cec-adap.c 59.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
 *
 * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
 *
 * This program is free software; you may redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <linux/errno.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/ktime.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/types.h>

31 32
#include <drm/drm_edid.h>

33 34
#include "cec-priv.h"

35 36 37
static void cec_fill_msg_report_features(struct cec_adapter *adap,
					 struct cec_msg *msg,
					 unsigned int la_idx);
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

/*
 * 400 ms is the time it takes for one 16 byte message to be
 * transferred and 5 is the maximum number of retries. Add
 * another 100 ms as a margin. So if the transmit doesn't
 * finish before that time something is really wrong and we
 * have to time out.
 *
 * This is a sign that something it really wrong and a warning
 * will be issued.
 */
#define CEC_XFER_TIMEOUT_MS (5 * 400 + 100)

#define call_op(adap, op, arg...) \
	(adap->ops->op ? adap->ops->op(adap, ## arg) : 0)

#define call_void_op(adap, op, arg...)			\
	do {						\
		if (adap->ops->op)			\
			adap->ops->op(adap, ## arg);	\
	} while (0)

static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
{
	int i;

	for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
		if (adap->log_addrs.log_addr[i] == log_addr)
			return i;
	return -1;
}

static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
{
	int i = cec_log_addr2idx(adap, log_addr);

	return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
}

/*
 * Queue a new event for this filehandle. If ts == 0, then set it
 * to the current time.
 *
81 82 83
 * We keep a queue of at most max_event events where max_event differs
 * per event. If the queue becomes full, then drop the oldest event and
 * keep track of how many events we've dropped.
84 85 86 87
 */
void cec_queue_event_fh(struct cec_fh *fh,
			const struct cec_event *new_ev, u64 ts)
{
88
	static const u8 max_events[CEC_NUM_EVENTS] = {
89
		1, 1, 64, 64, 8, 8,
90 91 92 93 94 95
	};
	struct cec_event_entry *entry;
	unsigned int ev_idx = new_ev->event - 1;

	if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events)))
		return;
96 97 98 99 100

	if (ts == 0)
		ts = ktime_get_ns();

	mutex_lock(&fh->lock);
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
	if (ev_idx < CEC_NUM_CORE_EVENTS)
		entry = &fh->core_events[ev_idx];
	else
		entry = kmalloc(sizeof(*entry), GFP_KERNEL);
	if (entry) {
		if (new_ev->event == CEC_EVENT_LOST_MSGS &&
		    fh->queued_events[ev_idx]) {
			entry->ev.lost_msgs.lost_msgs +=
				new_ev->lost_msgs.lost_msgs;
			goto unlock;
		}
		entry->ev = *new_ev;
		entry->ev.ts = ts;

		if (fh->queued_events[ev_idx] < max_events[ev_idx]) {
			/* Add new msg at the end of the queue */
			list_add_tail(&entry->list, &fh->events[ev_idx]);
			fh->queued_events[ev_idx]++;
			fh->total_queued_events++;
			goto unlock;
		}

		if (ev_idx >= CEC_NUM_CORE_EVENTS) {
			list_add_tail(&entry->list, &fh->events[ev_idx]);
			/* drop the oldest event */
			entry = list_first_entry(&fh->events[ev_idx],
						 struct cec_event_entry, list);
			list_del(&entry->list);
			kfree(entry);
		}
131
	}
132 133 134 135 136
	/* Mark that events were lost */
	entry = list_first_entry_or_null(&fh->events[ev_idx],
					 struct cec_event_entry, list);
	if (entry)
		entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS;
137 138 139 140 141 142 143 144 145 146 147 148 149

unlock:
	mutex_unlock(&fh->lock);
	wake_up_interruptible(&fh->wait);
}

/* Queue a new event for all open filehandles. */
static void cec_queue_event(struct cec_adapter *adap,
			    const struct cec_event *ev)
{
	u64 ts = ktime_get_ns();
	struct cec_fh *fh;

150
	mutex_lock(&adap->devnode.lock);
151 152
	list_for_each_entry(fh, &adap->devnode.fhs, list)
		cec_queue_event_fh(fh, ev, ts);
153
	mutex_unlock(&adap->devnode.lock);
154 155
}

156
/* Notify userspace that the CEC pin changed state at the given time. */
157
void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
158 159
{
	struct cec_event ev = {
160 161
		.event = is_high ? CEC_EVENT_PIN_CEC_HIGH :
				   CEC_EVENT_PIN_CEC_LOW,
162 163 164 165 166 167 168 169 170
	};
	struct cec_fh *fh;

	mutex_lock(&adap->devnode.lock);
	list_for_each_entry(fh, &adap->devnode.fhs, list)
		if (fh->mode_follower == CEC_MODE_MONITOR_PIN)
			cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
	mutex_unlock(&adap->devnode.lock);
}
171
EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event);
172

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/* Notify userspace that the HPD pin changed state at the given time. */
void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
{
	struct cec_event ev = {
		.event = is_high ? CEC_EVENT_PIN_HPD_HIGH :
				   CEC_EVENT_PIN_HPD_LOW,
	};
	struct cec_fh *fh;

	mutex_lock(&adap->devnode.lock);
	list_for_each_entry(fh, &adap->devnode.fhs, list)
		cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
	mutex_unlock(&adap->devnode.lock);
}
EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event);

189
/*
190 191 192 193 194
 * Queue a new message for this filehandle.
 *
 * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
 * queue becomes full, then drop the oldest message and keep track
 * of how many messages we've dropped.
195 196 197
 */
static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
{
198
	static const struct cec_event ev_lost_msgs = {
199
		.event = CEC_EVENT_LOST_MSGS,
200 201 202 203
		.flags = 0,
		{
			.lost_msgs = { 1 },
		},
204 205 206 207 208
	};
	struct cec_msg_entry *entry;

	mutex_lock(&fh->lock);
	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
209 210 211 212 213 214 215 216 217 218 219 220
	if (entry) {
		entry->msg = *msg;
		/* Add new msg at the end of the queue */
		list_add_tail(&entry->list, &fh->msgs);

		if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) {
			/* All is fine if there is enough room */
			fh->queued_msgs++;
			mutex_unlock(&fh->lock);
			wake_up_interruptible(&fh->wait);
			return;
		}
221

222 223 224 225 226
		/*
		 * if the message queue is full, then drop the oldest one and
		 * send a lost message event.
		 */
		entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list);
227
		list_del(&entry->list);
228
		kfree(entry);
229 230 231
	}
	mutex_unlock(&fh->lock);

232 233 234 235 236
	/*
	 * We lost a message, either because kmalloc failed or the queue
	 * was full.
	 */
	cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns());
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
}

/*
 * Queue the message for those filehandles that are in monitor mode.
 * If valid_la is true (this message is for us or was sent by us),
 * then pass it on to any monitoring filehandle. If this message
 * isn't for us or from us, then only give it to filehandles that
 * are in MONITOR_ALL mode.
 *
 * This can only happen if the CEC_CAP_MONITOR_ALL capability is
 * set and the CEC adapter was placed in 'monitor all' mode.
 */
static void cec_queue_msg_monitor(struct cec_adapter *adap,
				  const struct cec_msg *msg,
				  bool valid_la)
{
	struct cec_fh *fh;
	u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
				      CEC_MODE_MONITOR_ALL;

257
	mutex_lock(&adap->devnode.lock);
258 259 260 261
	list_for_each_entry(fh, &adap->devnode.fhs, list) {
		if (fh->mode_follower >= monitor_mode)
			cec_queue_msg_fh(fh, msg);
	}
262
	mutex_unlock(&adap->devnode.lock);
263 264 265 266 267 268 269 270 271 272
}

/*
 * Queue the message for follower filehandles.
 */
static void cec_queue_msg_followers(struct cec_adapter *adap,
				    const struct cec_msg *msg)
{
	struct cec_fh *fh;

273
	mutex_lock(&adap->devnode.lock);
274 275 276 277
	list_for_each_entry(fh, &adap->devnode.fhs, list) {
		if (fh->mode_follower == CEC_MODE_FOLLOWER)
			cec_queue_msg_fh(fh, msg);
	}
278
	mutex_unlock(&adap->devnode.lock);
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
}

/* Notify userspace of an adapter state change. */
static void cec_post_state_event(struct cec_adapter *adap)
{
	struct cec_event ev = {
		.event = CEC_EVENT_STATE_CHANGE,
	};

	ev.state_change.phys_addr = adap->phys_addr;
	ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
	cec_queue_event(adap, &ev);
}

/*
 * A CEC transmit (and a possible wait for reply) completed.
 * If this was in blocking mode, then complete it, otherwise
 * queue the message for userspace to dequeue later.
 *
 * This function is called with adap->lock held.
 */
static void cec_data_completed(struct cec_data *data)
{
	/*
	 * Delete this transmit from the filehandle's xfer_list since
	 * we're done with it.
	 *
	 * Note that if the filehandle is closed before this transmit
	 * finished, then the release() function will set data->fh to NULL.
	 * Without that we would be referring to a closed filehandle.
	 */
	if (data->fh)
		list_del(&data->xfer_list);

	if (data->blocking) {
		/*
		 * Someone is blocking so mark the message as completed
		 * and call complete.
		 */
		data->completed = true;
		complete(&data->c);
	} else {
		/*
		 * No blocking, so just queue the message if needed and
		 * free the memory.
		 */
		if (data->fh)
			cec_queue_msg_fh(data->fh, &data->msg);
		kfree(data);
	}
}

/*
 * A pending CEC transmit needs to be cancelled, either because the CEC
 * adapter is disabled or the transmit takes an impossibly long time to
 * finish.
 *
 * This function is called with adap->lock held.
 */
static void cec_data_cancel(struct cec_data *data)
{
	/*
	 * It's either the current transmit, or it is a pending
	 * transmit. Take the appropriate action to clear it.
	 */
344
	if (data->adap->transmitting == data) {
345
		data->adap->transmitting = NULL;
346
	} else {
347
		list_del_init(&data->list);
348 349 350
		if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
			data->adap->transmit_queue_sz--;
	}
351 352

	/* Mark it as an error */
353
	data->msg.tx_ts = ktime_get_ns();
354 355 356
	data->msg.tx_status |= CEC_TX_STATUS_ERROR |
			       CEC_TX_STATUS_MAX_RETRIES;
	data->msg.tx_error_cnt++;
357 358 359 360 361 362 363
	data->attempts = 0;
	/* Queue transmitted message for monitoring purposes */
	cec_queue_msg_monitor(data->adap, &data->msg, 1);

	cec_data_completed(data);
}

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
/*
 * Flush all pending transmits and cancel any pending timeout work.
 *
 * This function is called with adap->lock held.
 */
static void cec_flush(struct cec_adapter *adap)
{
	struct cec_data *data, *n;

	/*
	 * If the adapter is disabled, or we're asked to stop,
	 * then cancel any pending transmits.
	 */
	while (!list_empty(&adap->transmit_queue)) {
		data = list_first_entry(&adap->transmit_queue,
					struct cec_data, list);
		cec_data_cancel(data);
	}
	if (adap->transmitting)
		cec_data_cancel(adap->transmitting);

	/* Cancel the pending timeout work. */
	list_for_each_entry_safe(data, n, &adap->wait_queue, list) {
		if (cancel_delayed_work(&data->work))
			cec_data_cancel(data);
		/*
		 * If cancel_delayed_work returned false, then
		 * the cec_wait_timeout function is running,
		 * which will call cec_data_completed. So no
		 * need to do anything special in that case.
		 */
	}
}

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
/*
 * Main CEC state machine
 *
 * Wait until the thread should be stopped, or we are not transmitting and
 * a new transmit message is queued up, in which case we start transmitting
 * that message. When the adapter finished transmitting the message it will
 * call cec_transmit_done().
 *
 * If the adapter is disabled, then remove all queued messages instead.
 *
 * If the current transmit times out, then cancel that transmit.
 */
int cec_thread_func(void *_adap)
{
	struct cec_adapter *adap = _adap;

	for (;;) {
		unsigned int signal_free_time;
		struct cec_data *data;
		bool timeout = false;
		u8 attempts;

		if (adap->transmitting) {
			int err;

			/*
			 * We are transmitting a message, so add a timeout
			 * to prevent the state machine to get stuck waiting
			 * for this message to finalize and add a check to
			 * see if the adapter is disabled in which case the
			 * transmit should be canceled.
			 */
			err = wait_event_interruptible_timeout(adap->kthread_waitq,
431 432
				(adap->needs_hpd &&
				 (!adap->is_configured && !adap->is_configuring)) ||
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
				kthread_should_stop() ||
				(!adap->transmitting &&
				 !list_empty(&adap->transmit_queue)),
				msecs_to_jiffies(CEC_XFER_TIMEOUT_MS));
			timeout = err == 0;
		} else {
			/* Otherwise we just wait for something to happen. */
			wait_event_interruptible(adap->kthread_waitq,
				kthread_should_stop() ||
				(!adap->transmitting &&
				 !list_empty(&adap->transmit_queue)));
		}

		mutex_lock(&adap->lock);

448 449 450
		if ((adap->needs_hpd &&
		     (!adap->is_configured && !adap->is_configuring)) ||
		    kthread_should_stop()) {
451
			cec_flush(adap);
452 453 454 455 456
			goto unlock;
		}

		if (adap->transmitting && timeout) {
			/*
457 458 459 460 461 462
			 * If we timeout, then log that. Normally this does
			 * not happen and it is an indication of a faulty CEC
			 * adapter driver, or the CEC bus is in some weird
			 * state. On rare occasions it can happen if there is
			 * so much traffic on the bus that the adapter was
			 * unable to transmit for CEC_XFER_TIMEOUT_MS (2.1s).
463
			 */
464
			dprintk(1, "%s: message %*ph timed out\n", __func__,
465 466
				adap->transmitting->msg.len,
				adap->transmitting->msg.msg);
467
			adap->tx_timeouts++;
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
			/* Just give up on this. */
			cec_data_cancel(adap->transmitting);
			goto unlock;
		}

		/*
		 * If we are still transmitting, or there is nothing new to
		 * transmit, then just continue waiting.
		 */
		if (adap->transmitting || list_empty(&adap->transmit_queue))
			goto unlock;

		/* Get a new message to transmit */
		data = list_first_entry(&adap->transmit_queue,
					struct cec_data, list);
		list_del_init(&data->list);
484
		adap->transmit_queue_sz--;
485

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
		/* Make this the current transmitting message */
		adap->transmitting = data;

		/*
		 * Suggested number of attempts as per the CEC 2.0 spec:
		 * 4 attempts is the default, except for 'secondary poll
		 * messages', i.e. poll messages not sent during the adapter
		 * configuration phase when it allocates logical addresses.
		 */
		if (data->msg.len == 1 && adap->is_configured)
			attempts = 2;
		else
			attempts = 4;

		/* Set the suggested signal free time */
		if (data->attempts) {
			/* should be >= 3 data bit periods for a retry */
			signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
		} else if (data->new_initiator) {
			/* should be >= 5 data bit periods for new initiator */
			signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
		} else {
			/*
			 * should be >= 7 data bit periods for sending another
			 * frame immediately after another.
			 */
			signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
		}
		if (data->attempts == 0)
			data->attempts = attempts;

		/* Tell the adapter to transmit, cancel on error */
		if (adap->ops->adap_transmit(adap, data->attempts,
					     signal_free_time, &data->msg))
			cec_data_cancel(data);

unlock:
		mutex_unlock(&adap->lock);

		if (kthread_should_stop())
			break;
	}
	return 0;
}

/*
 * Called by the CEC adapter if a transmit finished.
 */
534 535 536
void cec_transmit_done_ts(struct cec_adapter *adap, u8 status,
			  u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
			  u8 error_cnt, ktime_t ts)
537 538 539
{
	struct cec_data *data;
	struct cec_msg *msg;
540 541
	unsigned int attempts_made = arb_lost_cnt + nack_cnt +
				     low_drive_cnt + error_cnt;
542

543
	dprintk(2, "%s: status 0x%02x\n", __func__, status);
544 545 546
	if (attempts_made < 1)
		attempts_made = 1;

547 548 549 550 551 552 553 554
	mutex_lock(&adap->lock);
	data = adap->transmitting;
	if (!data) {
		/*
		 * This can happen if a transmit was issued and the cable is
		 * unplugged while the transmit is ongoing. Ignore this
		 * transmit in that case.
		 */
555 556
		dprintk(1, "%s was called without an ongoing transmit!\n",
			__func__);
557 558 559 560 561 562 563
		goto unlock;
	}

	msg = &data->msg;

	/* Drivers must fill in the status! */
	WARN_ON(status == 0);
564
	msg->tx_ts = ktime_to_ns(ts);
565 566 567 568 569 570 571 572 573 574 575 576 577 578
	msg->tx_status |= status;
	msg->tx_arb_lost_cnt += arb_lost_cnt;
	msg->tx_nack_cnt += nack_cnt;
	msg->tx_low_drive_cnt += low_drive_cnt;
	msg->tx_error_cnt += error_cnt;

	/* Mark that we're done with this transmit */
	adap->transmitting = NULL;

	/*
	 * If there are still retry attempts left and there was an error and
	 * the hardware didn't signal that it retried itself (by setting
	 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
	 */
579
	if (data->attempts > attempts_made &&
580 581
	    !(status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK))) {
		/* Retry this message */
582
		data->attempts -= attempts_made;
583 584 585 586 587 588
		if (msg->timeout)
			dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n",
				msg->len, msg->msg, data->attempts, msg->reply);
		else
			dprintk(2, "retransmit: %*ph (attempts: %d)\n",
				msg->len, msg->msg, data->attempts);
589 590
		/* Add the message in front of the transmit queue */
		list_add(&data->list, &adap->transmit_queue);
591
		adap->transmit_queue_sz++;
592 593 594 595 596 597 598 599 600 601 602 603
		goto wake_thread;
	}

	data->attempts = 0;

	/* Always set CEC_TX_STATUS_MAX_RETRIES on error */
	if (!(status & CEC_TX_STATUS_OK))
		msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;

	/* Queue transmitted message for monitoring purposes */
	cec_queue_msg_monitor(adap, msg, 1);

604 605
	if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
	    msg->timeout) {
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
		/*
		 * Queue the message into the wait queue if we want to wait
		 * for a reply.
		 */
		list_add_tail(&data->list, &adap->wait_queue);
		schedule_delayed_work(&data->work,
				      msecs_to_jiffies(msg->timeout));
	} else {
		/* Otherwise we're done */
		cec_data_completed(data);
	}

wake_thread:
	/*
	 * Wake up the main thread to see if another message is ready
	 * for transmitting or to retry the current message.
	 */
	wake_up_interruptible(&adap->kthread_waitq);
unlock:
	mutex_unlock(&adap->lock);
}
627
EXPORT_SYMBOL_GPL(cec_transmit_done_ts);
628

629 630
void cec_transmit_attempt_done_ts(struct cec_adapter *adap,
				  u8 status, ktime_t ts)
631
{
632
	switch (status & ~CEC_TX_STATUS_MAX_RETRIES) {
633
	case CEC_TX_STATUS_OK:
634
		cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts);
635 636
		return;
	case CEC_TX_STATUS_ARB_LOST:
637
		cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts);
638 639
		return;
	case CEC_TX_STATUS_NACK:
640
		cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts);
641 642
		return;
	case CEC_TX_STATUS_LOW_DRIVE:
643
		cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts);
644 645
		return;
	case CEC_TX_STATUS_ERROR:
646
		cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts);
647 648 649 650 651 652 653
		return;
	default:
		/* Should never happen */
		WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status);
		return;
	}
}
654
EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts);
655

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
/*
 * Called when waiting for a reply times out.
 */
static void cec_wait_timeout(struct work_struct *work)
{
	struct cec_data *data = container_of(work, struct cec_data, work.work);
	struct cec_adapter *adap = data->adap;

	mutex_lock(&adap->lock);
	/*
	 * Sanity check in case the timeout and the arrival of the message
	 * happened at the same time.
	 */
	if (list_empty(&data->list))
		goto unlock;

	/* Mark the message as timed out */
	list_del_init(&data->list);
674
	data->msg.rx_ts = ktime_get_ns();
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	data->msg.rx_status = CEC_RX_STATUS_TIMEOUT;
	cec_data_completed(data);
unlock:
	mutex_unlock(&adap->lock);
}

/*
 * Transmit a message. The fh argument may be NULL if the transmit is not
 * associated with a specific filehandle.
 *
 * This function is called with adap->lock held.
 */
int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
			struct cec_fh *fh, bool block)
{
	struct cec_data *data;
	u8 last_initiator = 0xff;
	unsigned int timeout;
	int res = 0;

695 696 697 698 699 700 701 702
	msg->rx_ts = 0;
	msg->tx_ts = 0;
	msg->rx_status = 0;
	msg->tx_status = 0;
	msg->tx_arb_lost_cnt = 0;
	msg->tx_nack_cnt = 0;
	msg->tx_low_drive_cnt = 0;
	msg->tx_error_cnt = 0;
703
	msg->sequence = 0;
704

705 706 707 708
	if (msg->reply && msg->timeout == 0) {
		/* Make sure the timeout isn't 0. */
		msg->timeout = 1000;
	}
H
Hans Verkuil 已提交
709 710 711 712
	if (msg->timeout)
		msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS;
	else
		msg->flags = 0;
713 714 715

	/* Sanity checks */
	if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
716
		dprintk(1, "%s: invalid length %d\n", __func__, msg->len);
717 718 719
		return -EINVAL;
	}
	if (msg->timeout && msg->len == 1) {
720
		dprintk(1, "%s: can't reply for poll msg\n", __func__);
721 722
		return -EINVAL;
	}
723
	memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
724
	if (msg->len == 1) {
725
		if (cec_msg_destination(msg) == 0xf) {
726
			dprintk(1, "%s: invalid poll message\n", __func__);
727 728 729 730 731 732 733 734 735 736 737
			return -EINVAL;
		}
		if (cec_has_log_addr(adap, cec_msg_destination(msg))) {
			/*
			 * If the destination is a logical address our adapter
			 * has already claimed, then just NACK this.
			 * It depends on the hardware what it will do with a
			 * POLL to itself (some OK this), so it is just as
			 * easy to handle it here so the behavior will be
			 * consistent.
			 */
738
			msg->tx_ts = ktime_get_ns();
739 740 741
			msg->tx_status = CEC_TX_STATUS_NACK |
					 CEC_TX_STATUS_MAX_RETRIES;
			msg->tx_nack_cnt = 1;
742 743 744
			msg->sequence = ++adap->sequence;
			if (!msg->sequence)
				msg->sequence = ++adap->sequence;
745 746 747 748 749
			return 0;
		}
	}
	if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
	    cec_has_log_addr(adap, cec_msg_destination(msg))) {
750
		dprintk(1, "%s: destination is the adapter itself\n", __func__);
751 752
		return -EINVAL;
	}
753
	if (msg->len > 1 && adap->is_configured &&
754
	    !cec_has_log_addr(adap, cec_msg_initiator(msg))) {
755 756
		dprintk(1, "%s: initiator has unknown logical address %d\n",
			__func__, cec_msg_initiator(msg));
757 758
		return -EINVAL;
	}
759
	if (!adap->is_configured && !adap->is_configuring) {
760
		if (adap->needs_hpd || msg->msg[0] != 0xf0) {
761 762 763 764 765 766 767 768
			dprintk(1, "%s: adapter is unconfigured\n", __func__);
			return -ENONET;
		}
		if (msg->reply) {
			dprintk(1, "%s: invalid msg->reply\n", __func__);
			return -EINVAL;
		}
	}
769

770 771
	if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) {
		dprintk(1, "%s: transmit queue full\n", __func__);
772
		return -EBUSY;
773
	}
774

775 776 777 778
	data = kzalloc(sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

779 780 781 782
	msg->sequence = ++adap->sequence;
	if (!msg->sequence)
		msg->sequence = ++adap->sequence;

783 784 785 786 787 788
	if (msg->len > 1 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
		msg->msg[2] = adap->phys_addr >> 8;
		msg->msg[3] = adap->phys_addr & 0xff;
	}

	if (msg->timeout)
789
		dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
790 791
			__func__, msg->len, msg->msg, msg->reply,
			!block ? ", nb" : "");
792
	else
793 794
		dprintk(2, "%s: %*ph%s\n",
			__func__, msg->len, msg->msg, !block ? " (nb)" : "");
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822

	data->msg = *msg;
	data->fh = fh;
	data->adap = adap;
	data->blocking = block;

	/*
	 * Determine if this message follows a message from the same
	 * initiator. Needed to determine the free signal time later on.
	 */
	if (msg->len > 1) {
		if (!(list_empty(&adap->transmit_queue))) {
			const struct cec_data *last;

			last = list_last_entry(&adap->transmit_queue,
					       const struct cec_data, list);
			last_initiator = cec_msg_initiator(&last->msg);
		} else if (adap->transmitting) {
			last_initiator =
				cec_msg_initiator(&adap->transmitting->msg);
		}
	}
	data->new_initiator = last_initiator != cec_msg_initiator(msg);
	init_completion(&data->c);
	INIT_DELAYED_WORK(&data->work, cec_wait_timeout);

	if (fh)
		list_add_tail(&data->xfer_list, &fh->xfer_list);
823

824
	list_add_tail(&data->list, &adap->transmit_queue);
825
	adap->transmit_queue_sz++;
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
	if (!adap->transmitting)
		wake_up_interruptible(&adap->kthread_waitq);

	/* All done if we don't need to block waiting for completion */
	if (!block)
		return 0;

	/*
	 * If we don't get a completion before this time something is really
	 * wrong and we time out.
	 */
	timeout = CEC_XFER_TIMEOUT_MS;
	/* Add the requested timeout if we have to wait for a reply as well */
	if (msg->timeout)
		timeout += msg->timeout;

	/*
	 * Release the lock and wait, retake the lock afterwards.
	 */
	mutex_unlock(&adap->lock);
	res = wait_for_completion_killable_timeout(&data->c,
						   msecs_to_jiffies(timeout));
	mutex_lock(&adap->lock);

	if (data->completed) {
		/* The transmit completed (possibly with an error) */
		*msg = data->msg;
		kfree(data);
		return 0;
	}
	/*
	 * The wait for completion timed out or was interrupted, so mark this
	 * as non-blocking and disconnect from the filehandle since it is
	 * still 'in flight'. When it finally completes it will just drop the
	 * result silently.
	 */
	data->blocking = false;
	if (data->fh)
		list_del(&data->xfer_list);
	data->fh = NULL;

	if (res == 0) { /* timed out */
		/* Check if the reply or the transmit failed */
		if (msg->timeout && (msg->tx_status & CEC_TX_STATUS_OK))
			msg->rx_status = CEC_RX_STATUS_TIMEOUT;
		else
			msg->tx_status = CEC_TX_STATUS_MAX_RETRIES;
	}
	return res > 0 ? 0 : res;
}

/* Helper function to be used by drivers and this framework. */
int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
		     bool block)
{
	int ret;

	mutex_lock(&adap->lock);
	ret = cec_transmit_msg_fh(adap, msg, NULL, block);
	mutex_unlock(&adap->lock);
	return ret;
}
EXPORT_SYMBOL_GPL(cec_transmit_msg);

/*
 * I don't like forward references but without this the low-level
 * cec_received_msg() function would come after a bunch of high-level
 * CEC protocol handling functions. That was very confusing.
 */
static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
			      bool is_reply);

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
#define DIRECTED	0x80
#define BCAST1_4	0x40
#define BCAST2_0	0x20	/* broadcast only allowed for >= 2.0 */
#define BCAST		(BCAST1_4 | BCAST2_0)
#define BOTH		(BCAST | DIRECTED)

/*
 * Specify minimum length and whether the message is directed, broadcast
 * or both. Messages that do not match the criteria are ignored as per
 * the CEC specification.
 */
static const u8 cec_msg_size[256] = {
	[CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
	[CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
	[CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
	[CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
	[CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
	[CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
	[CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
	[CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
	[CEC_MSG_STANDBY] = 2 | BOTH,
	[CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
	[CEC_MSG_RECORD_ON] = 3 | DIRECTED,
	[CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
	[CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
	[CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
	[CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
	[CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
	[CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
	[CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
	[CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
	[CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
	[CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
	[CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
	[CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
	[CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
	[CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
	[CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
	[CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
	[CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
	[CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
	[CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
	[CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
	[CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
	[CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
	[CEC_MSG_PLAY] = 3 | DIRECTED,
	[CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
	[CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
	[CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
	[CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
	[CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
	[CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
	[CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
	[CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
	[CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
	[CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
	[CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
	[CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
	[CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
	[CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
	[CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
	[CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
	[CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
	[CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
	[CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
	[CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
	[CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
	[CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
	[CEC_MSG_ABORT] = 2 | DIRECTED,
	[CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
	[CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
	[CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
	[CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
	[CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
	[CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
	[CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
	[CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
	[CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
	[CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
	[CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
	[CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
	[CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
	[CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
	[CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
	[CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
983
	[CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST,
984 985 986
	[CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
};

987
/* Called by the CEC adapter if a message is received */
988 989
void cec_received_msg_ts(struct cec_adapter *adap,
			 struct cec_msg *msg, ktime_t ts)
990 991 992 993
{
	struct cec_data *data;
	u8 msg_init = cec_msg_initiator(msg);
	u8 msg_dest = cec_msg_destination(msg);
994
	u8 cmd = msg->msg[1];
995 996
	bool is_reply = false;
	bool valid_la = true;
997
	u8 min_len = 0;
998

999 1000 1001
	if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
		return;

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	/*
	 * Some CEC adapters will receive the messages that they transmitted.
	 * This test filters out those messages by checking if we are the
	 * initiator, and just returning in that case.
	 *
	 * Note that this won't work if this is an Unregistered device.
	 *
	 * It is bad practice if the hardware receives the message that it
	 * transmitted and luckily most CEC adapters behave correctly in this
	 * respect.
	 */
	if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
	    cec_has_log_addr(adap, msg_init))
		return;

1017
	msg->rx_ts = ktime_to_ns(ts);
1018 1019
	msg->rx_status = CEC_RX_STATUS_OK;
	msg->sequence = msg->reply = msg->timeout = 0;
1020 1021
	msg->tx_status = 0;
	msg->tx_ts = 0;
1022 1023 1024 1025
	msg->tx_arb_lost_cnt = 0;
	msg->tx_nack_cnt = 0;
	msg->tx_low_drive_cnt = 0;
	msg->tx_error_cnt = 0;
1026
	msg->flags = 0;
1027
	memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
1028

1029
	mutex_lock(&adap->lock);
1030
	dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1031 1032 1033 1034 1035

	/* Check if this message was for us (directed or broadcast). */
	if (!cec_msg_is_broadcast(msg))
		valid_la = cec_has_log_addr(adap, msg_dest);

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	/*
	 * Check if the length is not too short or if the message is a
	 * broadcast message where a directed message was expected or
	 * vice versa. If so, then the message has to be ignored (according
	 * to section CEC 7.3 and CEC 12.2).
	 */
	if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
		u8 dir_fl = cec_msg_size[cmd] & BOTH;

		min_len = cec_msg_size[cmd] & 0x1f;
		if (msg->len < min_len)
			valid_la = false;
		else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
			valid_la = false;
		else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST1_4))
			valid_la = false;
		else if (cec_msg_is_broadcast(msg) &&
			 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0 &&
			 !(dir_fl & BCAST2_0))
			valid_la = false;
	}
	if (valid_la && min_len) {
		/* These messages have special length requirements */
		switch (cmd) {
		case CEC_MSG_TIMER_STATUS:
			if (msg->msg[2] & 0x10) {
				switch (msg->msg[2] & 0xf) {
				case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE:
				case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE:
					if (msg->len < 5)
						valid_la = false;
					break;
				}
			} else if ((msg->msg[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE) {
				if (msg->len < 5)
					valid_la = false;
			}
			break;
		case CEC_MSG_RECORD_ON:
			switch (msg->msg[2]) {
			case CEC_OP_RECORD_SRC_OWN:
				break;
			case CEC_OP_RECORD_SRC_DIGITAL:
				if (msg->len < 10)
					valid_la = false;
				break;
			case CEC_OP_RECORD_SRC_ANALOG:
				if (msg->len < 7)
					valid_la = false;
				break;
			case CEC_OP_RECORD_SRC_EXT_PLUG:
				if (msg->len < 4)
					valid_la = false;
				break;
			case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
				if (msg->len < 5)
					valid_la = false;
				break;
			}
			break;
		}
	}

1099
	/* It's a valid message and not a poll or CDC message */
1100
	if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
		bool abort = cmd == CEC_MSG_FEATURE_ABORT;

		/* The aborted command is in msg[2] */
		if (abort)
			cmd = msg->msg[2];

		/*
		 * Walk over all transmitted messages that are waiting for a
		 * reply.
		 */
		list_for_each_entry(data, &adap->wait_queue, list) {
			struct cec_msg *dst = &data->msg;

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
			/*
			 * The *only* CEC message that has two possible replies
			 * is CEC_MSG_INITIATE_ARC.
			 * In this case allow either of the two replies.
			 */
			if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
			    (cmd == CEC_MSG_REPORT_ARC_INITIATED ||
			     cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
			    (dst->reply == CEC_MSG_REPORT_ARC_INITIATED ||
			     dst->reply == CEC_MSG_REPORT_ARC_TERMINATED))
				dst->reply = cmd;

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
			/* Does the command match? */
			if ((abort && cmd != dst->msg[1]) ||
			    (!abort && cmd != dst->reply))
				continue;

			/* Does the addressing match? */
			if (msg_init != cec_msg_destination(dst) &&
			    !cec_msg_is_broadcast(dst))
				continue;

			/* We got a reply */
1137 1138 1139 1140
			memcpy(dst->msg, msg->msg, msg->len);
			dst->len = msg->len;
			dst->rx_ts = msg->rx_ts;
			dst->rx_status = msg->rx_status;
1141
			if (abort)
1142
				dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
1143
			msg->flags = dst->flags;
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
			/* Remove it from the wait_queue */
			list_del_init(&data->list);

			/* Cancel the pending timeout work */
			if (!cancel_delayed_work(&data->work)) {
				mutex_unlock(&adap->lock);
				flush_scheduled_work();
				mutex_lock(&adap->lock);
			}
			/*
			 * Mark this as a reply, provided someone is still
			 * waiting for the answer.
			 */
			if (data->fh)
				is_reply = true;
			cec_data_completed(data);
			break;
		}
	}
	mutex_unlock(&adap->lock);

	/* Pass the message on to any monitoring filehandles */
	cec_queue_msg_monitor(adap, msg, valid_la);

	/* We're done if it is not for us or a poll message */
	if (!valid_la || msg->len <= 1)
		return;

1172 1173 1174
	if (adap->log_addrs.log_addr_mask == 0)
		return;

1175 1176 1177 1178 1179 1180 1181
	/*
	 * Process the message on the protocol level. If is_reply is true,
	 * then cec_receive_notify() won't pass on the reply to the listener(s)
	 * since that was already done by cec_data_completed() above.
	 */
	cec_receive_notify(adap, msg, is_reply);
}
1182
EXPORT_SYMBOL_GPL(cec_received_msg_ts);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203

/* Logical Address Handling */

/*
 * Attempt to claim a specific logical address.
 *
 * This function is called with adap->lock held.
 */
static int cec_config_log_addr(struct cec_adapter *adap,
			       unsigned int idx,
			       unsigned int log_addr)
{
	struct cec_log_addrs *las = &adap->log_addrs;
	struct cec_msg msg = { };
	int err;

	if (cec_has_log_addr(adap, log_addr))
		return 0;

	/* Send poll message */
	msg.len = 1;
1204
	msg.msg[0] = (log_addr << 4) | log_addr;
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
	err = cec_transmit_msg_fh(adap, &msg, NULL, true);

	/*
	 * While trying to poll the physical address was reset
	 * and the adapter was unconfigured, so bail out.
	 */
	if (!adap->is_configuring)
		return -EINTR;

	if (err)
		return err;

	if (msg.tx_status & CEC_TX_STATUS_OK)
		return 0;

	/*
	 * Message not acknowledged, so this logical
	 * address is free to use.
	 */
	err = adap->ops->adap_log_addr(adap, log_addr);
	if (err)
		return err;

	las->log_addr[idx] = log_addr;
	las->log_addr_mask |= 1 << log_addr;
	adap->phys_addrs[log_addr] = adap->phys_addr;
	return 1;
}

/*
 * Unconfigure the adapter: clear all logical addresses and send
 * the state changed event.
 *
 * This function is called with adap->lock held.
 */
static void cec_adap_unconfigure(struct cec_adapter *adap)
{
1242 1243 1244
	if (!adap->needs_hpd ||
	    adap->phys_addr != CEC_PHYS_ADDR_INVALID)
		WARN_ON(adap->ops->adap_log_addr(adap, CEC_LOG_ADDR_INVALID));
1245 1246 1247 1248
	adap->log_addrs.log_addr_mask = 0;
	adap->is_configuring = false;
	adap->is_configured = false;
	memset(adap->phys_addrs, 0xff, sizeof(adap->phys_addrs));
1249
	cec_flush(adap);
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	wake_up_interruptible(&adap->kthread_waitq);
	cec_post_state_event(adap);
}

/*
 * Attempt to claim the required logical addresses.
 */
static int cec_config_thread_func(void *arg)
{
	/* The various LAs for each type of device */
	static const u8 tv_log_addrs[] = {
		CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
		CEC_LOG_ADDR_INVALID
	};
	static const u8 record_log_addrs[] = {
		CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
		CEC_LOG_ADDR_RECORD_3,
		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
		CEC_LOG_ADDR_INVALID
	};
	static const u8 tuner_log_addrs[] = {
		CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
		CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
		CEC_LOG_ADDR_INVALID
	};
	static const u8 playback_log_addrs[] = {
		CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
		CEC_LOG_ADDR_PLAYBACK_3,
		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
		CEC_LOG_ADDR_INVALID
	};
	static const u8 audiosystem_log_addrs[] = {
		CEC_LOG_ADDR_AUDIOSYSTEM,
		CEC_LOG_ADDR_INVALID
	};
	static const u8 specific_use_log_addrs[] = {
		CEC_LOG_ADDR_SPECIFIC,
		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
		CEC_LOG_ADDR_INVALID
	};
	static const u8 *type2addrs[6] = {
		[CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
		[CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
		[CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
		[CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
		[CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
		[CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
	};
	static const u16 type2mask[] = {
		[CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
		[CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
		[CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
		[CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
		[CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
		[CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
	};
	struct cec_adapter *adap = arg;
	struct cec_log_addrs *las = &adap->log_addrs;
	int err;
	int i, j;

	mutex_lock(&adap->lock);
	dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
		cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
	las->log_addr_mask = 0;

	if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
		goto configured;

	for (i = 0; i < las->num_log_addrs; i++) {
		unsigned int type = las->log_addr_type[i];
		const u8 *la_list;
		u8 last_la;

		/*
		 * The TV functionality can only map to physical address 0.
		 * For any other address, try the Specific functionality
		 * instead as per the spec.
		 */
		if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
			type = CEC_LOG_ADDR_TYPE_SPECIFIC;

		la_list = type2addrs[type];
		last_la = las->log_addr[i];
		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
		if (last_la == CEC_LOG_ADDR_INVALID ||
		    last_la == CEC_LOG_ADDR_UNREGISTERED ||
1338
		    !((1 << last_la) & type2mask[type]))
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
			last_la = la_list[0];

		err = cec_config_log_addr(adap, i, last_la);
		if (err > 0) /* Reused last LA */
			continue;

		if (err < 0)
			goto unconfigure;

		for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
			/* Tried this one already, skip it */
			if (la_list[j] == last_la)
				continue;
			/* The backup addresses are CEC 2.0 specific */
			if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
			     la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
			    las->cec_version < CEC_OP_CEC_VERSION_2_0)
				continue;

			err = cec_config_log_addr(adap, i, la_list[j]);
			if (err == 0) /* LA is in use */
				continue;
			if (err < 0)
				goto unconfigure;
			/* Done, claimed an LA */
			break;
		}

		if (la_list[j] == CEC_LOG_ADDR_INVALID)
			dprintk(1, "could not claim LA %d\n", i);
	}

1371 1372 1373 1374
	if (adap->log_addrs.log_addr_mask == 0 &&
	    !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
		goto unconfigure;

1375 1376 1377 1378 1379
configured:
	if (adap->log_addrs.log_addr_mask == 0) {
		/* Fall back to unregistered */
		las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
		las->log_addr_mask = 1 << las->log_addr[0];
1380 1381
		for (i = 1; i < las->num_log_addrs; i++)
			las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1382
	}
1383 1384
	for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1385 1386 1387 1388
	adap->is_configured = true;
	adap->is_configuring = false;
	cec_post_state_event(adap);

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	/*
	 * Now post the Report Features and Report Physical Address broadcast
	 * messages. Note that these are non-blocking transmits, meaning that
	 * they are just queued up and once adap->lock is unlocked the main
	 * thread will kick in and start transmitting these.
	 *
	 * If after this function is done (but before one or more of these
	 * messages are actually transmitted) the CEC adapter is unconfigured,
	 * then any remaining messages will be dropped by the main thread.
	 */
1399
	for (i = 0; i < las->num_log_addrs; i++) {
1400 1401
		struct cec_msg msg = {};

1402 1403
		if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
		    (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
1404 1405
			continue;

1406 1407 1408 1409 1410 1411
		msg.msg[0] = (las->log_addr[i] << 4) | 0x0f;

		/* Report Features must come first according to CEC 2.0 */
		if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED &&
		    adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) {
			cec_fill_msg_report_features(adap, &msg, i);
1412
			cec_transmit_msg_fh(adap, &msg, NULL, false);
1413 1414
		}

1415 1416 1417
		/* Report Physical Address */
		cec_msg_report_physical_addr(&msg, adap->phys_addr,
					     las->primary_device_type[i]);
1418
		dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
1419 1420
			las->log_addr[i],
			cec_phys_addr_exp(adap->phys_addr));
1421
		cec_transmit_msg_fh(adap, &msg, NULL, false);
1422 1423 1424
	}
	adap->kthread_config = NULL;
	complete(&adap->config_completion);
1425
	mutex_unlock(&adap->lock);
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
	return 0;

unconfigure:
	for (i = 0; i < las->num_log_addrs; i++)
		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
	cec_adap_unconfigure(adap);
	adap->kthread_config = NULL;
	mutex_unlock(&adap->lock);
	complete(&adap->config_completion);
	return 0;
}

/*
 * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
 * logical addresses.
 *
 * This function is called with adap->lock held.
 */
static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
{
	if (WARN_ON(adap->is_configuring || adap->is_configured))
		return;

	init_completion(&adap->config_completion);

	/* Ready to kick off the thread */
	adap->is_configuring = true;
	adap->kthread_config = kthread_run(cec_config_thread_func, adap,
					   "ceccfg-%s", adap->name);
	if (IS_ERR(adap->kthread_config)) {
		adap->kthread_config = NULL;
	} else if (block) {
		mutex_unlock(&adap->lock);
		wait_for_completion(&adap->config_completion);
		mutex_lock(&adap->lock);
	}
}

/* Set a new physical address and send an event notifying userspace of this.
 *
 * This function is called with adap->lock held.
 */
void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
{
1470 1471 1472
	if (phys_addr == adap->phys_addr)
		return;
	if (phys_addr != CEC_PHYS_ADDR_INVALID && adap->devnode.unregistered)
1473 1474
		return;

1475 1476
	dprintk(1, "new physical address %x.%x.%x.%x\n",
		cec_phys_addr_exp(phys_addr));
1477 1478 1479 1480 1481 1482 1483 1484
	if (phys_addr == CEC_PHYS_ADDR_INVALID ||
	    adap->phys_addr != CEC_PHYS_ADDR_INVALID) {
		adap->phys_addr = CEC_PHYS_ADDR_INVALID;
		cec_post_state_event(adap);
		cec_adap_unconfigure(adap);
		/* Disabling monitor all mode should always succeed */
		if (adap->monitor_all_cnt)
			WARN_ON(call_op(adap, adap_monitor_all_enable, false));
1485
		mutex_lock(&adap->devnode.lock);
1486
		if (adap->needs_hpd || list_empty(&adap->devnode.fhs))
1487 1488
			WARN_ON(adap->ops->adap_enable(adap, false));
		mutex_unlock(&adap->devnode.lock);
1489 1490 1491 1492
		if (phys_addr == CEC_PHYS_ADDR_INVALID)
			return;
	}

1493
	mutex_lock(&adap->devnode.lock);
1494
	if ((adap->needs_hpd || list_empty(&adap->devnode.fhs)) &&
1495 1496
	    adap->ops->adap_enable(adap, true)) {
		mutex_unlock(&adap->devnode.lock);
1497
		return;
1498
	}
1499 1500 1501

	if (adap->monitor_all_cnt &&
	    call_op(adap, adap_monitor_all_enable, true)) {
1502
		if (adap->needs_hpd || list_empty(&adap->devnode.fhs))
1503 1504
			WARN_ON(adap->ops->adap_enable(adap, false));
		mutex_unlock(&adap->devnode.lock);
1505 1506
		return;
	}
1507 1508
	mutex_unlock(&adap->devnode.lock);

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
	adap->phys_addr = phys_addr;
	cec_post_state_event(adap);
	if (adap->log_addrs.num_log_addrs)
		cec_claim_log_addrs(adap, block);
}

void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
{
	if (IS_ERR_OR_NULL(adap))
		return;

	mutex_lock(&adap->lock);
	__cec_s_phys_addr(adap, phys_addr, block);
	mutex_unlock(&adap->lock);
}
EXPORT_SYMBOL_GPL(cec_s_phys_addr);

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
			       const struct edid *edid)
{
	u16 pa = CEC_PHYS_ADDR_INVALID;

	if (edid && edid->extensions)
		pa = cec_get_edid_phys_addr((const u8 *)edid,
				EDID_LENGTH * (edid->extensions + 1), NULL);
	cec_s_phys_addr(adap, pa, false);
}
EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid);

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
/*
 * Called from either the ioctl or a driver to set the logical addresses.
 *
 * This function is called with adap->lock held.
 */
int __cec_s_log_addrs(struct cec_adapter *adap,
		      struct cec_log_addrs *log_addrs, bool block)
{
	u16 type_mask = 0;
	int i;

1549 1550 1551
	if (adap->devnode.unregistered)
		return -ENODEV;

1552 1553
	if (!log_addrs || log_addrs->num_log_addrs == 0) {
		cec_adap_unconfigure(adap);
1554 1555 1556 1557 1558 1559
		adap->log_addrs.num_log_addrs = 0;
		for (i = 0; i < CEC_MAX_LOG_ADDRS; i++)
			adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID;
		adap->log_addrs.osd_name[0] = '\0';
		adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE;
		adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0;
1560 1561 1562
		return 0;
	}

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
		/*
		 * Sanitize log_addrs fields if a CDC-Only device is
		 * requested.
		 */
		log_addrs->num_log_addrs = 1;
		log_addrs->osd_name[0] = '\0';
		log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
		log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
		/*
		 * This is just an internal convention since a CDC-Only device
		 * doesn't have to be a switch. But switches already use
		 * unregistered, so it makes some kind of sense to pick this
		 * as the primary device. Since a CDC-Only device never sends
		 * any 'normal' CEC messages this primary device type is never
		 * sent over the CEC bus.
		 */
		log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
		log_addrs->all_device_types[0] = 0;
		log_addrs->features[0][0] = 0;
		log_addrs->features[0][1] = 0;
	}

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	/* Ensure the osd name is 0-terminated */
	log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';

	/* Sanity checks */
	if (log_addrs->num_log_addrs > adap->available_log_addrs) {
		dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
		return -EINVAL;
	}

	/*
	 * Vendor ID is a 24 bit number, so check if the value is
	 * within the correct range.
	 */
	if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
1600 1601
	    (log_addrs->vendor_id & 0xff000000) != 0) {
		dprintk(1, "invalid vendor ID\n");
1602
		return -EINVAL;
1603
	}
1604 1605

	if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
1606 1607
	    log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) {
		dprintk(1, "invalid CEC version\n");
1608
		return -EINVAL;
1609
	}
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619

	if (log_addrs->num_log_addrs > 1)
		for (i = 0; i < log_addrs->num_log_addrs; i++)
			if (log_addrs->log_addr_type[i] ==
					CEC_LOG_ADDR_TYPE_UNREGISTERED) {
				dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
				return -EINVAL;
			}

	for (i = 0; i < log_addrs->num_log_addrs; i++) {
1620
		const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
1621 1622
		u8 *features = log_addrs->features[i];
		bool op_is_dev_features = false;
1623
		unsigned j;
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649

		log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
		if (type_mask & (1 << log_addrs->log_addr_type[i])) {
			dprintk(1, "duplicate logical address type\n");
			return -EINVAL;
		}
		type_mask |= 1 << log_addrs->log_addr_type[i];
		if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
		    (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
			/* Record already contains the playback functionality */
			dprintk(1, "invalid record + playback combination\n");
			return -EINVAL;
		}
		if (log_addrs->primary_device_type[i] >
					CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
			dprintk(1, "unknown primary device type\n");
			return -EINVAL;
		}
		if (log_addrs->primary_device_type[i] == 2) {
			dprintk(1, "invalid primary device type\n");
			return -EINVAL;
		}
		if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
			dprintk(1, "unknown logical address type\n");
			return -EINVAL;
		}
1650 1651
		for (j = 0; j < feature_sz; j++) {
			if ((features[j] & 0x80) == 0) {
1652 1653 1654 1655 1656
				if (op_is_dev_features)
					break;
				op_is_dev_features = true;
			}
		}
1657
		if (!op_is_dev_features || j == feature_sz) {
1658 1659 1660
			dprintk(1, "malformed features\n");
			return -EINVAL;
		}
1661
		/* Zero unused part of the feature array */
1662
		memset(features + j + 1, 0, feature_sz - j - 1);
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	}

	if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
		if (log_addrs->num_log_addrs > 2) {
			dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
			return -EINVAL;
		}
		if (log_addrs->num_log_addrs == 2) {
			if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
					   (1 << CEC_LOG_ADDR_TYPE_TV)))) {
1673
				dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
1674 1675 1676 1677
				return -EINVAL;
			}
			if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
					   (1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
1678
				dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
1679 1680 1681 1682 1683
				return -EINVAL;
			}
		}
	}

1684 1685 1686 1687 1688 1689 1690 1691 1692
	/* Zero unused LAs */
	for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
		log_addrs->primary_device_type[i] = 0;
		log_addrs->log_addr_type[i] = 0;
		log_addrs->all_device_types[i] = 0;
		memset(log_addrs->features[i], 0,
		       sizeof(log_addrs->features[i]));
	}

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
	log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
	adap->log_addrs = *log_addrs;
	if (adap->phys_addr != CEC_PHYS_ADDR_INVALID)
		cec_claim_log_addrs(adap, block);
	return 0;
}

int cec_s_log_addrs(struct cec_adapter *adap,
		    struct cec_log_addrs *log_addrs, bool block)
{
	int err;

	mutex_lock(&adap->lock);
	err = __cec_s_log_addrs(adap, log_addrs, block);
	mutex_unlock(&adap->lock);
	return err;
}
EXPORT_SYMBOL_GPL(cec_s_log_addrs);

/* High-level core CEC message handling */

1714 1715 1716 1717
/* Fill in the Report Features message */
static void cec_fill_msg_report_features(struct cec_adapter *adap,
					 struct cec_msg *msg,
					 unsigned int la_idx)
1718 1719 1720 1721 1722 1723 1724
{
	const struct cec_log_addrs *las = &adap->log_addrs;
	const u8 *features = las->features[la_idx];
	bool op_is_dev_features = false;
	unsigned int idx;

	/* Report Features */
1725 1726 1727 1728 1729
	msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
	msg->len = 4;
	msg->msg[1] = CEC_MSG_REPORT_FEATURES;
	msg->msg[2] = adap->log_addrs.cec_version;
	msg->msg[3] = las->all_device_types[la_idx];
1730 1731 1732

	/* Write RC Profiles first, then Device Features */
	for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
1733
		msg->msg[msg->len++] = features[idx];
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
		if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
			if (op_is_dev_features)
				break;
			op_is_dev_features = true;
		}
	}
}

/* Transmit the Feature Abort message */
static int cec_feature_abort_reason(struct cec_adapter *adap,
				    struct cec_msg *msg, u8 reason)
{
	struct cec_msg tx_msg = { };

	/*
	 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
	 * message!
	 */
	if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
		return 0;
1754 1755 1756
	/* Don't Feature Abort messages from 'Unregistered' */
	if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED)
		return 0;
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
	cec_msg_set_reply_to(&tx_msg, msg);
	cec_msg_feature_abort(&tx_msg, msg->msg[1], reason);
	return cec_transmit_msg(adap, &tx_msg, false);
}

static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
{
	return cec_feature_abort_reason(adap, msg,
					CEC_OP_ABORT_UNRECOGNIZED_OP);
}

static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
{
	return cec_feature_abort_reason(adap, msg,
					CEC_OP_ABORT_REFUSED);
}

/*
 * Called when a CEC message is received. This function will do any
 * necessary core processing. The is_reply bool is true if this message
 * is a reply to an earlier transmit.
 *
 * The message is either a broadcast message or a valid directed message.
 */
static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
			      bool is_reply)
{
	bool is_broadcast = cec_msg_is_broadcast(msg);
	u8 dest_laddr = cec_msg_destination(msg);
	u8 init_laddr = cec_msg_initiator(msg);
	u8 devtype = cec_log_addr2dev(adap, dest_laddr);
	int la_idx = cec_log_addr2idx(adap, dest_laddr);
	bool from_unregistered = init_laddr == 0xf;
	struct cec_msg tx_cec_msg = { };

1792
	dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1793

1794 1795 1796 1797 1798
	/* If this is a CDC-Only device, then ignore any non-CDC messages */
	if (cec_is_cdc_only(&adap->log_addrs) &&
	    msg->msg[1] != CEC_MSG_CDC_MESSAGE)
		return 0;

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
	if (adap->ops->received) {
		/* Allow drivers to process the message first */
		if (adap->ops->received(adap, msg) != -ENOMSG)
			return 0;
	}

	/*
	 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
	 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
	 * handled by the CEC core, even if the passthrough mode is on.
	 * The others are just ignored if passthrough mode is on.
	 */
	switch (msg->msg[1]) {
	case CEC_MSG_GET_CEC_VERSION:
	case CEC_MSG_ABORT:
	case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
	case CEC_MSG_GIVE_OSD_NAME:
1816 1817 1818 1819 1820 1821 1822 1823
		/*
		 * These messages reply with a directed message, so ignore if
		 * the initiator is Unregistered.
		 */
		if (!adap->passthrough && from_unregistered)
			return 0;
		/* Fall through */
	case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
1824
	case CEC_MSG_GIVE_FEATURES:
1825
	case CEC_MSG_GIVE_PHYSICAL_ADDR:
1826 1827 1828 1829 1830 1831 1832
		/*
		 * Skip processing these messages if the passthrough mode
		 * is on.
		 */
		if (adap->passthrough)
			goto skip_processing;
		/* Ignore if addressing is wrong */
1833
		if (is_broadcast)
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
			return 0;
		break;

	case CEC_MSG_USER_CONTROL_PRESSED:
	case CEC_MSG_USER_CONTROL_RELEASED:
		/* Wrong addressing mode: don't process */
		if (is_broadcast || from_unregistered)
			goto skip_processing;
		break;

	case CEC_MSG_REPORT_PHYSICAL_ADDR:
		/*
		 * This message is always processed, regardless of the
		 * passthrough setting.
		 *
		 * Exception: don't process if wrong addressing mode.
		 */
		if (!is_broadcast)
			goto skip_processing;
		break;

	default:
		break;
	}

	cec_msg_set_reply_to(&tx_cec_msg, msg);

	switch (msg->msg[1]) {
	/* The following messages are processed but still passed through */
1863 1864 1865 1866 1867
	case CEC_MSG_REPORT_PHYSICAL_ADDR: {
		u16 pa = (msg->msg[2] << 8) | msg->msg[3];

		if (!from_unregistered)
			adap->phys_addrs[init_laddr] = pa;
1868
		dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
1869
			cec_phys_addr_exp(pa), init_laddr);
1870
		break;
1871
	}
1872 1873

	case CEC_MSG_USER_CONTROL_PRESSED:
1874 1875
		if (!(adap->capabilities & CEC_CAP_RC) ||
		    !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
1876 1877
			break;

1878
#ifdef CONFIG_MEDIA_CEC_RC
1879 1880 1881 1882 1883 1884 1885
		switch (msg->msg[2]) {
		/*
		 * Play function, this message can have variable length
		 * depending on the specific play function that is used.
		 */
		case 0x60:
			if (msg->len == 2)
1886 1887
				rc_keydown(adap->rc, RC_PROTO_CEC,
					   msg->msg[2], 0);
1888
			else
1889 1890
				rc_keydown(adap->rc, RC_PROTO_CEC,
					   msg->msg[2] << 8 | msg->msg[3], 0);
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
			break;
		/*
		 * Other function messages that are not handled.
		 * Currently the RC framework does not allow to supply an
		 * additional parameter to a keypress. These "keys" contain
		 * other information such as channel number, an input number
		 * etc.
		 * For the time being these messages are not processed by the
		 * framework and are simply forwarded to the user space.
		 */
		case 0x56: case 0x57:
		case 0x67: case 0x68: case 0x69: case 0x6a:
			break;
		default:
1905
			rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0);
1906 1907 1908 1909 1910 1911
			break;
		}
#endif
		break;

	case CEC_MSG_USER_CONTROL_RELEASED:
1912 1913
		if (!(adap->capabilities & CEC_CAP_RC) ||
		    !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
1914
			break;
1915
#ifdef CONFIG_MEDIA_CEC_RC
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
		rc_keyup(adap->rc);
#endif
		break;

	/*
	 * The remaining messages are only processed if the passthrough mode
	 * is off.
	 */
	case CEC_MSG_GET_CEC_VERSION:
		cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version);
		return cec_transmit_msg(adap, &tx_cec_msg, false);

	case CEC_MSG_GIVE_PHYSICAL_ADDR:
		/* Do nothing for CEC switches using addr 15 */
		if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
			return 0;
		cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype);
		return cec_transmit_msg(adap, &tx_cec_msg, false);

	case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
		if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
			return cec_feature_abort(adap, msg);
		cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id);
		return cec_transmit_msg(adap, &tx_cec_msg, false);

	case CEC_MSG_ABORT:
		/* Do nothing for CEC switches */
		if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
			return 0;
		return cec_feature_refused(adap, msg);

	case CEC_MSG_GIVE_OSD_NAME: {
		if (adap->log_addrs.osd_name[0] == 0)
			return cec_feature_abort(adap, msg);
		cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name);
		return cec_transmit_msg(adap, &tx_cec_msg, false);
	}

	case CEC_MSG_GIVE_FEATURES:
1955 1956
		if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
			return cec_feature_abort(adap, msg);
1957 1958
		cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx);
		return cec_transmit_msg(adap, &tx_cec_msg, false);
1959 1960 1961 1962 1963 1964

	default:
		/*
		 * Unprocessed messages are aborted if userspace isn't doing
		 * any processing either.
		 */
1965
		if (!is_broadcast && !is_reply && !adap->follower_cnt &&
1966 1967 1968 1969 1970 1971
		    !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
			return cec_feature_abort(adap, msg);
		break;
	}

skip_processing:
1972 1973
	/* If this was a reply, then we're done, unless otherwise specified */
	if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
		return 0;

	/*
	 * Send to the exclusive follower if there is one, otherwise send
	 * to all followers.
	 */
	if (adap->cec_follower)
		cec_queue_msg_fh(adap->cec_follower, msg);
	else
		cec_queue_msg_followers(adap, msg);
	return 0;
}

/*
 * Helper functions to keep track of the 'monitor all' use count.
 *
 * These functions are called with adap->lock held.
 */
int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
{
	int ret = 0;

	if (adap->monitor_all_cnt == 0)
		ret = call_op(adap, adap_monitor_all_enable, 1);
	if (ret == 0)
		adap->monitor_all_cnt++;
	return ret;
}

void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
{
	adap->monitor_all_cnt--;
	if (adap->monitor_all_cnt == 0)
		WARN_ON(call_op(adap, adap_monitor_all_enable, 0));
}

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
/*
 * Helper functions to keep track of the 'monitor pin' use count.
 *
 * These functions are called with adap->lock held.
 */
int cec_monitor_pin_cnt_inc(struct cec_adapter *adap)
{
	int ret = 0;

	if (adap->monitor_pin_cnt == 0)
		ret = call_op(adap, adap_monitor_pin_enable, 1);
	if (ret == 0)
		adap->monitor_pin_cnt++;
	return ret;
}

void cec_monitor_pin_cnt_dec(struct cec_adapter *adap)
{
	adap->monitor_pin_cnt--;
	if (adap->monitor_pin_cnt == 0)
		WARN_ON(call_op(adap, adap_monitor_pin_enable, 0));
}

H
Hans Verkuil 已提交
2033
#ifdef CONFIG_DEBUG_FS
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
/*
 * Log the current state of the CEC adapter.
 * Very useful for debugging.
 */
int cec_adap_status(struct seq_file *file, void *priv)
{
	struct cec_adapter *adap = dev_get_drvdata(file->private);
	struct cec_data *data;

	mutex_lock(&adap->lock);
	seq_printf(file, "configured: %d\n", adap->is_configured);
	seq_printf(file, "configuring: %d\n", adap->is_configuring);
	seq_printf(file, "phys_addr: %x.%x.%x.%x\n",
		   cec_phys_addr_exp(adap->phys_addr));
	seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
	seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
	if (adap->cec_follower)
		seq_printf(file, "has CEC follower%s\n",
			   adap->passthrough ? " (in passthrough mode)" : "");
	if (adap->cec_initiator)
		seq_puts(file, "has CEC initiator\n");
	if (adap->monitor_all_cnt)
		seq_printf(file, "file handles in Monitor All mode: %u\n",
			   adap->monitor_all_cnt);
2058 2059 2060 2061 2062
	if (adap->tx_timeouts) {
		seq_printf(file, "transmit timeouts: %u\n",
			   adap->tx_timeouts);
		adap->tx_timeouts = 0;
	}
2063 2064
	data = adap->transmitting;
	if (data)
2065 2066 2067 2068
		seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n",
			   data->msg.len, data->msg.msg, data->msg.reply,
			   data->msg.timeout);
	seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz);
2069
	list_for_each_entry(data, &adap->transmit_queue, list) {
2070 2071 2072
		seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n",
			   data->msg.len, data->msg.msg, data->msg.reply,
			   data->msg.timeout);
2073 2074
	}
	list_for_each_entry(data, &adap->wait_queue, list) {
2075 2076 2077
		seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n",
			   data->msg.len, data->msg.msg, data->msg.reply,
			   data->msg.timeout);
2078 2079 2080 2081 2082 2083 2084
	}

	call_void_op(adap, adap_status, file);
	mutex_unlock(&adap->lock);
	return 0;
}
#endif