mmu.c 65.9 KB
Newer Older
J
Jeremy Fitzhardinge 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/*
 * Xen mmu operations
 *
 * This file contains the various mmu fetch and update operations.
 * The most important job they must perform is the mapping between the
 * domain's pfn and the overall machine mfns.
 *
 * Xen allows guests to directly update the pagetable, in a controlled
 * fashion.  In other words, the guest modifies the same pagetable
 * that the CPU actually uses, which eliminates the overhead of having
 * a separate shadow pagetable.
 *
 * In order to allow this, it falls on the guest domain to map its
 * notion of a "physical" pfn - which is just a domain-local linear
 * address - into a real "machine address" which the CPU's MMU can
 * use.
 *
 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
 * inserted directly into the pagetable.  When creating a new
 * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
 * when reading the content back with __(pgd|pmd|pte)_val, it converts
 * the mfn back into a pfn.
 *
 * The other constraint is that all pages which make up a pagetable
 * must be mapped read-only in the guest.  This prevents uncontrolled
 * guest updates to the pagetable.  Xen strictly enforces this, and
 * will disallow any pagetable update which will end up mapping a
 * pagetable page RW, and will disallow using any writable page as a
 * pagetable.
 *
 * Naively, when loading %cr3 with the base of a new pagetable, Xen
 * would need to validate the whole pagetable before going on.
 * Naturally, this is quite slow.  The solution is to "pin" a
 * pagetable, which enforces all the constraints on the pagetable even
 * when it is not actively in use.  This menas that Xen can be assured
 * that it is still valid when you do load it into %cr3, and doesn't
 * need to revalidate it.
 *
 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 */
41
#include <linux/sched.h>
42
#include <linux/highmem.h>
J
Jeremy Fitzhardinge 已提交
43
#include <linux/debugfs.h>
J
Jeremy Fitzhardinge 已提交
44
#include <linux/bug.h>
45
#include <linux/vmalloc.h>
46
#include <linux/module.h>
47
#include <linux/gfp.h>
48
#include <linux/memblock.h>
49
#include <linux/seq_file.h>
50
#include <linux/crash_dump.h>
J
Jeremy Fitzhardinge 已提交
51

52 53
#include <trace/events/xen.h>

J
Jeremy Fitzhardinge 已提交
54 55
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
56
#include <asm/fixmap.h>
J
Jeremy Fitzhardinge 已提交
57
#include <asm/mmu_context.h>
58
#include <asm/setup.h>
59
#include <asm/paravirt.h>
60
#include <asm/e820.h>
61
#include <asm/linkage.h>
62
#include <asm/page.h>
63
#include <asm/init.h>
J
Jeremy Fitzhardinge 已提交
64
#include <asm/pat.h>
A
Andrew Jones 已提交
65
#include <asm/smp.h>
J
Jeremy Fitzhardinge 已提交
66 67

#include <asm/xen/hypercall.h>
68
#include <asm/xen/hypervisor.h>
J
Jeremy Fitzhardinge 已提交
69

70
#include <xen/xen.h>
J
Jeremy Fitzhardinge 已提交
71 72
#include <xen/page.h>
#include <xen/interface/xen.h>
73
#include <xen/interface/hvm/hvm_op.h>
74
#include <xen/interface/version.h>
75
#include <xen/interface/memory.h>
76
#include <xen/hvc-console.h>
J
Jeremy Fitzhardinge 已提交
77

78
#include "multicalls.h"
J
Jeremy Fitzhardinge 已提交
79
#include "mmu.h"
J
Jeremy Fitzhardinge 已提交
80 81
#include "debugfs.h"

A
Alex Nixon 已提交
82 83
/*
 * Protects atomic reservation decrease/increase against concurrent increases.
84
 * Also protects non-atomic updates of current_pages and balloon lists.
A
Alex Nixon 已提交
85 86 87
 */
DEFINE_SPINLOCK(xen_reservation_lock);

88
#ifdef CONFIG_X86_32
89 90 91 92 93
/*
 * Identity map, in addition to plain kernel map.  This needs to be
 * large enough to allocate page table pages to allocate the rest.
 * Each page can map 2MB.
 */
94 95
#define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
96
#endif
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
#ifdef CONFIG_X86_64
/* l3 pud for userspace vsyscall mapping */
static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
#endif /* CONFIG_X86_64 */

/*
 * Note about cr3 (pagetable base) values:
 *
 * xen_cr3 contains the current logical cr3 value; it contains the
 * last set cr3.  This may not be the current effective cr3, because
 * its update may be being lazily deferred.  However, a vcpu looking
 * at its own cr3 can use this value knowing that it everything will
 * be self-consistent.
 *
 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 * hypercall to set the vcpu cr3 is complete (so it may be a little
 * out of date, but it will never be set early).  If one vcpu is
 * looking at another vcpu's cr3 value, it should use this variable.
 */
DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */


120 121 122 123 124 125
/*
 * Just beyond the highest usermode address.  STACK_TOP_MAX has a
 * redzone above it, so round it up to a PGD boundary.
 */
#define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)

126 127 128 129 130 131 132
unsigned long arbitrary_virt_to_mfn(void *vaddr)
{
	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);

	return PFN_DOWN(maddr.maddr);
}

133
xmaddr_t arbitrary_virt_to_machine(void *vaddr)
J
Jeremy Fitzhardinge 已提交
134
{
135
	unsigned long address = (unsigned long)vaddr;
136
	unsigned int level;
137 138
	pte_t *pte;
	unsigned offset;
J
Jeremy Fitzhardinge 已提交
139

140 141 142 143 144 145 146 147
	/*
	 * if the PFN is in the linear mapped vaddr range, we can just use
	 * the (quick) virt_to_machine() p2m lookup
	 */
	if (virt_addr_valid(vaddr))
		return virt_to_machine(vaddr);

	/* otherwise we have to do a (slower) full page-table walk */
J
Jeremy Fitzhardinge 已提交
148

149 150 151
	pte = lookup_address(address, &level);
	BUG_ON(pte == NULL);
	offset = address & ~PAGE_MASK;
152
	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
J
Jeremy Fitzhardinge 已提交
153
}
154
EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
J
Jeremy Fitzhardinge 已提交
155 156 157 158 159

void make_lowmem_page_readonly(void *vaddr)
{
	pte_t *pte, ptev;
	unsigned long address = (unsigned long)vaddr;
160
	unsigned int level;
J
Jeremy Fitzhardinge 已提交
161

162
	pte = lookup_address(address, &level);
163 164
	if (pte == NULL)
		return;		/* vaddr missing */
J
Jeremy Fitzhardinge 已提交
165 166 167 168 169 170 171 172 173 174 175

	ptev = pte_wrprotect(*pte);

	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
		BUG();
}

void make_lowmem_page_readwrite(void *vaddr)
{
	pte_t *pte, ptev;
	unsigned long address = (unsigned long)vaddr;
176
	unsigned int level;
J
Jeremy Fitzhardinge 已提交
177

178
	pte = lookup_address(address, &level);
179 180
	if (pte == NULL)
		return;		/* vaddr missing */
J
Jeremy Fitzhardinge 已提交
181 182 183 184 185 186 187 188

	ptev = pte_mkwrite(*pte);

	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
		BUG();
}


189
static bool xen_page_pinned(void *ptr)
190 191 192 193 194 195
{
	struct page *page = virt_to_page(ptr);

	return PagePinned(page);
}

196
void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
197 198 199 200
{
	struct multicall_space mcs;
	struct mmu_update *u;

201 202
	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);

203 204 205 206
	mcs = xen_mc_entry(sizeof(*u));
	u = mcs.args;

	/* ptep might be kmapped when using 32-bit HIGHPTE */
207
	u->ptr = virt_to_machine(ptep).maddr;
208 209
	u->val = pte_val_ma(pteval);

210
	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
211 212 213

	xen_mc_issue(PARAVIRT_LAZY_MMU);
}
214 215
EXPORT_SYMBOL_GPL(xen_set_domain_pte);

216
static void xen_extend_mmu_update(const struct mmu_update *update)
J
Jeremy Fitzhardinge 已提交
217
{
J
Jeremy Fitzhardinge 已提交
218 219
	struct multicall_space mcs;
	struct mmu_update *u;
J
Jeremy Fitzhardinge 已提交
220

221 222
	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));

J
Jeremy Fitzhardinge 已提交
223
	if (mcs.mc != NULL) {
224
		mcs.mc->args[1]++;
J
Jeremy Fitzhardinge 已提交
225
	} else {
226 227 228
		mcs = __xen_mc_entry(sizeof(*u));
		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
	}
J
Jeremy Fitzhardinge 已提交
229 230

	u = mcs.args;
231 232 233
	*u = *update;
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
static void xen_extend_mmuext_op(const struct mmuext_op *op)
{
	struct multicall_space mcs;
	struct mmuext_op *u;

	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));

	if (mcs.mc != NULL) {
		mcs.mc->args[1]++;
	} else {
		mcs = __xen_mc_entry(sizeof(*u));
		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
	}

	u = mcs.args;
	*u = *op;
}

252
static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
253 254 255 256 257 258 259
{
	struct mmu_update u;

	preempt_disable();

	xen_mc_batch();

260 261
	/* ptr may be ioremapped for 64-bit pagetable setup */
	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
262
	u.val = pmd_val_ma(val);
263
	xen_extend_mmu_update(&u);
J
Jeremy Fitzhardinge 已提交
264 265 266 267

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
J
Jeremy Fitzhardinge 已提交
268 269
}

270
static void xen_set_pmd(pmd_t *ptr, pmd_t val)
271
{
272 273
	trace_xen_mmu_set_pmd(ptr, val);

274 275
	/* If page is not pinned, we can just update the entry
	   directly */
276
	if (!xen_page_pinned(ptr)) {
277 278 279 280 281 282 283
		*ptr = val;
		return;
	}

	xen_set_pmd_hyper(ptr, val);
}

J
Jeremy Fitzhardinge 已提交
284 285 286 287 288 289
/*
 * Associate a virtual page frame with a given physical page frame
 * and protection flags for that frame.
 */
void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
{
J
Jeremy Fitzhardinge 已提交
290
	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
J
Jeremy Fitzhardinge 已提交
291 292
}

293
static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
J
Jeremy Fitzhardinge 已提交
294
{
295
	struct mmu_update u;
296

297 298
	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
		return false;
J
Jeremy Fitzhardinge 已提交
299

300
	xen_mc_batch();
J
Jeremy Fitzhardinge 已提交
301

302 303 304
	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
	u.val = pte_val_ma(pteval);
	xen_extend_mmu_update(&u);
305

306
	xen_mc_issue(PARAVIRT_LAZY_MMU);
307

308 309 310
	return true;
}

311
static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
312
{
313 314 315 316 317 318 319 320 321 322 323 324 325 326
	if (!xen_batched_set_pte(ptep, pteval)) {
		/*
		 * Could call native_set_pte() here and trap and
		 * emulate the PTE write but with 32-bit guests this
		 * needs two traps (one for each of the two 32-bit
		 * words in the PTE) so do one hypercall directly
		 * instead.
		 */
		struct mmu_update u;

		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
		u.val = pte_val_ma(pteval);
		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
	}
J
Jeremy Fitzhardinge 已提交
327 328
}

329 330 331 332 333 334
static void xen_set_pte(pte_t *ptep, pte_t pteval)
{
	trace_xen_mmu_set_pte(ptep, pteval);
	__xen_set_pte(ptep, pteval);
}

335
static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
336 337
		    pte_t *ptep, pte_t pteval)
{
338 339
	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
	__xen_set_pte(ptep, pteval);
J
Jeremy Fitzhardinge 已提交
340 341
}

T
Tej 已提交
342 343
pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
				 unsigned long addr, pte_t *ptep)
J
Jeremy Fitzhardinge 已提交
344
{
345
	/* Just return the pte as-is.  We preserve the bits on commit */
346
	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
347 348 349 350 351 352
	return *ptep;
}

void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
				 pte_t *ptep, pte_t pte)
{
353
	struct mmu_update u;
354

355
	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
356
	xen_mc_batch();
J
Jeremy Fitzhardinge 已提交
357

358
	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
359
	u.val = pte_val_ma(pte);
360
	xen_extend_mmu_update(&u);
J
Jeremy Fitzhardinge 已提交
361

362
	xen_mc_issue(PARAVIRT_LAZY_MMU);
J
Jeremy Fitzhardinge 已提交
363 364
}

J
Jeremy Fitzhardinge 已提交
365 366
/* Assume pteval_t is equivalent to all the other *val_t types. */
static pteval_t pte_mfn_to_pfn(pteval_t val)
J
Jeremy Fitzhardinge 已提交
367
{
368
	if (val & _PAGE_PRESENT) {
369
		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
370 371
		unsigned long pfn = mfn_to_pfn(mfn);

J
Jeremy Fitzhardinge 已提交
372
		pteval_t flags = val & PTE_FLAGS_MASK;
373 374 375 376
		if (unlikely(pfn == ~0))
			val = flags & ~_PAGE_PRESENT;
		else
			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
J
Jeremy Fitzhardinge 已提交
377
	}
J
Jeremy Fitzhardinge 已提交
378

J
Jeremy Fitzhardinge 已提交
379
	return val;
J
Jeremy Fitzhardinge 已提交
380 381
}

J
Jeremy Fitzhardinge 已提交
382
static pteval_t pte_pfn_to_mfn(pteval_t val)
J
Jeremy Fitzhardinge 已提交
383
{
384
	if (val & _PAGE_PRESENT) {
385
		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
J
Jeremy Fitzhardinge 已提交
386
		pteval_t flags = val & PTE_FLAGS_MASK;
387
		unsigned long mfn;
388

389 390 391 392
		if (!xen_feature(XENFEAT_auto_translated_physmap))
			mfn = get_phys_to_machine(pfn);
		else
			mfn = pfn;
393 394 395 396 397 398 399 400 401
		/*
		 * If there's no mfn for the pfn, then just create an
		 * empty non-present pte.  Unfortunately this loses
		 * information about the original pfn, so
		 * pte_mfn_to_pfn is asymmetric.
		 */
		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
			mfn = 0;
			flags = 0;
402 403 404 405 406 407 408 409 410 411 412
		} else {
			/*
			 * Paramount to do this test _after_ the
			 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
			 * IDENTITY_FRAME_BIT resolves to true.
			 */
			mfn &= ~FOREIGN_FRAME_BIT;
			if (mfn & IDENTITY_FRAME_BIT) {
				mfn &= ~IDENTITY_FRAME_BIT;
				flags |= _PAGE_IOMAP;
			}
413 414
		}
		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
J
Jeremy Fitzhardinge 已提交
415 416
	}

J
Jeremy Fitzhardinge 已提交
417
	return val;
J
Jeremy Fitzhardinge 已提交
418 419
}

420 421 422 423 424 425 426 427 428 429 430 431 432 433
static pteval_t iomap_pte(pteval_t val)
{
	if (val & _PAGE_PRESENT) {
		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
		pteval_t flags = val & PTE_FLAGS_MASK;

		/* We assume the pte frame number is a MFN, so
		   just use it as-is. */
		val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
	}

	return val;
}

434
__visible pteval_t xen_pte_val(pte_t pte)
J
Jeremy Fitzhardinge 已提交
435
{
J
Jeremy Fitzhardinge 已提交
436
	pteval_t pteval = pte.pte;
437
#if 0
J
Jeremy Fitzhardinge 已提交
438 439 440 441 442
	/* If this is a WC pte, convert back from Xen WC to Linux WC */
	if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
		WARN_ON(!pat_enabled);
		pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
	}
443
#endif
J
Jeremy Fitzhardinge 已提交
444 445 446 447
	if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
		return pteval;

	return pte_mfn_to_pfn(pteval);
J
Jeremy Fitzhardinge 已提交
448
}
449
PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
J
Jeremy Fitzhardinge 已提交
450

451
__visible pgdval_t xen_pgd_val(pgd_t pgd)
J
Jeremy Fitzhardinge 已提交
452
{
J
Jeremy Fitzhardinge 已提交
453
	return pte_mfn_to_pfn(pgd.pgd);
J
Jeremy Fitzhardinge 已提交
454
}
455
PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
J
Jeremy Fitzhardinge 已提交
456

J
Jeremy Fitzhardinge 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470
/*
 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
 * are reserved for now, to correspond to the Intel-reserved PAT
 * types.
 *
 * We expect Linux's PAT set as follows:
 *
 * Idx  PTE flags        Linux    Xen    Default
 * 0                     WB       WB     WB
 * 1            PWT      WC       WT     WT
 * 2        PCD          UC-      UC-    UC-
 * 3        PCD PWT      UC       UC     UC
 * 4    PAT              WB       WC     WB
 * 5    PAT     PWT      WC       WP     WT
471 472
 * 6    PAT PCD          UC-      rsv    UC-
 * 7    PAT PCD PWT      UC       rsv    UC
J
Jeremy Fitzhardinge 已提交
473 474 475 476 477 478 479 480 481
 */

void xen_set_pat(u64 pat)
{
	/* We expect Linux to use a PAT setting of
	 * UC UC- WC WB (ignoring the PAT flag) */
	WARN_ON(pat != 0x0007010600070106ull);
}

482
__visible pte_t xen_make_pte(pteval_t pte)
J
Jeremy Fitzhardinge 已提交
483
{
484
	phys_addr_t addr = (pte & PTE_PFN_MASK);
485
#if 0
J
Jeremy Fitzhardinge 已提交
486 487 488 489 490 491 492 493 494 495 496 497
	/* If Linux is trying to set a WC pte, then map to the Xen WC.
	 * If _PAGE_PAT is set, then it probably means it is really
	 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
	 * things work out OK...
	 *
	 * (We should never see kernel mappings with _PAGE_PSE set,
	 * but we could see hugetlbfs mappings, I think.).
	 */
	if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
		if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
			pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
	}
498
#endif
499 500 501 502 503 504 505 506
	/*
	 * Unprivileged domains are allowed to do IOMAPpings for
	 * PCI passthrough, but not map ISA space.  The ISA
	 * mappings are just dummy local mappings to keep other
	 * parts of the kernel happy.
	 */
	if (unlikely(pte & _PAGE_IOMAP) &&
	    (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
507
		pte = iomap_pte(pte);
508 509
	} else {
		pte &= ~_PAGE_IOMAP;
510
		pte = pte_pfn_to_mfn(pte);
511
	}
512

J
Jeremy Fitzhardinge 已提交
513
	return native_make_pte(pte);
J
Jeremy Fitzhardinge 已提交
514
}
515
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
J
Jeremy Fitzhardinge 已提交
516

517
__visible pgd_t xen_make_pgd(pgdval_t pgd)
J
Jeremy Fitzhardinge 已提交
518
{
J
Jeremy Fitzhardinge 已提交
519 520
	pgd = pte_pfn_to_mfn(pgd);
	return native_make_pgd(pgd);
J
Jeremy Fitzhardinge 已提交
521
}
522
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
J
Jeremy Fitzhardinge 已提交
523

524
__visible pmdval_t xen_pmd_val(pmd_t pmd)
J
Jeremy Fitzhardinge 已提交
525
{
J
Jeremy Fitzhardinge 已提交
526
	return pte_mfn_to_pfn(pmd.pmd);
J
Jeremy Fitzhardinge 已提交
527
}
528
PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
529

530
static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
531
{
532
	struct mmu_update u;
533

J
Jeremy Fitzhardinge 已提交
534 535
	preempt_disable();

536 537
	xen_mc_batch();

538 539
	/* ptr may be ioremapped for 64-bit pagetable setup */
	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
540
	u.val = pud_val_ma(val);
541
	xen_extend_mmu_update(&u);
J
Jeremy Fitzhardinge 已提交
542 543 544 545

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
546 547
}

548
static void xen_set_pud(pud_t *ptr, pud_t val)
549
{
550 551
	trace_xen_mmu_set_pud(ptr, val);

552 553
	/* If page is not pinned, we can just update the entry
	   directly */
554
	if (!xen_page_pinned(ptr)) {
555 556 557 558 559 560 561
		*ptr = val;
		return;
	}

	xen_set_pud_hyper(ptr, val);
}

562
#ifdef CONFIG_X86_PAE
563
static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
J
Jeremy Fitzhardinge 已提交
564
{
565
	trace_xen_mmu_set_pte_atomic(ptep, pte);
566
	set_64bit((u64 *)ptep, native_pte_val(pte));
J
Jeremy Fitzhardinge 已提交
567 568
}

569
static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
J
Jeremy Fitzhardinge 已提交
570
{
571
	trace_xen_mmu_pte_clear(mm, addr, ptep);
572 573
	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
		native_pte_clear(mm, addr, ptep);
J
Jeremy Fitzhardinge 已提交
574 575
}

576
static void xen_pmd_clear(pmd_t *pmdp)
J
Jeremy Fitzhardinge 已提交
577
{
578
	trace_xen_mmu_pmd_clear(pmdp);
579
	set_pmd(pmdp, __pmd(0));
J
Jeremy Fitzhardinge 已提交
580
}
581
#endif	/* CONFIG_X86_PAE */
J
Jeremy Fitzhardinge 已提交
582

583
__visible pmd_t xen_make_pmd(pmdval_t pmd)
J
Jeremy Fitzhardinge 已提交
584
{
J
Jeremy Fitzhardinge 已提交
585
	pmd = pte_pfn_to_mfn(pmd);
J
Jeremy Fitzhardinge 已提交
586
	return native_make_pmd(pmd);
J
Jeremy Fitzhardinge 已提交
587
}
588
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
J
Jeremy Fitzhardinge 已提交
589

590
#if PAGETABLE_LEVELS == 4
591
__visible pudval_t xen_pud_val(pud_t pud)
592 593 594
{
	return pte_mfn_to_pfn(pud.pud);
}
595
PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
596

597
__visible pud_t xen_make_pud(pudval_t pud)
598 599 600 601 602
{
	pud = pte_pfn_to_mfn(pud);

	return native_make_pud(pud);
}
603
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
604

605
static pgd_t *xen_get_user_pgd(pgd_t *pgd)
606
{
607 608 609
	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
	unsigned offset = pgd - pgd_page;
	pgd_t *user_ptr = NULL;
610

611 612 613 614 615 616
	if (offset < pgd_index(USER_LIMIT)) {
		struct page *page = virt_to_page(pgd_page);
		user_ptr = (pgd_t *)page->private;
		if (user_ptr)
			user_ptr += offset;
	}
617

618 619 620 621 622 623
	return user_ptr;
}

static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
{
	struct mmu_update u;
624 625 626

	u.ptr = virt_to_machine(ptr).maddr;
	u.val = pgd_val_ma(val);
627
	xen_extend_mmu_update(&u);
628 629 630 631 632 633 634 635 636
}

/*
 * Raw hypercall-based set_pgd, intended for in early boot before
 * there's a page structure.  This implies:
 *  1. The only existing pagetable is the kernel's
 *  2. It is always pinned
 *  3. It has no user pagetable attached to it
 */
637
static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
638 639 640 641 642 643
{
	preempt_disable();

	xen_mc_batch();

	__xen_set_pgd_hyper(ptr, val);
644 645 646 647 648 649

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
}

650
static void xen_set_pgd(pgd_t *ptr, pgd_t val)
651
{
652 653
	pgd_t *user_ptr = xen_get_user_pgd(ptr);

654 655
	trace_xen_mmu_set_pgd(ptr, user_ptr, val);

656 657
	/* If page is not pinned, we can just update the entry
	   directly */
658
	if (!xen_page_pinned(ptr)) {
659
		*ptr = val;
660
		if (user_ptr) {
661
			WARN_ON(xen_page_pinned(user_ptr));
662 663
			*user_ptr = val;
		}
664 665 666
		return;
	}

667 668 669 670 671 672 673 674 675
	/* If it's pinned, then we can at least batch the kernel and
	   user updates together. */
	xen_mc_batch();

	__xen_set_pgd_hyper(ptr, val);
	if (user_ptr)
		__xen_set_pgd_hyper(user_ptr, val);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
676 677 678
}
#endif	/* PAGETABLE_LEVELS == 4 */

679
/*
680 681 682 683 684 685 686 687 688 689 690 691 692 693
 * (Yet another) pagetable walker.  This one is intended for pinning a
 * pagetable.  This means that it walks a pagetable and calls the
 * callback function on each page it finds making up the page table,
 * at every level.  It walks the entire pagetable, but it only bothers
 * pinning pte pages which are below limit.  In the normal case this
 * will be STACK_TOP_MAX, but at boot we need to pin up to
 * FIXADDR_TOP.
 *
 * For 32-bit the important bit is that we don't pin beyond there,
 * because then we start getting into Xen's ptes.
 *
 * For 64-bit, we must skip the Xen hole in the middle of the address
 * space, just after the big x86-64 virtual hole.
 */
I
Ian Campbell 已提交
694 695 696 697
static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
			  int (*func)(struct mm_struct *mm, struct page *,
				      enum pt_level),
			  unsigned long limit)
J
Jeremy Fitzhardinge 已提交
698
{
699
	int flush = 0;
700 701 702
	unsigned hole_low, hole_high;
	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
	unsigned pgdidx, pudidx, pmdidx;
703

704 705 706
	/* The limit is the last byte to be touched */
	limit--;
	BUG_ON(limit >= FIXADDR_TOP);
J
Jeremy Fitzhardinge 已提交
707 708

	if (xen_feature(XENFEAT_auto_translated_physmap))
709 710
		return 0;

711 712 713 714 715
	/*
	 * 64-bit has a great big hole in the middle of the address
	 * space, which contains the Xen mappings.  On 32-bit these
	 * will end up making a zero-sized hole and so is a no-op.
	 */
716
	hole_low = pgd_index(USER_LIMIT);
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
	hole_high = pgd_index(PAGE_OFFSET);

	pgdidx_limit = pgd_index(limit);
#if PTRS_PER_PUD > 1
	pudidx_limit = pud_index(limit);
#else
	pudidx_limit = 0;
#endif
#if PTRS_PER_PMD > 1
	pmdidx_limit = pmd_index(limit);
#else
	pmdidx_limit = 0;
#endif

	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
732
		pud_t *pud;
J
Jeremy Fitzhardinge 已提交
733

734 735
		if (pgdidx >= hole_low && pgdidx < hole_high)
			continue;
736

737
		if (!pgd_val(pgd[pgdidx]))
J
Jeremy Fitzhardinge 已提交
738
			continue;
739

740
		pud = pud_offset(&pgd[pgdidx], 0);
J
Jeremy Fitzhardinge 已提交
741 742

		if (PTRS_PER_PUD > 1) /* not folded */
743
			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
744

745
		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
746 747
			pmd_t *pmd;

748 749 750
			if (pgdidx == pgdidx_limit &&
			    pudidx > pudidx_limit)
				goto out;
J
Jeremy Fitzhardinge 已提交
751

752
			if (pud_none(pud[pudidx]))
J
Jeremy Fitzhardinge 已提交
753
				continue;
754

755
			pmd = pmd_offset(&pud[pudidx], 0);
J
Jeremy Fitzhardinge 已提交
756 757

			if (PTRS_PER_PMD > 1) /* not folded */
758
				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
759

760 761 762 763 764 765 766
			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
				struct page *pte;

				if (pgdidx == pgdidx_limit &&
				    pudidx == pudidx_limit &&
				    pmdidx > pmdidx_limit)
					goto out;
J
Jeremy Fitzhardinge 已提交
767

768
				if (pmd_none(pmd[pmdidx]))
J
Jeremy Fitzhardinge 已提交
769 770
					continue;

771
				pte = pmd_page(pmd[pmdidx]);
772
				flush |= (*func)(mm, pte, PT_PTE);
J
Jeremy Fitzhardinge 已提交
773 774 775
			}
		}
	}
776

777
out:
778 779
	/* Do the top level last, so that the callbacks can use it as
	   a cue to do final things like tlb flushes. */
780
	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
781 782

	return flush;
J
Jeremy Fitzhardinge 已提交
783 784
}

I
Ian Campbell 已提交
785 786 787 788 789 790 791 792
static int xen_pgd_walk(struct mm_struct *mm,
			int (*func)(struct mm_struct *mm, struct page *,
				    enum pt_level),
			unsigned long limit)
{
	return __xen_pgd_walk(mm, mm->pgd, func, limit);
}

793 794
/* If we're using split pte locks, then take the page's lock and
   return a pointer to it.  Otherwise return NULL. */
795
static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
796 797 798
{
	spinlock_t *ptl = NULL;

799
#if USE_SPLIT_PTE_PTLOCKS
800
	ptl = ptlock_ptr(page);
801
	spin_lock_nest_lock(ptl, &mm->page_table_lock);
802 803 804 805 806
#endif

	return ptl;
}

807
static void xen_pte_unlock(void *v)
808 809 810 811 812 813 814
{
	spinlock_t *ptl = v;
	spin_unlock(ptl);
}

static void xen_do_pin(unsigned level, unsigned long pfn)
{
815
	struct mmuext_op op;
816

817 818 819 820
	op.cmd = level;
	op.arg1.mfn = pfn_to_mfn(pfn);

	xen_extend_mmuext_op(&op);
821 822
}

823 824
static int xen_pin_page(struct mm_struct *mm, struct page *page,
			enum pt_level level)
825
{
826
	unsigned pgfl = TestSetPagePinned(page);
827 828 829 830 831 832 833 834 835 836 837 838
	int flush;

	if (pgfl)
		flush = 0;		/* already pinned */
	else if (PageHighMem(page))
		/* kmaps need flushing if we found an unpinned
		   highpage */
		flush = 1;
	else {
		void *pt = lowmem_page_address(page);
		unsigned long pfn = page_to_pfn(page);
		struct multicall_space mcs = __xen_mc_entry(0);
839
		spinlock_t *ptl;
840 841 842

		flush = 0;

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
		/*
		 * We need to hold the pagetable lock between the time
		 * we make the pagetable RO and when we actually pin
		 * it.  If we don't, then other users may come in and
		 * attempt to update the pagetable by writing it,
		 * which will fail because the memory is RO but not
		 * pinned, so Xen won't do the trap'n'emulate.
		 *
		 * If we're using split pte locks, we can't hold the
		 * entire pagetable's worth of locks during the
		 * traverse, because we may wrap the preempt count (8
		 * bits).  The solution is to mark RO and pin each PTE
		 * page while holding the lock.  This means the number
		 * of locks we end up holding is never more than a
		 * batch size (~32 entries, at present).
		 *
		 * If we're not using split pte locks, we needn't pin
		 * the PTE pages independently, because we're
		 * protected by the overall pagetable lock.
		 */
863 864
		ptl = NULL;
		if (level == PT_PTE)
865
			ptl = xen_pte_lock(page, mm);
866

867 868
		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
					pfn_pte(pfn, PAGE_KERNEL_RO),
869 870
					level == PT_PGD ? UVMF_TLB_FLUSH : 0);

871
		if (ptl) {
872 873 874 875
			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);

			/* Queue a deferred unlock for when this batch
			   is completed. */
876
			xen_mc_callback(xen_pte_unlock, ptl);
877
		}
878 879 880 881
	}

	return flush;
}
J
Jeremy Fitzhardinge 已提交
882

883 884 885
/* This is called just after a mm has been created, but it has not
   been used yet.  We need to make sure that its pagetable is all
   read-only, and can be pinned. */
886
static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
J
Jeremy Fitzhardinge 已提交
887
{
888 889
	trace_xen_mmu_pgd_pin(mm, pgd);

890
	xen_mc_batch();
J
Jeremy Fitzhardinge 已提交
891

I
Ian Campbell 已提交
892
	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
893
		/* re-enable interrupts for flushing */
J
Jeremy Fitzhardinge 已提交
894
		xen_mc_issue(0);
895

896
		kmap_flush_unused();
897

J
Jeremy Fitzhardinge 已提交
898 899
		xen_mc_batch();
	}
900

901 902 903 904 905 906 907
#ifdef CONFIG_X86_64
	{
		pgd_t *user_pgd = xen_get_user_pgd(pgd);

		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));

		if (user_pgd) {
908
			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
T
Tej 已提交
909 910
			xen_do_pin(MMUEXT_PIN_L4_TABLE,
				   PFN_DOWN(__pa(user_pgd)));
911 912 913
		}
	}
#else /* CONFIG_X86_32 */
914 915
#ifdef CONFIG_X86_PAE
	/* Need to make sure unshared kernel PMD is pinnable */
916
	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
917
		     PT_PMD);
918
#endif
919
	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
920
#endif /* CONFIG_X86_64 */
921
	xen_mc_issue(0);
J
Jeremy Fitzhardinge 已提交
922 923
}

924 925 926 927 928
static void xen_pgd_pin(struct mm_struct *mm)
{
	__xen_pgd_pin(mm, mm->pgd);
}

929 930 931 932 933
/*
 * On save, we need to pin all pagetables to make sure they get their
 * mfns turned into pfns.  Search the list for any unpinned pgds and pin
 * them (unpinned pgds are not currently in use, probably because the
 * process is under construction or destruction).
934 935 936 937
 *
 * Expected to be called in stop_machine() ("equivalent to taking
 * every spinlock in the system"), so the locking doesn't really
 * matter all that much.
938 939 940 941
 */
void xen_mm_pin_all(void)
{
	struct page *page;
942

A
Andrea Arcangeli 已提交
943
	spin_lock(&pgd_lock);
944

945 946
	list_for_each_entry(page, &pgd_list, lru) {
		if (!PagePinned(page)) {
947
			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
948 949 950 951
			SetPageSavePinned(page);
		}
	}

A
Andrea Arcangeli 已提交
952
	spin_unlock(&pgd_lock);
J
Jeremy Fitzhardinge 已提交
953 954
}

955 956 957 958 959
/*
 * The init_mm pagetable is really pinned as soon as its created, but
 * that's before we have page structures to store the bits.  So do all
 * the book-keeping now.
 */
960
static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
961
				  enum pt_level level)
J
Jeremy Fitzhardinge 已提交
962
{
963 964 965
	SetPagePinned(page);
	return 0;
}
J
Jeremy Fitzhardinge 已提交
966

967
static void __init xen_mark_init_mm_pinned(void)
968
{
969
	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
970
}
J
Jeremy Fitzhardinge 已提交
971

972 973
static int xen_unpin_page(struct mm_struct *mm, struct page *page,
			  enum pt_level level)
974
{
975
	unsigned pgfl = TestClearPagePinned(page);
J
Jeremy Fitzhardinge 已提交
976

977 978 979
	if (pgfl && !PageHighMem(page)) {
		void *pt = lowmem_page_address(page);
		unsigned long pfn = page_to_pfn(page);
980 981 982
		spinlock_t *ptl = NULL;
		struct multicall_space mcs;

983 984 985 986 987 988 989
		/*
		 * Do the converse to pin_page.  If we're using split
		 * pte locks, we must be holding the lock for while
		 * the pte page is unpinned but still RO to prevent
		 * concurrent updates from seeing it in this
		 * partially-pinned state.
		 */
990
		if (level == PT_PTE) {
991
			ptl = xen_pte_lock(page, mm);
992

993 994
			if (ptl)
				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
995 996 997
		}

		mcs = __xen_mc_entry(0);
998 999 1000

		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
					pfn_pte(pfn, PAGE_KERNEL),
1001 1002 1003 1004
					level == PT_PGD ? UVMF_TLB_FLUSH : 0);

		if (ptl) {
			/* unlock when batch completed */
1005
			xen_mc_callback(xen_pte_unlock, ptl);
1006
		}
1007 1008 1009
	}

	return 0;		/* never need to flush on unpin */
J
Jeremy Fitzhardinge 已提交
1010 1011
}

1012
/* Release a pagetables pages back as normal RW */
1013
static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1014
{
1015 1016
	trace_xen_mmu_pgd_unpin(mm, pgd);

1017 1018
	xen_mc_batch();

1019
	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1020

1021 1022 1023 1024 1025
#ifdef CONFIG_X86_64
	{
		pgd_t *user_pgd = xen_get_user_pgd(pgd);

		if (user_pgd) {
T
Tej 已提交
1026 1027
			xen_do_pin(MMUEXT_UNPIN_TABLE,
				   PFN_DOWN(__pa(user_pgd)));
1028
			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1029 1030 1031 1032
		}
	}
#endif

1033 1034
#ifdef CONFIG_X86_PAE
	/* Need to make sure unshared kernel PMD is unpinned */
1035
	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1036
		       PT_PMD);
1037
#endif
1038

I
Ian Campbell 已提交
1039
	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1040 1041 1042

	xen_mc_issue(0);
}
J
Jeremy Fitzhardinge 已提交
1043

1044 1045 1046 1047 1048
static void xen_pgd_unpin(struct mm_struct *mm)
{
	__xen_pgd_unpin(mm, mm->pgd);
}

1049 1050 1051 1052 1053 1054 1055 1056
/*
 * On resume, undo any pinning done at save, so that the rest of the
 * kernel doesn't see any unexpected pinned pagetables.
 */
void xen_mm_unpin_all(void)
{
	struct page *page;

A
Andrea Arcangeli 已提交
1057
	spin_lock(&pgd_lock);
1058 1059 1060 1061

	list_for_each_entry(page, &pgd_list, lru) {
		if (PageSavePinned(page)) {
			BUG_ON(!PagePinned(page));
1062
			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1063 1064 1065 1066
			ClearPageSavePinned(page);
		}
	}

A
Andrea Arcangeli 已提交
1067
	spin_unlock(&pgd_lock);
1068 1069
}

1070
static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
J
Jeremy Fitzhardinge 已提交
1071
{
1072
	spin_lock(&next->page_table_lock);
1073
	xen_pgd_pin(next);
1074
	spin_unlock(&next->page_table_lock);
J
Jeremy Fitzhardinge 已提交
1075 1076
}

1077
static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
1078
{
1079
	spin_lock(&mm->page_table_lock);
1080
	xen_pgd_pin(mm);
1081
	spin_unlock(&mm->page_table_lock);
J
Jeremy Fitzhardinge 已提交
1082 1083 1084
}


J
Jeremy Fitzhardinge 已提交
1085 1086 1087 1088 1089 1090
#ifdef CONFIG_SMP
/* Another cpu may still have their %cr3 pointing at the pagetable, so
   we need to repoint it somewhere else before we can unpin it. */
static void drop_other_mm_ref(void *info)
{
	struct mm_struct *mm = info;
1091
	struct mm_struct *active_mm;
J
Jeremy Fitzhardinge 已提交
1092

1093
	active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1094

1095
	if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
J
Jeremy Fitzhardinge 已提交
1096
		leave_mm(smp_processor_id());
1097 1098 1099

	/* If this cpu still has a stale cr3 reference, then make sure
	   it has been flushed. */
1100
	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1101
		load_cr3(swapper_pg_dir);
J
Jeremy Fitzhardinge 已提交
1102
}
J
Jeremy Fitzhardinge 已提交
1103

1104
static void xen_drop_mm_ref(struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
1105
{
1106
	cpumask_var_t mask;
1107 1108
	unsigned cpu;

J
Jeremy Fitzhardinge 已提交
1109 1110 1111 1112 1113
	if (current->active_mm == mm) {
		if (current->mm == mm)
			load_cr3(swapper_pg_dir);
		else
			leave_mm(smp_processor_id());
1114 1115 1116
	}

	/* Get the "official" set of cpus referring to our pagetable. */
1117 1118
	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
		for_each_online_cpu(cpu) {
1119
			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1120 1121 1122 1123 1124 1125
			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
				continue;
			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
		}
		return;
	}
1126
	cpumask_copy(mask, mm_cpumask(mm));
1127 1128 1129 1130 1131 1132 1133 1134

	/* It's possible that a vcpu may have a stale reference to our
	   cr3, because its in lazy mode, and it hasn't yet flushed
	   its set of pending hypercalls yet.  In this case, we can
	   look at its actual current cr3 value, and force it to flush
	   if needed. */
	for_each_online_cpu(cpu) {
		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1135
			cpumask_set_cpu(cpu, mask);
J
Jeremy Fitzhardinge 已提交
1136 1137
	}

1138 1139 1140
	if (!cpumask_empty(mask))
		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
	free_cpumask_var(mask);
J
Jeremy Fitzhardinge 已提交
1141 1142
}
#else
1143
static void xen_drop_mm_ref(struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
{
	if (current->active_mm == mm)
		load_cr3(swapper_pg_dir);
}
#endif

/*
 * While a process runs, Xen pins its pagetables, which means that the
 * hypervisor forces it to be read-only, and it controls all updates
 * to it.  This means that all pagetable updates have to go via the
 * hypervisor, which is moderately expensive.
 *
 * Since we're pulling the pagetable down, we switch to use init_mm,
 * unpin old process pagetable and mark it all read-write, which
 * allows further operations on it to be simple memory accesses.
 *
 * The only subtle point is that another CPU may be still using the
 * pagetable because of lazy tlb flushing.  This means we need need to
 * switch all CPUs off this pagetable before we can unpin it.
 */
1164
static void xen_exit_mmap(struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
1165 1166
{
	get_cpu();		/* make sure we don't move around */
1167
	xen_drop_mm_ref(mm);
J
Jeremy Fitzhardinge 已提交
1168
	put_cpu();
J
Jeremy Fitzhardinge 已提交
1169

1170
	spin_lock(&mm->page_table_lock);
1171 1172

	/* pgd may not be pinned in the error exit path of execve */
1173
	if (xen_page_pinned(mm->pgd))
1174
		xen_pgd_unpin(mm);
1175

1176
	spin_unlock(&mm->page_table_lock);
J
Jeremy Fitzhardinge 已提交
1177
}
J
Jeremy Fitzhardinge 已提交
1178

1179 1180
static void xen_post_allocator_init(void);

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
#ifdef CONFIG_X86_64
static void __init xen_cleanhighmap(unsigned long vaddr,
				    unsigned long vaddr_end)
{
	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);

	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
	 * We include the PMD passed in on _both_ boundaries. */
	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE));
			pmd++, vaddr += PMD_SIZE) {
		if (pmd_none(*pmd))
			continue;
		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
			set_pmd(pmd, __pmd(0));
	}
	/* In case we did something silly, we should crash in this function
	 * instead of somewhere later and be confusing. */
	xen_mc_flush();
}
1201
static void __init xen_pagetable_p2m_copy(void)
1202
{
1203 1204
	unsigned long size;
	unsigned long addr;
1205 1206 1207 1208 1209 1210 1211 1212
	unsigned long new_mfn_list;

	if (xen_feature(XENFEAT_auto_translated_physmap))
		return;

	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));

	new_mfn_list = xen_revector_p2m_tree();
1213 1214
	/* No memory or already called. */
	if (!new_mfn_list || new_mfn_list == xen_start_info->mfn_list)
1215
		return;
1216

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	/* using __ka address and sticking INVALID_P2M_ENTRY! */
	memset((void *)xen_start_info->mfn_list, 0xff, size);

	/* We should be in __ka space. */
	BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map);
	addr = xen_start_info->mfn_list;
	/* We roundup to the PMD, which means that if anybody at this stage is
	 * using the __ka address of xen_start_info or xen_start_info->shared_info
	 * they are in going to crash. Fortunatly we have already revectored
	 * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */
	size = roundup(size, PMD_SIZE);
	xen_cleanhighmap(addr, addr + size);

	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
	memblock_free(__pa(xen_start_info->mfn_list), size);
	/* And revector! Bye bye old array */
	xen_start_info->mfn_list = new_mfn_list;

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	/* At this stage, cleanup_highmap has already cleaned __ka space
	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
	 * the ramdisk). We continue on, erasing PMD entries that point to page
	 * tables - do note that they are accessible at this stage via __va.
	 * For good measure we also round up to the PMD - which means that if
	 * anybody is using __ka address to the initial boot-stack - and try
	 * to use it - they are going to crash. The xen_start_info has been
	 * taken care of already in xen_setup_kernel_pagetable. */
	addr = xen_start_info->pt_base;
	size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);

	xen_cleanhighmap(addr, addr + size);
	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
#ifdef DEBUG
	/* This is superflous and is not neccessary, but you know what
	 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
	 * anything at this stage. */
	xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
#endif
1254 1255 1256 1257 1258 1259 1260 1261 1262
}
#endif

static void __init xen_pagetable_init(void)
{
	paging_init();
	xen_setup_shared_info();
#ifdef CONFIG_X86_64
	xen_pagetable_p2m_copy();
1263
#endif
1264
	xen_post_allocator_init();
1265 1266 1267
}
static void xen_write_cr2(unsigned long cr2)
{
1268
	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1269 1270 1271 1272
}

static unsigned long xen_read_cr2(void)
{
1273
	return this_cpu_read(xen_vcpu)->arch.cr2;
1274 1275 1276 1277
}

unsigned long xen_read_cr2_direct(void)
{
1278
	return this_cpu_read(xen_vcpu_info.arch.cr2);
1279 1280
}

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
void xen_flush_tlb_all(void)
{
	struct mmuext_op *op;
	struct multicall_space mcs;

	trace_xen_mmu_flush_tlb_all(0);

	preempt_disable();

	mcs = xen_mc_entry(sizeof(*op));

	op = mcs.args;
	op->cmd = MMUEXT_TLB_FLUSH_ALL;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
}
1300 1301 1302 1303 1304
static void xen_flush_tlb(void)
{
	struct mmuext_op *op;
	struct multicall_space mcs;

1305 1306
	trace_xen_mmu_flush_tlb(0);

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	preempt_disable();

	mcs = xen_mc_entry(sizeof(*op));

	op = mcs.args;
	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
}

static void xen_flush_tlb_single(unsigned long addr)
{
	struct mmuext_op *op;
	struct multicall_space mcs;

1325 1326
	trace_xen_mmu_flush_tlb_single(addr);

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	preempt_disable();

	mcs = xen_mc_entry(sizeof(*op));
	op = mcs.args;
	op->cmd = MMUEXT_INVLPG_LOCAL;
	op->arg1.linear_addr = addr & PAGE_MASK;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
}

static void xen_flush_tlb_others(const struct cpumask *cpus,
1341 1342
				 struct mm_struct *mm, unsigned long start,
				 unsigned long end)
1343 1344 1345
{
	struct {
		struct mmuext_op op;
1346
#ifdef CONFIG_SMP
A
Andrew Jones 已提交
1347
		DECLARE_BITMAP(mask, num_processors);
1348 1349 1350
#else
		DECLARE_BITMAP(mask, NR_CPUS);
#endif
1351 1352 1353
	} *args;
	struct multicall_space mcs;

1354
	trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1355

1356 1357
	if (cpumask_empty(cpus))
		return;		/* nothing to do */
1358 1359 1360 1361 1362 1363 1364 1365 1366

	mcs = xen_mc_entry(sizeof(*args));
	args = mcs.args;
	args->op.arg2.vcpumask = to_cpumask(args->mask);

	/* Remove us, and any offline CPUS. */
	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));

1367
	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1368
	if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1369
		args->op.cmd = MMUEXT_INVLPG_MULTI;
1370
		args->op.arg1.linear_addr = start;
1371 1372 1373 1374 1375 1376 1377 1378 1379
	}

	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
}

static unsigned long xen_read_cr3(void)
{
1380
	return this_cpu_read(xen_cr3);
1381 1382 1383 1384
}

static void set_current_cr3(void *v)
{
1385
	this_cpu_write(xen_current_cr3, (unsigned long)v);
1386 1387 1388 1389
}

static void __xen_write_cr3(bool kernel, unsigned long cr3)
{
1390
	struct mmuext_op op;
1391 1392
	unsigned long mfn;

1393 1394
	trace_xen_mmu_write_cr3(kernel, cr3);

1395 1396 1397 1398 1399 1400 1401
	if (cr3)
		mfn = pfn_to_mfn(PFN_DOWN(cr3));
	else
		mfn = 0;

	WARN_ON(mfn == 0 && kernel);

1402 1403
	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
	op.arg1.mfn = mfn;
1404

1405
	xen_extend_mmuext_op(&op);
1406 1407

	if (kernel) {
1408
		this_cpu_write(xen_cr3, cr3);
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

		/* Update xen_current_cr3 once the batch has actually
		   been submitted. */
		xen_mc_callback(set_current_cr3, (void *)cr3);
	}
}
static void xen_write_cr3(unsigned long cr3)
{
	BUG_ON(preemptible());

	xen_mc_batch();  /* disables interrupts */

	/* Update while interrupts are disabled, so its atomic with
	   respect to ipis */
1423
	this_cpu_write(xen_cr3, cr3);
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439

	__xen_write_cr3(true, cr3);

#ifdef CONFIG_X86_64
	{
		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
		if (user_pgd)
			__xen_write_cr3(false, __pa(user_pgd));
		else
			__xen_write_cr3(false, 0);
	}
#endif

	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
}

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
#ifdef CONFIG_X86_64
/*
 * At the start of the day - when Xen launches a guest, it has already
 * built pagetables for the guest. We diligently look over them
 * in xen_setup_kernel_pagetable and graft as appropiate them in the
 * init_level4_pgt and its friends. Then when we are happy we load
 * the new init_level4_pgt - and continue on.
 *
 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
 * up the rest of the pagetables. When it has completed it loads the cr3.
 * N.B. that baremetal would start at 'start_kernel' (and the early
 * #PF handler would create bootstrap pagetables) - so we are running
 * with the same assumptions as what to do when write_cr3 is executed
 * at this point.
 *
 * Since there are no user-page tables at all, we have two variants
 * of xen_write_cr3 - the early bootup (this one), and the late one
 * (xen_write_cr3). The reason we have to do that is that in 64-bit
 * the Linux kernel and user-space are both in ring 3 while the
 * hypervisor is in ring 0.
 */
static void __init xen_write_cr3_init(unsigned long cr3)
{
	BUG_ON(preemptible());

	xen_mc_batch();  /* disables interrupts */

	/* Update while interrupts are disabled, so its atomic with
	   respect to ipis */
	this_cpu_write(xen_cr3, cr3);

	__xen_write_cr3(true, cr3);

	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
}
#endif

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
static int xen_pgd_alloc(struct mm_struct *mm)
{
	pgd_t *pgd = mm->pgd;
	int ret = 0;

	BUG_ON(PagePinned(virt_to_page(pgd)));

#ifdef CONFIG_X86_64
	{
		struct page *page = virt_to_page(pgd);
		pgd_t *user_pgd;

		BUG_ON(page->private != 0);

		ret = -ENOMEM;

		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
		page->private = (unsigned long)user_pgd;

		if (user_pgd != NULL) {
			user_pgd[pgd_index(VSYSCALL_START)] =
				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
			ret = 0;
		}

		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
	}
#endif

	return ret;
}

static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
{
#ifdef CONFIG_X86_64
	pgd_t *user_pgd = xen_get_user_pgd(pgd);

	if (user_pgd)
		free_page((unsigned long)user_pgd);
#endif
}

1519
#ifdef CONFIG_X86_32
1520
static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1521 1522 1523 1524 1525
{
	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
			       pte_val_ma(pte));
1526 1527 1528 1529

	return pte;
}
#else /* CONFIG_X86_64 */
1530
static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1531
{
1532 1533
	return pte;
}
1534
#endif /* CONFIG_X86_64 */
1535

1536 1537 1538 1539
/*
 * Init-time set_pte while constructing initial pagetables, which
 * doesn't allow RO page table pages to be remapped RW.
 *
1540 1541 1542 1543
 * If there is no MFN for this PFN then this page is initially
 * ballooned out so clear the PTE (as in decrease_reservation() in
 * drivers/xen/balloon.c).
 *
1544 1545 1546 1547 1548 1549
 * Many of these PTE updates are done on unpinned and writable pages
 * and doing a hypercall for these is unnecessary and expensive.  At
 * this point it is not possible to tell if a page is pinned or not,
 * so always write the PTE directly and rely on Xen trapping and
 * emulating any updates as necessary.
 */
1550
static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1551
{
1552 1553 1554 1555
	if (pte_mfn(pte) != INVALID_P2M_ENTRY)
		pte = mask_rw_pte(ptep, pte);
	else
		pte = __pte_ma(0);
1556

1557
	native_set_pte(ptep, pte);
1558
}
1559

1560 1561 1562 1563 1564 1565 1566 1567 1568
static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
{
	struct mmuext_op op;
	op.cmd = cmd;
	op.arg1.mfn = pfn_to_mfn(pfn);
	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
		BUG();
}

1569 1570
/* Early in boot, while setting up the initial pagetable, assume
   everything is pinned. */
1571
static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1572
{
1573 1574 1575 1576 1577 1578 1579 1580
#ifdef CONFIG_FLATMEM
	BUG_ON(mem_map);	/* should only be used early */
#endif
	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
}

/* Used for pmd and pud */
1581
static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1582
{
1583 1584 1585 1586 1587 1588 1589 1590
#ifdef CONFIG_FLATMEM
	BUG_ON(mem_map);	/* should only be used early */
#endif
	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
}

/* Early release_pte assumes that all pts are pinned, since there's
   only init_mm and anything attached to that is pinned. */
1591
static void __init xen_release_pte_init(unsigned long pfn)
1592
{
1593
	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1594 1595 1596
	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
}

1597
static void __init xen_release_pmd_init(unsigned long pfn)
1598
{
1599
	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1600 1601
}

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
{
	struct multicall_space mcs;
	struct mmuext_op *op;

	mcs = __xen_mc_entry(sizeof(*op));
	op = mcs.args;
	op->cmd = cmd;
	op->arg1.mfn = pfn_to_mfn(pfn);

	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
}

static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
{
	struct multicall_space mcs;
	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);

	mcs = __xen_mc_entry(0);
	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
				pfn_pte(pfn, prot), 0);
}

1625 1626
/* This needs to make sure the new pte page is pinned iff its being
   attached to a pinned pagetable. */
1627 1628
static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
				    unsigned level)
1629
{
1630 1631
	bool pinned = PagePinned(virt_to_page(mm->pgd));

1632
	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1633

1634
	if (pinned) {
1635
		struct page *page = pfn_to_page(pfn);
1636 1637 1638 1639

		SetPagePinned(page);

		if (!PageHighMem(page)) {
1640 1641 1642 1643
			xen_mc_batch();

			__set_pfn_prot(pfn, PAGE_KERNEL_RO);

1644
			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1645 1646 1647
				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);

			xen_mc_issue(PARAVIRT_LAZY_MMU);
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
		} else {
			/* make sure there are no stray mappings of
			   this page */
			kmap_flush_unused();
		}
	}
}

static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
{
	xen_alloc_ptpage(mm, pfn, PT_PTE);
}

static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
{
	xen_alloc_ptpage(mm, pfn, PT_PMD);
}

/* This should never happen until we're OK to use struct page */
1667
static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1668 1669
{
	struct page *page = pfn_to_page(pfn);
1670
	bool pinned = PagePinned(page);
1671

1672
	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1673

1674
	if (pinned) {
1675
		if (!PageHighMem(page)) {
1676 1677
			xen_mc_batch();

1678
			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1679 1680 1681 1682 1683
				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);

			__set_pfn_prot(pfn, PAGE_KERNEL);

			xen_mc_issue(PARAVIRT_LAZY_MMU);
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
		}
		ClearPagePinned(page);
	}
}

static void xen_release_pte(unsigned long pfn)
{
	xen_release_ptpage(pfn, PT_PTE);
}

static void xen_release_pmd(unsigned long pfn)
{
	xen_release_ptpage(pfn, PT_PMD);
}

#if PAGETABLE_LEVELS == 4
static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
{
	xen_alloc_ptpage(mm, pfn, PT_PUD);
}

static void xen_release_pud(unsigned long pfn)
{
	xen_release_ptpage(pfn, PT_PUD);
}
#endif

void __init xen_reserve_top(void)
{
#ifdef CONFIG_X86_32
	unsigned long top = HYPERVISOR_VIRT_START;
	struct xen_platform_parameters pp;

	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
		top = pp.virt_start;

	reserve_top_address(-top);
#endif	/* CONFIG_X86_32 */
}

/*
 * Like __va(), but returns address in the kernel mapping (which is
 * all we have until the physical memory mapping has been set up.
 */
static void *__ka(phys_addr_t paddr)
{
#ifdef CONFIG_X86_64
	return (void *)(paddr + __START_KERNEL_map);
#else
	return __va(paddr);
#endif
}

/* Convert a machine address to physical address */
static unsigned long m2p(phys_addr_t maddr)
{
	phys_addr_t paddr;

	maddr &= PTE_PFN_MASK;
	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;

	return paddr;
}

/* Convert a machine address to kernel virtual */
static void *m2v(phys_addr_t maddr)
{
	return __ka(m2p(maddr));
}

1754
/* Set the page permissions on an identity-mapped pages */
1755
static void set_page_prot_flags(void *addr, pgprot_t prot, unsigned long flags)
1756 1757 1758 1759
{
	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
	pte_t pte = pfn_pte(pfn, prot);

1760 1761 1762 1763
	/* For PVH no need to set R/O or R/W to pin them or unpin them. */
	if (xen_feature(XENFEAT_auto_translated_physmap))
		return;

1764
	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1765 1766
		BUG();
}
1767 1768 1769 1770
static void set_page_prot(void *addr, pgprot_t prot)
{
	return set_page_prot_flags(addr, prot, UVMF_NONE);
}
1771
#ifdef CONFIG_X86_32
1772
static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1773 1774 1775 1776 1777
{
	unsigned pmdidx, pteidx;
	unsigned ident_pte;
	unsigned long pfn;

1778 1779 1780
	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
				      PAGE_SIZE);

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
	ident_pte = 0;
	pfn = 0;
	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
		pte_t *pte_page;

		/* Reuse or allocate a page of ptes */
		if (pmd_present(pmd[pmdidx]))
			pte_page = m2v(pmd[pmdidx].pmd);
		else {
			/* Check for free pte pages */
1791
			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
				break;

			pte_page = &level1_ident_pgt[ident_pte];
			ident_pte += PTRS_PER_PTE;

			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
		}

		/* Install mappings */
		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
			pte_t pte;

1804 1805 1806 1807 1808
#ifdef CONFIG_X86_32
			if (pfn > max_pfn_mapped)
				max_pfn_mapped = pfn;
#endif

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
			if (!pte_none(pte_page[pteidx]))
				continue;

			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
			pte_page[pteidx] = pte;
		}
	}

	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);

	set_page_prot(pmd, PAGE_KERNEL_RO);
}
1822
#endif
1823 1824 1825 1826 1827 1828
void __init xen_setup_machphys_mapping(void)
{
	struct xen_machphys_mapping mapping;

	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1829
		machine_to_phys_nr = mapping.max_mfn + 1;
1830
	} else {
1831
		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1832
	}
1833
#ifdef CONFIG_X86_32
1834 1835
	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
		< machine_to_phys_mapping);
1836
#endif
1837 1838
}

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
#ifdef CONFIG_X86_64
static void convert_pfn_mfn(void *v)
{
	pte_t *pte = v;
	int i;

	/* All levels are converted the same way, so just treat them
	   as ptes. */
	for (i = 0; i < PTRS_PER_PTE; i++)
		pte[i] = xen_make_pte(pte[i].pte);
}
1850 1851 1852 1853
static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
				 unsigned long addr)
{
	if (*pt_base == PFN_DOWN(__pa(addr))) {
1854
		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1855 1856 1857 1858
		clear_page((void *)addr);
		(*pt_base)++;
	}
	if (*pt_end == PFN_DOWN(__pa(addr))) {
1859
		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1860 1861 1862 1863
		clear_page((void *)addr);
		(*pt_end)--;
	}
}
1864
/*
L
Lucas De Marchi 已提交
1865
 * Set up the initial kernel pagetable.
1866 1867 1868 1869 1870 1871 1872 1873
 *
 * We can construct this by grafting the Xen provided pagetable into
 * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
 * means that only the kernel has a physical mapping to start with -
 * but that's enough to get __va working.  We need to fill in the rest
 * of the physical mapping once some sort of allocator has been set
 * up.
1874
 * NOTE: for PVH, the page tables are native.
1875
 */
1876
void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1877 1878 1879
{
	pud_t *l3;
	pmd_t *l2;
1880 1881 1882
	unsigned long addr[3];
	unsigned long pt_base, pt_end;
	unsigned i;
1883

1884 1885 1886 1887 1888 1889
	/* max_pfn_mapped is the last pfn mapped in the initial memory
	 * mappings. Considering that on Xen after the kernel mappings we
	 * have the mappings of some pages that don't exist in pfn space, we
	 * set max_pfn_mapped to the last real pfn mapped. */
	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));

1890 1891 1892
	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
	pt_end = pt_base + xen_start_info->nr_pt_frames;

1893 1894 1895
	/* Zap identity mapping */
	init_level4_pgt[0] = __pgd(0);

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
		/* Pre-constructed entries are in pfn, so convert to mfn */
		/* L4[272] -> level3_ident_pgt
		 * L4[511] -> level3_kernel_pgt */
		convert_pfn_mfn(init_level4_pgt);

		/* L3_i[0] -> level2_ident_pgt */
		convert_pfn_mfn(level3_ident_pgt);
		/* L3_k[510] -> level2_kernel_pgt
		 * L3_i[511] -> level2_fixmap_pgt */
		convert_pfn_mfn(level3_kernel_pgt);
	}
1908
	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1909 1910 1911
	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);

1912 1913 1914
	addr[0] = (unsigned long)pgd;
	addr[1] = (unsigned long)l3;
	addr[2] = (unsigned long)l2;
1915 1916 1917 1918 1919 1920
	/* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
	 * Both L4[272][0] and L4[511][511] have entries that point to the same
	 * L2 (PMD) tables. Meaning that if you modify it in __va space
	 * it will be also modified in the __ka space! (But if you just
	 * modify the PMD table to point to other PTE's or none, then you
	 * are OK - which is what cleanup_highmap does) */
1921
	copy_page(level2_ident_pgt, l2);
1922
	/* Graft it onto L4[511][511] */
1923
	copy_page(level2_kernel_pgt, l2);
1924

1925
	/* Get [511][510] and graft that in level2_fixmap_pgt */
1926 1927
	l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
	l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1928
	copy_page(level2_fixmap_pgt, l2);
1929 1930
	/* Note that we don't do anything with level1_fixmap_pgt which
	 * we don't need. */
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
		/* Make pagetable pieces RO */
		set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
		set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
		set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
		set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
		set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
		set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
		set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);

		/* Pin down new L4 */
		pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
				  PFN_DOWN(__pa_symbol(init_level4_pgt)));

		/* Unpin Xen-provided one */
		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1947

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
		/*
		 * At this stage there can be no user pgd, and no page
		 * structure to attach it to, so make sure we just set kernel
		 * pgd.
		 */
		xen_mc_batch();
		__xen_write_cr3(true, __pa(init_level4_pgt));
		xen_mc_issue(PARAVIRT_LAZY_CPU);
	} else
		native_write_cr3(__pa(init_level4_pgt));
1958

1959 1960 1961 1962 1963 1964 1965 1966
	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
	 * the initial domain. For guests using the toolstack, they are in:
	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
	 * rip out the [L4] (pgd), but for guests we shave off three pages.
	 */
	for (i = 0; i < ARRAY_SIZE(addr); i++)
		check_pt_base(&pt_base, &pt_end, addr[i]);
1967

1968 1969
	/* Our (by three pages) smaller Xen pagetable that we are using */
	memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE);
1970 1971
	/* Revector the xen_start_info */
	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1972 1973
}
#else	/* !CONFIG_X86_64 */
1974 1975 1976
static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);

1977
static void __init xen_write_cr3_init(unsigned long cr3)
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
{
	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));

	BUG_ON(read_cr3() != __pa(initial_page_table));
	BUG_ON(cr3 != __pa(swapper_pg_dir));

	/*
	 * We are switching to swapper_pg_dir for the first time (from
	 * initial_page_table) and therefore need to mark that page
	 * read-only and then pin it.
	 *
	 * Xen disallows sharing of kernel PMDs for PAE
	 * guests. Therefore we must copy the kernel PMD from
	 * initial_page_table into a new kernel PMD to be used in
	 * swapper_pg_dir.
	 */
	swapper_kernel_pmd =
		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1996
	copy_page(swapper_kernel_pmd, initial_kernel_pmd);
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);

	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
	xen_write_cr3(cr3);
	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);

	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
			  PFN_DOWN(__pa(initial_page_table)));
	set_page_prot(initial_page_table, PAGE_KERNEL);
	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);

	pv_mmu_ops.write_cr3 = &xen_write_cr3;
}
2012

2013
void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2014 2015 2016
{
	pmd_t *kernel_pmd;

2017 2018
	initial_kernel_pmd =
		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2019

2020 2021 2022
	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
				  xen_start_info->nr_pt_frames * PAGE_SIZE +
				  512*1024);
2023 2024

	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2025
	copy_page(initial_kernel_pmd, kernel_pmd);
2026

2027
	xen_map_identity_early(initial_kernel_pmd, max_pfn);
2028

2029
	copy_page(initial_page_table, pgd);
2030 2031
	initial_page_table[KERNEL_PGD_BOUNDARY] =
		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2032

2033 2034
	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2035 2036 2037 2038
	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);

	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));

2039 2040 2041
	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
			  PFN_DOWN(__pa(initial_page_table)));
	xen_write_cr3(__pa(initial_page_table));
2042

2043
	memblock_reserve(__pa(xen_start_info->pt_base),
2044
			 xen_start_info->nr_pt_frames * PAGE_SIZE);
2045 2046 2047
}
#endif	/* CONFIG_X86_64 */

2048 2049
static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;

2050
static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2051 2052 2053 2054 2055 2056 2057
{
	pte_t pte;

	phys >>= PAGE_SHIFT;

	switch (idx) {
	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2058
	case FIX_RO_IDT:
2059 2060 2061 2062 2063 2064 2065 2066
#ifdef CONFIG_X86_32
	case FIX_WP_TEST:
	case FIX_VDSO:
# ifdef CONFIG_HIGHMEM
	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
# endif
#else
	case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
2067
	case VVAR_PAGE:
2068
#endif
2069 2070 2071
	case FIX_TEXT_POKE0:
	case FIX_TEXT_POKE1:
		/* All local page mappings */
2072 2073 2074
		pte = pfn_pte(phys, prot);
		break;

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
#ifdef CONFIG_X86_LOCAL_APIC
	case FIX_APIC_BASE:	/* maps dummy local APIC */
		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
		break;
#endif

#ifdef CONFIG_X86_IO_APIC
	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
		/*
		 * We just don't map the IO APIC - all access is via
		 * hypercalls.  Keep the address in the pte for reference.
		 */
2087
		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2088 2089 2090
		break;
#endif

2091 2092 2093
	case FIX_PARAVIRT_BOOTMAP:
		/* This is an MFN, but it isn't an IO mapping from the
		   IO domain */
2094 2095
		pte = mfn_pte(phys, prot);
		break;
2096 2097 2098 2099 2100

	default:
		/* By default, set_fixmap is used for hardware mappings */
		pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
		break;
2101 2102 2103 2104 2105 2106 2107
	}

	__native_set_fixmap(idx, pte);

#ifdef CONFIG_X86_64
	/* Replicate changes to map the vsyscall page into the user
	   pagetable vsyscall mapping. */
2108 2109
	if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) ||
	    idx == VVAR_PAGE) {
2110 2111 2112 2113 2114 2115
		unsigned long vaddr = __fix_to_virt(idx);
		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
	}
#endif
}

2116
static void __init xen_post_allocator_init(void)
2117
{
2118 2119 2120
	if (xen_feature(XENFEAT_auto_translated_physmap))
		return;

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
	pv_mmu_ops.set_pte = xen_set_pte;
	pv_mmu_ops.set_pmd = xen_set_pmd;
	pv_mmu_ops.set_pud = xen_set_pud;
#if PAGETABLE_LEVELS == 4
	pv_mmu_ops.set_pgd = xen_set_pgd;
#endif

	/* This will work as long as patching hasn't happened yet
	   (which it hasn't) */
	pv_mmu_ops.alloc_pte = xen_alloc_pte;
	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
	pv_mmu_ops.release_pte = xen_release_pte;
	pv_mmu_ops.release_pmd = xen_release_pmd;
#if PAGETABLE_LEVELS == 4
	pv_mmu_ops.alloc_pud = xen_alloc_pud;
	pv_mmu_ops.release_pud = xen_release_pud;
#endif

#ifdef CONFIG_X86_64
2140
	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2141 2142 2143 2144 2145
	SetPagePinned(virt_to_page(level3_user_vsyscall));
#endif
	xen_mark_init_mm_pinned();
}

2146 2147
static void xen_leave_lazy_mmu(void)
{
2148
	preempt_disable();
2149 2150
	xen_mc_flush();
	paravirt_leave_lazy_mmu();
2151
	preempt_enable();
2152
}
2153

2154
static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2155 2156 2157 2158
	.read_cr2 = xen_read_cr2,
	.write_cr2 = xen_write_cr2,

	.read_cr3 = xen_read_cr3,
2159
	.write_cr3 = xen_write_cr3_init,
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173

	.flush_tlb_user = xen_flush_tlb,
	.flush_tlb_kernel = xen_flush_tlb,
	.flush_tlb_single = xen_flush_tlb_single,
	.flush_tlb_others = xen_flush_tlb_others,

	.pte_update = paravirt_nop,
	.pte_update_defer = paravirt_nop,

	.pgd_alloc = xen_pgd_alloc,
	.pgd_free = xen_pgd_free,

	.alloc_pte = xen_alloc_pte_init,
	.release_pte = xen_release_pte_init,
2174 2175
	.alloc_pmd = xen_alloc_pmd_init,
	.release_pmd = xen_release_pmd_init,
2176 2177 2178 2179 2180 2181 2182 2183

	.set_pte = xen_set_pte_init,
	.set_pte_at = xen_set_pte_at,
	.set_pmd = xen_set_pmd_hyper,

	.ptep_modify_prot_start = __ptep_modify_prot_start,
	.ptep_modify_prot_commit = __ptep_modify_prot_commit,

2184 2185
	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2186

2187 2188
	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2189 2190 2191 2192 2193 2194 2195 2196

#ifdef CONFIG_X86_PAE
	.set_pte_atomic = xen_set_pte_atomic,
	.pte_clear = xen_pte_clear,
	.pmd_clear = xen_pmd_clear,
#endif	/* CONFIG_X86_PAE */
	.set_pud = xen_set_pud_hyper,

2197 2198
	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2199 2200

#if PAGETABLE_LEVELS == 4
2201 2202
	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2203 2204
	.set_pgd = xen_set_pgd_hyper,

2205 2206
	.alloc_pud = xen_alloc_pmd_init,
	.release_pud = xen_release_pmd_init,
2207 2208 2209 2210 2211 2212 2213 2214
#endif	/* PAGETABLE_LEVELS == 4 */

	.activate_mm = xen_activate_mm,
	.dup_mmap = xen_dup_mmap,
	.exit_mmap = xen_exit_mmap,

	.lazy_mode = {
		.enter = paravirt_enter_lazy_mmu,
2215
		.leave = xen_leave_lazy_mmu,
2216
		.flush = paravirt_flush_lazy_mmu,
2217 2218 2219 2220 2221
	},

	.set_fixmap = xen_set_fixmap,
};

2222 2223
void __init xen_init_mmu_ops(void)
{
2224
	x86_init.paging.pagetable_init = xen_pagetable_init;
2225 2226 2227 2228 2229 2230 2231 2232 2233

	/* Optimization - we can use the HVM one but it has no idea which
	 * VCPUs are descheduled - which means that it will needlessly IPI
	 * them. Xen knows so let it do the job.
	 */
	if (xen_feature(XENFEAT_auto_translated_physmap)) {
		pv_mmu_ops.flush_tlb_others = xen_flush_tlb_others;
		return;
	}
2234
	pv_mmu_ops = xen_mmu_ops;
2235

2236
	memset(dummy_mapping, 0xff, PAGE_SIZE);
2237
}
2238

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
/* Protected by xen_reservation_lock. */
#define MAX_CONTIG_ORDER 9 /* 2MB */
static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];

#define VOID_PTE (mfn_pte(0, __pgprot(0)))
static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
				unsigned long *in_frames,
				unsigned long *out_frames)
{
	int i;
	struct multicall_space mcs;

	xen_mc_batch();
	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
		mcs = __xen_mc_entry(0);

		if (in_frames)
			in_frames[i] = virt_to_mfn(vaddr);

		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2259
		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354

		if (out_frames)
			out_frames[i] = virt_to_pfn(vaddr);
	}
	xen_mc_issue(0);
}

/*
 * Update the pfn-to-mfn mappings for a virtual address range, either to
 * point to an array of mfns, or contiguously from a single starting
 * mfn.
 */
static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
				     unsigned long *mfns,
				     unsigned long first_mfn)
{
	unsigned i, limit;
	unsigned long mfn;

	xen_mc_batch();

	limit = 1u << order;
	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
		struct multicall_space mcs;
		unsigned flags;

		mcs = __xen_mc_entry(0);
		if (mfns)
			mfn = mfns[i];
		else
			mfn = first_mfn + i;

		if (i < (limit - 1))
			flags = 0;
		else {
			if (order == 0)
				flags = UVMF_INVLPG | UVMF_ALL;
			else
				flags = UVMF_TLB_FLUSH | UVMF_ALL;
		}

		MULTI_update_va_mapping(mcs.mc, vaddr,
				mfn_pte(mfn, PAGE_KERNEL), flags);

		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
	}

	xen_mc_issue(0);
}

/*
 * Perform the hypercall to exchange a region of our pfns to point to
 * memory with the required contiguous alignment.  Takes the pfns as
 * input, and populates mfns as output.
 *
 * Returns a success code indicating whether the hypervisor was able to
 * satisfy the request or not.
 */
static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
			       unsigned long *pfns_in,
			       unsigned long extents_out,
			       unsigned int order_out,
			       unsigned long *mfns_out,
			       unsigned int address_bits)
{
	long rc;
	int success;

	struct xen_memory_exchange exchange = {
		.in = {
			.nr_extents   = extents_in,
			.extent_order = order_in,
			.extent_start = pfns_in,
			.domid        = DOMID_SELF
		},
		.out = {
			.nr_extents   = extents_out,
			.extent_order = order_out,
			.extent_start = mfns_out,
			.address_bits = address_bits,
			.domid        = DOMID_SELF
		}
	};

	BUG_ON(extents_in << order_in != extents_out << order_out);

	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
	success = (exchange.nr_exchanged == extents_in);

	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
	BUG_ON(success && (rc != 0));

	return success;
}

2355
int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2356 2357
				 unsigned int address_bits,
				 dma_addr_t *dma_handle)
2358 2359 2360 2361
{
	unsigned long *in_frames = discontig_frames, out_frame;
	unsigned long  flags;
	int            success;
2362
	unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396

	/*
	 * Currently an auto-translated guest will not perform I/O, nor will
	 * it require PAE page directories below 4GB. Therefore any calls to
	 * this function are redundant and can be ignored.
	 */

	if (xen_feature(XENFEAT_auto_translated_physmap))
		return 0;

	if (unlikely(order > MAX_CONTIG_ORDER))
		return -ENOMEM;

	memset((void *) vstart, 0, PAGE_SIZE << order);

	spin_lock_irqsave(&xen_reservation_lock, flags);

	/* 1. Zap current PTEs, remembering MFNs. */
	xen_zap_pfn_range(vstart, order, in_frames, NULL);

	/* 2. Get a new contiguous memory extent. */
	out_frame = virt_to_pfn(vstart);
	success = xen_exchange_memory(1UL << order, 0, in_frames,
				      1, order, &out_frame,
				      address_bits);

	/* 3. Map the new extent in place of old pages. */
	if (success)
		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
	else
		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);

	spin_unlock_irqrestore(&xen_reservation_lock, flags);

2397
	*dma_handle = virt_to_machine(vstart).maddr;
2398 2399 2400 2401
	return success ? 0 : -ENOMEM;
}
EXPORT_SYMBOL_GPL(xen_create_contiguous_region);

2402
void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2403 2404 2405 2406
{
	unsigned long *out_frames = discontig_frames, in_frame;
	unsigned long  flags;
	int success;
2407
	unsigned long vstart;
2408 2409 2410 2411 2412 2413 2414

	if (xen_feature(XENFEAT_auto_translated_physmap))
		return;

	if (unlikely(order > MAX_CONTIG_ORDER))
		return;

2415
	vstart = (unsigned long)phys_to_virt(pstart);
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
	memset((void *) vstart, 0, PAGE_SIZE << order);

	spin_lock_irqsave(&xen_reservation_lock, flags);

	/* 1. Find start MFN of contiguous extent. */
	in_frame = virt_to_mfn(vstart);

	/* 2. Zap current PTEs. */
	xen_zap_pfn_range(vstart, order, NULL, out_frames);

	/* 3. Do the exchange for non-contiguous MFNs. */
	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
					0, out_frames, 0);

	/* 4. Map new pages in place of old pages. */
	if (success)
		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
	else
		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);

	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2437
}
2438
EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2439

2440
#ifdef CONFIG_XEN_PVHVM
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
#ifdef CONFIG_PROC_VMCORE
/*
 * This function is used in two contexts:
 * - the kdump kernel has to check whether a pfn of the crashed kernel
 *   was a ballooned page. vmcore is using this function to decide
 *   whether to access a pfn of the crashed kernel.
 * - the kexec kernel has to check whether a pfn was ballooned by the
 *   previous kernel. If the pfn is ballooned, handle it properly.
 * Returns 0 if the pfn is not backed by a RAM page, the caller may
 * handle the pfn special in this case.
 */
static int xen_oldmem_pfn_is_ram(unsigned long pfn)
{
	struct xen_hvm_get_mem_type a = {
		.domid = DOMID_SELF,
		.pfn = pfn,
	};
	int ram;

	if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
		return -ENXIO;

	switch (a.mem_type) {
		case HVMMEM_mmio_dm:
			ram = 0;
			break;
		case HVMMEM_ram_rw:
		case HVMMEM_ram_ro:
		default:
			ram = 1;
			break;
	}

	return ram;
}
#endif

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
static void xen_hvm_exit_mmap(struct mm_struct *mm)
{
	struct xen_hvm_pagetable_dying a;
	int rc;

	a.domid = DOMID_SELF;
	a.gpa = __pa(mm->pgd);
	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
	WARN_ON_ONCE(rc < 0);
}

static int is_pagetable_dying_supported(void)
{
	struct xen_hvm_pagetable_dying a;
	int rc = 0;

	a.domid = DOMID_SELF;
	a.gpa = 0x00;
	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
	if (rc < 0) {
		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
		return 0;
	}
	return 1;
}

void __init xen_hvm_init_mmu_ops(void)
{
	if (is_pagetable_dying_supported())
		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2508 2509 2510
#ifdef CONFIG_PROC_VMCORE
	register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
#endif
2511
}
2512
#endif
2513

2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
#define REMAP_BATCH_SIZE 16

struct remap_data {
	unsigned long mfn;
	pgprot_t prot;
	struct mmu_update *mmu_update;
};

static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
				 unsigned long addr, void *data)
{
	struct remap_data *rmd = data;
	pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));

2528
	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2529 2530 2531 2532 2533 2534 2535 2536
	rmd->mmu_update->val = pte_val_ma(pte);
	rmd->mmu_update++;

	return 0;
}

int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
			       unsigned long addr,
2537
			       xen_pfn_t mfn, int nr,
2538 2539 2540
			       pgprot_t prot, unsigned domid,
			       struct page **pages)

2541 2542 2543 2544 2545 2546 2547
{
	struct remap_data rmd;
	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
	int batch;
	unsigned long range;
	int err = 0;

2548 2549 2550
	if (xen_feature(XENFEAT_auto_translated_physmap))
		return -EINVAL;

2551 2552
	prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);

2553
	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567

	rmd.mfn = mfn;
	rmd.prot = prot;

	while (nr) {
		batch = min(REMAP_BATCH_SIZE, nr);
		range = (unsigned long)batch << PAGE_SHIFT;

		rmd.mmu_update = mmu_update;
		err = apply_to_page_range(vma->vm_mm, addr, range,
					  remap_area_mfn_pte_fn, &rmd);
		if (err)
			goto out;

2568 2569
		err = HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid);
		if (err < 0)
2570 2571 2572 2573 2574 2575 2576 2577 2578
			goto out;

		nr -= batch;
		addr += range;
	}

	err = 0;
out:

2579
	xen_flush_tlb_all();
2580 2581 2582 2583

	return err;
}
EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594

/* Returns: 0 success */
int xen_unmap_domain_mfn_range(struct vm_area_struct *vma,
			       int numpgs, struct page **pages)
{
	if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
		return 0;

	return -EINVAL;
}
EXPORT_SYMBOL_GPL(xen_unmap_domain_mfn_range);