translated(struct thash_data *trp, u64 rid, u64 va)
{
	return ((trp->p) && (trp->rid == rid)
				&& ((va-trp->vadr) < PSIZE(trp->ps)));
}

/*
 * Only for GUEST TR format.
 */
static int __is_tr_overlap(struct thash_data *trp, u64 rid, u64 sva, u64 eva)
{
	u64 sa1, ea1;

	if (!trp->p || trp->rid != rid)
		return 0;

	sa1 = trp->vadr;
	ea1 = sa1 + PSIZE(trp->ps) - 1;
	eva -= 1;
	if ((sva > ea1) || (sa1 > eva))
		return 0;
	else
		return 1;

}

void machine_tlb_purge(u64 va, u64 ps)
{
	ia64_ptcl(va, ps << 2);
}

void local_flush_tlb_all(void)
{
	int i, j;
	unsigned long flags, count0, count1;
	unsigned long stride0, stride1, addr;

	addr    = current_vcpu->arch.ptce_base;
	count0  = current_vcpu->arch.ptce_count[0];
	count1  = current_vcpu->arch.ptce_count[1];
	stride0 = current_vcpu->arch.ptce_stride[0];
	stride1 = current_vcpu->arch.ptce_stride[1];

	local_irq_save(flags);
	for (i = 0; i < count0; ++i) {
		for (j = 0; j < count1; ++j) {
			ia64_ptce(addr);
			addr += stride1;
		}
		addr += stride0;
	}
	local_irq_restore(flags);
	ia64_srlz_i();          /* srlz.i implies srlz.d */
}

int vhpt_enabled(struct kvm_vcpu *vcpu, u64 vadr, enum vhpt_ref ref)
{
	union ia64_rr    vrr;
	union ia64_pta   vpta;
	struct  ia64_psr   vpsr;

	vpsr = *(struct ia64_psr *)&VCPU(vcpu, vpsr);
	vrr.val = vcpu_get_rr(vcpu, vadr);
	vpta.val = vcpu_get_pta(vcpu);

	if (vrr.ve & vpta.ve) {
		switch (ref) {
		case DATA_REF:
		case NA_REF:
			return vpsr.dt;
		case INST_REF:
			return vpsr.dt && vpsr.it && vpsr.ic;
		case RSE_REF:
			return vpsr.dt && vpsr.rt;

		}
	}
	return 0;
}

struct thash_data *vsa_thash(union ia64_pta vpta, u64 va, u64 vrr, u64 *tag)
{
	u64 index, pfn, rid, pfn_bits;

	pfn_bits = vpta.size - 5 - 8;
	pfn = REGION_OFFSET(va) >> _REGION_PAGE_SIZE(vrr);
	rid = _REGION_ID(vrr);
	index = ((rid & 0xff) << pfn_bits)|(pfn & ((1UL << pfn_bits) - 1));
	*tag = ((rid >> 8) & 0xffff) | ((pfn >> pfn_bits) << 16);

	return (struct thash_data *)((vpta.base << PTA_BASE_SHIFT) +
				(index << 5));
}

struct thash_data *__vtr_lookup(struct kvm_vcpu *vcpu, u64 va, int type)
{

	struct thash_data *trp;
	int  i;
	u64 rid;

	rid = vcpu_get_rr(vcpu, va);
	rid = rid & RR_RID_MASK;;
	if (type == D_TLB) {
		if (vcpu_quick_region_check(vcpu->arch.dtr_regions, va)) {
			for (trp = (struct thash_data *)&vcpu->arch.dtrs, i = 0;
						i < NDTRS; i++, trp++) {
				if (__is_tr_translated(trp, rid, va))
					return trp;
			}
		}
	} else {
		if (vcpu_quick_region_check(vcpu->arch.itr_regions, va)) {
			for (trp = (struct thash_data *)&vcpu->arch.itrs, i = 0;
					i < NITRS; i++, trp++) {
				if (__is_tr_translated(trp, rid, va))
					return trp;
			}
		}
	}

	return NULL;
}

static void vhpt_insert(u64 pte, u64 itir, u64 ifa, u64 gpte)
{
	union ia64_rr rr;
	struct thash_data *head;
	unsigned long ps, gpaddr;

	ps = itir_ps(itir);

	gpaddr = ((gpte & _PAGE_PPN_MASK) >> ps << ps) |
		(ifa & ((1UL << ps) - 1));

	rr.val = ia64_get_rr(ifa);
	head = (struct thash_data *)ia64_thash(ifa);
	head->etag = INVALID_TI_TAG;
	ia64_mf();
	head->page_flags = pte & ~PAGE_FLAGS_RV_MASK;
	head->itir = rr.ps << 2;
	head->etag = ia64_ttag(ifa);
	head->gpaddr = gpaddr;
}

void mark_pages_dirty(struct kvm_vcpu *v, u64 pte, u64 ps)
{
	u64 i, dirty_pages = 1;
	u64 base_gfn = (pte&_PAGE_PPN_MASK) >> PAGE_SHIFT;
	spinlock_t *lock = __kvm_va(v->arch.dirty_log_lock_pa);
186 187
	void *dirty_bitmap = (void *)KVM_MEM_DIRTY_LOG_BASE;

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
	dirty_pages <<= ps <= PAGE_SHIFT ? 0 : ps - PAGE_SHIFT;

	vmm_spin_lock(lock);
	for (i = 0; i < dirty_pages; i++) {
		/* avoid RMW */
		if (!test_bit(base_gfn + i, dirty_bitmap))
			set_bit(base_gfn + i , dirty_bitmap);
	}
	vmm_spin_unlock(lock);
}

void thash_vhpt_insert(struct kvm_vcpu *v, u64 pte, u64 itir, u64 va, int type)
{
	u64 phy_pte, psr;
	union ia64_rr mrr;

	mrr.val = ia64_get_rr(va);
	phy_pte = translate_phy_pte(&pte, itir, va);

	if (itir_ps(itir) >= mrr.ps) {
		vhpt_insert(phy_pte, itir, va, pte);
	} else {
		phy_pte  &= ~PAGE_FLAGS_RV_MASK;
		psr = ia64_clear_ic();
		ia64_itc(type, va, phy_pte, itir_ps(itir));
		ia64_set_psr(psr);
	}

	if (!(pte&VTLB_PTE_IO))
		mark_pages_dirty(v, pte, itir_ps(itir));
}

/*
 *   vhpt lookup
 */
struct thash_data *vhpt_lookup(u64 va)
{
	struct thash_data *head;
	u64 tag;

	head = (struct thash_data *)ia64_thash(va);
	tag = ia64_ttag(va);
	if (head->etag == tag)
		return head;
	return NULL;
}

u64 guest_vhpt_lookup(u64 iha, u64 *pte)
{
	u64 ret;
	struct thash_data *data;

	data = __vtr_lookup(current_vcpu, iha, D_TLB);
	if (data != NULL)
		thash_vhpt_insert(current_vcpu, data->page_flags,
			data->itir, iha, D_TLB);

	asm volatile ("rsm psr.ic|psr.i;;"
			"srlz.d;;"
			"ld8.s r9=[%1];;"
			"tnat.nz p6,p7=r9;;"
			"(p6) mov %0=1;"
			"(p6) mov r9=r0;"
			"(p7) extr.u r9=r9,0,53;;"
			"(p7) mov %0=r0;"
			"(p7) st8 [%2]=r9;;"
			"ssm psr.ic;;"
			"srlz.d;;"
			/* "ssm psr.i;;" Once interrupts in vmm open, need fix*/
			: "=r"(ret) : "r"(iha), "r"(pte):"memory");

	return ret;
}

/*
 *  purge software guest tlb
 */

static void vtlb_purge(struct kvm_vcpu *v, u64 va, u64 ps)
{
	struct thash_data *cur;
	u64 start, curadr, size, psbits, tag, rr_ps, num;
	union ia64_rr vrr;
	struct thash_cb *hcb = &v->arch.vtlb;

	vrr.val = vcpu_get_rr(v, va);
	psbits = VMX(v, psbits[(va >> 61)]);
	start = va & ~((1UL << ps) - 1);
	while (psbits) {
		curadr = start;
		rr_ps = __ffs(psbits);
		psbits &= ~(1UL << rr_ps);
		num = 1UL << ((ps < rr_ps) ? 0 : (ps - rr_ps));
		size = PSIZE(rr_ps);
		vrr.ps = rr_ps;
		while (num) {
			cur = vsa_thash(hcb->pta, curadr, vrr.val, &tag);
			if (cur->etag == tag && cur->ps == rr_ps)
				cur->etag = INVALID_TI_TAG;
			curadr += size;
			num--;
		}
	}
}


/*
 *  purge VHPT and machine TLB
 */
static void vhpt_purge(struct kvm_vcpu *v, u64 va, u64 ps)
{
	struct thash_data *cur;
	u64 start, size, tag, num;
	union ia64_rr rr;

	start = va & ~((1UL << ps) - 1);
	rr.val = ia64_get_rr(va);
	size = PSIZE(rr.ps);
	num = 1UL << ((ps < rr.ps) ? 0 : (ps - rr.ps));
	while (num) {
		cur = (struct thash_data *)ia64_thash(start);
		tag = ia64_ttag(start);
		if (cur->etag == tag)
			cur->etag = INVALID_TI_TAG;
		start += size;
		num--;
	}
	machine_tlb_purge(va, ps);
}

/*
 * Insert an entry into hash TLB or VHPT.
 * NOTES:
 *  1: When inserting VHPT to thash, "va" is a must covered
 *  address by the inserted machine VHPT entry.
 *  2: The format of entry is always in TLB.
 *  3: The caller need to make sure the new entry will not overlap
 *     with any existed entry.
 */
void vtlb_insert(struct kvm_vcpu *v, u64 pte, u64 itir, u64 va)
{
	struct thash_data *head;
	union ia64_rr vrr;
	u64 tag;
	struct thash_cb *hcb = &v->arch.vtlb;

	vrr.val = vcpu_get_rr(v, va);
	vrr.ps = itir_ps(itir);
	VMX(v, psbits[va >> 61]) |= (1UL << vrr.ps);
	head = vsa_thash(hcb->pta, va, vrr.val, &tag);
	head->page_flags = pte;
	head->itir = itir;
	head->etag = tag;
}

int vtr_find_overlap(struct kvm_vcpu *vcpu, u64 va, u64 ps, int type)
{
	struct thash_data  *trp;
	int  i;
	u64 end, rid;

	rid = vcpu_get_rr(vcpu, va);
	rid = rid & RR_RID_MASK;
	end = va + PSIZE(ps);
	if (type == D_TLB) {
		if (vcpu_quick_region_check(vcpu->arch.dtr_regions, va)) {
			for (trp = (struct thash_data *)&vcpu->arch.dtrs, i = 0;
					i < NDTRS; i++, trp++) {
				if (__is_tr_overlap(trp, rid, va, end))
					return i;
			}
		}
	} else {
		if (vcpu_quick_region_check(vcpu->arch.itr_regions, va)) {
			for (trp = (struct thash_data *)&vcpu->arch.itrs, i = 0;
					i < NITRS; i++, trp++) {
				if (__is_tr_overlap(trp, rid, va, end))
					return i;
			}
		}
	}
	return -1;
}

/*
 * Purge entries in VTLB and VHPT
 */
void thash_purge_entries(struct kvm_vcpu *v, u64 va, u64 ps)
{
	if (vcpu_quick_region_check(v->arch.tc_regions, va))
		vtlb_purge(v, va, ps);
	vhpt_purge(v, va, ps);
}

void thash_purge_entries_remote(struct kvm_vcpu *v, u64 va, u64 ps)
{
	u64 old_va = va;
	va = REGION_OFFSET(va);
	if (vcpu_quick_region_check(v->arch.tc_regions, old_va))
		vtlb_purge(v, va, ps);
	vhpt_purge(v, va, ps);
}

u64 translate_phy_pte(u64 *pte, u64 itir, u64 va)
{
393
	u64 ps, ps_mask, paddr, maddr, io_mask;
394 395 396 397 398 399 400
	union pte_flags phy_pte;

	ps = itir_ps(itir);
	ps_mask = ~((1UL << ps) - 1);
	phy_pte.val = *pte;
	paddr = *pte;
	paddr = ((paddr & _PAGE_PPN_MASK) & ps_mask) | (va & ~ps_mask);
401 402 403
	maddr = kvm_get_mpt_entry(paddr >> PAGE_SHIFT);
	io_mask = maddr & GPFN_IO_MASK;
	if (io_mask && (io_mask != GPFN_PHYS_MMIO)) {
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
		*pte |= VTLB_PTE_IO;
		return -1;
	}
	maddr = ((maddr & _PAGE_PPN_MASK) & PAGE_MASK) |
					(paddr & ~PAGE_MASK);
	phy_pte.ppn = maddr >> ARCH_PAGE_SHIFT;
	return phy_pte.val;
}

/*
 * Purge overlap TCs and then insert the new entry to emulate itc ops.
 *    Notes: Only TC entry can purge and insert.
 *    1 indicates this is MMIO
 */
int thash_purge_and_insert(struct kvm_vcpu *v, u64 pte, u64 itir,
						u64 ifa, int type)
{
	u64 ps;
422
	u64 phy_pte, io_mask, index;
423 424 425 426 427 428 429
	union ia64_rr vrr, mrr;
	int ret = 0;

	ps = itir_ps(itir);
	vrr.val = vcpu_get_rr(v, ifa);
	mrr.val = ia64_get_rr(ifa);

430 431
	index = (pte & _PAGE_PPN_MASK) >> PAGE_SHIFT;
	io_mask = kvm_get_mpt_entry(index) & GPFN_IO_MASK;
432 433 434 435 436 437
	phy_pte = translate_phy_pte(&pte, itir, ifa);

	/* Ensure WB attribute if pte is related to a normal mem page,
	 * which is required by vga acceleration since qemu maps shared
	 * vram buffer with WB.
	 */
438 439
	if (!(pte & VTLB_PTE_IO) && ((pte & _PAGE_MA_MASK) != _PAGE_MA_NAT) &&
			io_mask != GPFN_PHYS_MMIO) {
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
		pte &= ~_PAGE_MA_MASK;
		phy_pte &= ~_PAGE_MA_MASK;
	}

	if (pte & VTLB_PTE_IO)
		ret = 1;

	vtlb_purge(v, ifa, ps);
	vhpt_purge(v, ifa, ps);

	if (ps == mrr.ps) {
		if (!(pte&VTLB_PTE_IO)) {
			vhpt_insert(phy_pte, itir, ifa, pte);
		} else {
			vtlb_insert(v, pte, itir, ifa);
			vcpu_quick_region_set(VMX(v, tc_regions), ifa);
		}
	} else if (ps > mrr.ps) {
		vtlb_insert(v, pte, itir, ifa);
		vcpu_quick_region_set(VMX(v, tc_regions), ifa);
		if (!(pte&VTLB_PTE_IO))
			vhpt_insert(phy_pte, itir, ifa, pte);
	} else {
		u64 psr;
		phy_pte  &= ~PAGE_FLAGS_RV_MASK;
		psr = ia64_clear_ic();
		ia64_itc(type, ifa, phy_pte, ps);
		ia64_set_psr(psr);
	}
	if (!(pte&VTLB_PTE_IO))
		mark_pages_dirty(v, pte, ps);

	return ret;
}

/*
 * Purge all TCs or VHPT entries including those in Hash table.
 *
 */

void thash_purge_all(struct kvm_vcpu *v)
{
	int i;
	struct thash_data *head;
	struct thash_cb  *vtlb, *vhpt;
	vtlb = &v->arch.vtlb;
	vhpt = &v->arch.vhpt;

	for (i = 0; i < 8; i++)
		VMX(v, psbits[i]) = 0;

	head = vtlb->hash;
	for (i = 0; i < vtlb->num; i++) {
		head->page_flags = 0;
		head->etag = INVALID_TI_TAG;
		head->itir = 0;
		head->next = 0;
		head++;
	};

	head = vhpt->hash;
	for (i = 0; i < vhpt->num; i++) {
		head->page_flags = 0;
		head->etag = INVALID_TI_TAG;
		head->itir = 0;
		head->next = 0;
		head++;
	};

	local_flush_tlb_all();
}


/*
 * Lookup the hash table and its collision chain to find an entry
 * covering this address rid:va or the entry.
 *
 * INPUT:
 *  in: TLB format for both VHPT & TLB.
 */

struct thash_data *vtlb_lookup(struct kvm_vcpu *v, u64 va, int is_data)
{
	struct thash_data  *cch;
	u64    psbits, ps, tag;
	union ia64_rr vrr;

	struct thash_cb *hcb = &v->arch.vtlb;

	cch = __vtr_lookup(v, va, is_data);;
	if (cch)
		return cch;

	if (vcpu_quick_region_check(v->arch.tc_regions, va) == 0)
		return NULL;

	psbits = VMX(v, psbits[(va >> 61)]);
	vrr.val = vcpu_get_rr(v, va);
	while (psbits) {
		ps = __ffs(psbits);
		psbits &= ~(1UL << ps);
		vrr.ps = ps;
		cch = vsa_thash(hcb->pta, va, vrr.val, &tag);
		if (cch->etag == tag && cch->ps == ps)
			return cch;
	}

	return NULL;
}


/*
 * Initialize internal control data before service.
 */
void thash_init(struct thash_cb *hcb, u64 sz)
{
	int i;
	struct thash_data *head;

	hcb->pta.val = (unsigned long)hcb->hash;
	hcb->pta.vf = 1;
	hcb->pta.ve = 1;
	hcb->pta.size = sz;
	head = hcb->hash;
	for (i = 0; i < hcb->num; i++) {
		head->page_flags = 0;
		head->itir = 0;
		head->etag = INVALID_TI_TAG;
		head->next = 0;
		head++;
	}
}

573
u64 kvm_get_mpt_entry(u64 gpfn)
574 575 576 577 578
{
	u64 *base = (u64 *) KVM_P2M_BASE;
	return *(base + gpfn);
}

579 580 581 582 583 584 585
u64 kvm_lookup_mpa(u64 gpfn)
{
	u64 maddr;
	maddr = kvm_get_mpt_entry(gpfn);
	return maddr&_PAGE_PPN_MASK;
}

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
u64 kvm_gpa_to_mpa(u64 gpa)
{
	u64 pte = kvm_lookup_mpa(gpa >> PAGE_SHIFT);
	return (pte >> PAGE_SHIFT << PAGE_SHIFT) | (gpa & ~PAGE_MASK);
}


/*
 * Fetch guest bundle code.
 * INPUT:
 *  gip: guest ip
 *  pbundle: used to return fetched bundle.
 */
int fetch_code(struct kvm_vcpu *vcpu, u64 gip, IA64_BUNDLE *pbundle)
{
	u64     gpip = 0;   /* guest physical IP*/
	u64     *vpa;
	struct thash_data    *tlb;
	u64     maddr;

	if (!(VCPU(vcpu, vpsr) & IA64_PSR_IT)) {
		/* I-side physical mode */
		gpip = gip;
	} else {
		tlb = vtlb_lookup(vcpu, gip, I_TLB);
		if (tlb)
			gpip = (tlb->ppn >> (tlb->ps - 12) << tlb->ps) |
				(gip & (PSIZE(tlb->ps) - 1));
	}
	if (gpip) {
		maddr = kvm_gpa_to_mpa(gpip);
	} else {
		tlb = vhpt_lookup(gip);
		if (tlb == NULL) {
			ia64_ptcl(gip, ARCH_PAGE_SHIFT << 2);
			return IA64_FAULT;
		}
		maddr = (tlb->ppn >> (tlb->ps - 12) << tlb->ps)
					| (gip & (PSIZE(tlb->ps) - 1));
	}
	vpa = (u64 *)__kvm_va(maddr);

	pbundle->i64[0] = *vpa++;
	pbundle->i64[1] = *vpa;

	return IA64_NO_FAULT;
}


void kvm_init_vhpt(struct kvm_vcpu *v)
{
	v->arch.vhpt.num = VHPT_NUM_ENTRIES;
	thash_init(&v->arch.vhpt, VHPT_SHIFT);
	ia64_set_pta(v->arch.vhpt.pta.val);
	/*Enable VHPT here?*/
}

void kvm_init_vtlb(struct kvm_vcpu *v)
{
	v->arch.vtlb.num = VTLB_NUM_ENTRIES;
	thash_init(&v->arch.vtlb, VTLB_SHIFT);
}