em28xx-input.c 13.8 KB
Newer Older
1
/*
2 3 4 5
  handle em28xx IR remotes via linux kernel input layer.

   Copyright (C) 2005 Ludovico Cavedon <cavedon@sssup.it>
		      Markus Rechberger <mrechberger@gmail.com>
6
		      Mauro Carvalho Chehab <mchehab@infradead.org>
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
		      Sascha Sommer <saschasommer@freenet.de>

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 23 24 25 26 27 28 29 30
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/input.h>
#include <linux/usb.h>

31
#include "em28xx.h"
32

33 34 35 36
#define EM28XX_SNAPSHOT_KEY KEY_CAMERA
#define EM28XX_SBUTTON_QUERY_INTERVAL 500
#define EM28XX_R0C_USBSUSP_SNAPSHOT 0x20

37
static unsigned int ir_debug;
38
module_param(ir_debug, int, 0644);
39
MODULE_PARM_DESC(ir_debug, "enable debug messages [IR]");
40

41
#define i2cdprintk(fmt, arg...) \
42
	if (ir_debug) { \
43
		printk(KERN_DEBUG "%s/ir: " fmt, ir->name , ## arg); \
44
	}
45

46 47 48 49 50 51 52 53 54
#define dprintk(fmt, arg...) \
	if (ir_debug) { \
		printk(KERN_DEBUG "%s/ir: " fmt, ir->name , ## arg); \
	}

/**********************************************************
 Polling structure used by em28xx IR's
 **********************************************************/

55 56 57 58 59 60 61
struct em28xx_ir_poll_result {
	unsigned int toggle_bit:1;
	unsigned int read_count:7;
	u8 rc_address;
	u8 rc_data[4]; /* 1 byte on em2860/2880, 4 on em2874 */
};

62 63 64 65 66 67 68 69 70
struct em28xx_IR {
	struct em28xx *dev;
	struct input_dev *input;
	struct ir_input_state ir;
	char name[32];
	char phys[32];

	/* poll external decoder */
	int polling;
71
	struct delayed_work work;
72
	unsigned int last_toggle:1;
73
	unsigned int full_code:1;
74 75
	unsigned int last_readcount;
	unsigned int repeat_interval;
76

77
	int  (*get_key)(struct em28xx_IR *, struct em28xx_ir_poll_result *);
78 79 80 81 82
};

/**********************************************************
 I2C IR based get keycodes - should be used with ir-kbd-i2c
 **********************************************************/
83

84
int em28xx_get_key_terratec(struct IR_i2c *ir, u32 *ir_key, u32 *ir_raw)
85 86 87 88
{
	unsigned char b;

	/* poll IR chip */
89
	if (1 != i2c_master_recv(ir->c, &b, 1)) {
90
		i2cdprintk("read error\n");
91 92 93 94
		return -EIO;
	}

	/* it seems that 0xFE indicates that a button is still hold
95 96
	   down, while 0xff indicates that no button is hold
	   down. 0xfe sequences are sometimes interrupted by 0xFF */
97

98
	i2cdprintk("key %02x\n", b);
99

100
	if (b == 0xff)
101 102
		return 0;

103
	if (b == 0xfe)
104 105 106 107 108 109 110 111
		/* keep old data */
		return 1;

	*ir_key = b;
	*ir_raw = b;
	return 1;
}

112
int em28xx_get_key_em_haup(struct IR_i2c *ir, u32 *ir_key, u32 *ir_raw)
113 114
{
	unsigned char buf[2];
115 116
	u16 code;
	int size;
117 118

	/* poll IR chip */
119 120 121
	size = i2c_master_recv(ir->c, buf, sizeof(buf));

	if (size != 2)
122 123 124
		return -EIO;

	/* Does eliminate repeated parity code */
125
	if (buf[1] == 0xff)
126 127
		return 0;

128
	ir->old = buf[1];
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
	/*
	 * Rearranges bits to the right order.
	 * The bit order were determined experimentally by using
	 * The original Hauppauge Grey IR and another RC5 that uses addr=0x08
	 * The RC5 code has 14 bits, but we've experimentally determined
	 * the meaning for only 11 bits.
	 * So, the code translation is not complete. Yet, it is enough to
	 * work with the provided RC5 IR.
	 */
	code =
		 ((buf[0] & 0x01) ? 0x0020 : 0) | /* 		0010 0000 */
		 ((buf[0] & 0x02) ? 0x0010 : 0) | /* 		0001 0000 */
		 ((buf[0] & 0x04) ? 0x0008 : 0) | /* 		0000 1000 */
		 ((buf[0] & 0x08) ? 0x0004 : 0) | /* 		0000 0100 */
		 ((buf[0] & 0x10) ? 0x0002 : 0) | /* 		0000 0010 */
		 ((buf[0] & 0x20) ? 0x0001 : 0) | /* 		0000 0001 */
		 ((buf[1] & 0x08) ? 0x1000 : 0) | /* 0001 0000		  */
		 ((buf[1] & 0x10) ? 0x0800 : 0) | /* 0000 1000		  */
		 ((buf[1] & 0x20) ? 0x0400 : 0) | /* 0000 0100		  */
		 ((buf[1] & 0x40) ? 0x0200 : 0) | /* 0000 0010		  */
		 ((buf[1] & 0x80) ? 0x0100 : 0);  /* 0000 0001		  */

	i2cdprintk("ir hauppauge (em2840): code=0x%02x (rcv=0x%02x%02x)\n",
			code, buf[1], buf[0]);
154 155 156 157 158 159 160

	/* return key */
	*ir_key = code;
	*ir_raw = code;
	return 1;
}

161 162
int em28xx_get_key_pinnacle_usb_grey(struct IR_i2c *ir, u32 *ir_key,
				     u32 *ir_raw)
163 164 165 166 167
{
	unsigned char buf[3];

	/* poll IR chip */

168
	if (3 != i2c_master_recv(ir->c, buf, 3)) {
169
		i2cdprintk("read error\n");
170 171 172
		return -EIO;
	}

173
	i2cdprintk("key %02x\n", buf[2]&0x3f);
174
	if (buf[0] != 0x00)
175 176 177 178 179 180 181 182
		return 0;

	*ir_key = buf[2]&0x3f;
	*ir_raw = buf[2]&0x3f;

	return 1;
}

183 184 185 186
/**********************************************************
 Poll based get keycode functions
 **********************************************************/

187 188 189
/* This is for the em2860/em2880 */
static int default_polling_getkey(struct em28xx_IR *ir,
				  struct em28xx_ir_poll_result *poll_result)
190 191 192
{
	struct em28xx *dev = ir->dev;
	int rc;
193
	u8 msg[3] = { 0, 0, 0 };
194

195 196 197
	/* Read key toggle, brand, and key code
	   on registers 0x45, 0x46 and 0x47
	 */
198
	rc = dev->em28xx_read_reg_req_len(dev, 0, EM28XX_R45_IR,
199
					  msg, sizeof(msg));
200 201 202
	if (rc < 0)
		return rc;

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
	/* Infrared toggle (Reg 0x45[7]) */
	poll_result->toggle_bit = (msg[0] >> 7);

	/* Infrared read count (Reg 0x45[6:0] */
	poll_result->read_count = (msg[0] & 0x7f);

	/* Remote Control Address (Reg 0x46) */
	poll_result->rc_address = msg[1];

	/* Remote Control Data (Reg 0x47) */
	poll_result->rc_data[0] = msg[2];

	return 0;
}

static int em2874_polling_getkey(struct em28xx_IR *ir,
				 struct em28xx_ir_poll_result *poll_result)
{
	struct em28xx *dev = ir->dev;
	int rc;
	u8 msg[5] = { 0, 0, 0, 0, 0 };

	/* Read key toggle, brand, and key code
	   on registers 0x51-55
	 */
	rc = dev->em28xx_read_reg_req_len(dev, 0, EM2874_R51_IR,
					  msg, sizeof(msg));
	if (rc < 0)
		return rc;

	/* Infrared toggle (Reg 0x51[7]) */
	poll_result->toggle_bit = (msg[0] >> 7);

	/* Infrared read count (Reg 0x51[6:0] */
	poll_result->read_count = (msg[0] & 0x7f);

	/* Remote Control Address (Reg 0x52) */
	poll_result->rc_address = msg[1];

	/* Remote Control Data (Reg 0x53-55) */
	poll_result->rc_data[0] = msg[2];
	poll_result->rc_data[1] = msg[3];
	poll_result->rc_data[2] = msg[4];

	return 0;
248 249 250 251 252 253 254 255
}

/**********************************************************
 Polling code for em28xx
 **********************************************************/

static void em28xx_ir_handle_key(struct em28xx_IR *ir)
{
256 257 258 259 260 261 262 263
	int result;
	int do_sendkey = 0;
	struct em28xx_ir_poll_result poll_result;

	/* read the registers containing the IR status */
	result = ir->get_key(ir, &poll_result);
	if (result < 0) {
		dprintk("ir->get_key() failed %d\n", result);
264
		return;
265
	}
266

267
	dprintk("ir->get_key result tb=%02x rc=%02x lr=%02x data=%02x%02x\n",
268
		poll_result.toggle_bit, poll_result.read_count,
269 270
		ir->last_readcount, poll_result.rc_address,
		poll_result.rc_data[0]);
271 272 273 274 275 276 277 278 279

	if (ir->dev->chip_id == CHIP_ID_EM2874) {
		/* The em2874 clears the readcount field every time the
		   register is read.  The em2860/2880 datasheet says that it
		   is supposed to clear the readcount, but it doesn't.  So with
		   the em2874, we are looking for a non-zero read count as
		   opposed to a readcount that is incrementing */
		ir->last_readcount = 0;
	}
280

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	if (poll_result.read_count == 0) {
		/* The button has not been pressed since the last read */
	} else if (ir->last_toggle != poll_result.toggle_bit) {
		/* A button has been pressed */
		dprintk("button has been pressed\n");
		ir->last_toggle = poll_result.toggle_bit;
		ir->repeat_interval = 0;
		do_sendkey = 1;
	} else if (poll_result.toggle_bit == ir->last_toggle &&
		   poll_result.read_count > 0 &&
		   poll_result.read_count != ir->last_readcount) {
		/* The button is still being held down */
		dprintk("button being held down\n");

		/* Debouncer for first keypress */
		if (ir->repeat_interval++ > 9) {
			/* Start repeating after 1 second */
			do_sendkey = 1;
299
		}
300 301 302 303
	}

	if (do_sendkey) {
		dprintk("sending keypress\n");
304 305 306 307 308 309 310 311 312

		if (ir->full_code)
			ir_input_keydown(ir->input, &ir->ir,
					 poll_result.rc_address << 8 |
					 poll_result.rc_data[0]);
		else
			ir_input_keydown(ir->input, &ir->ir,
					 poll_result.rc_data[0]);

313 314
		ir_input_nokey(ir->input, &ir->ir);
	}
315 316 317

	ir->last_readcount = poll_result.read_count;
	return;
318 319 320 321
}

static void em28xx_ir_work(struct work_struct *work)
{
322
	struct em28xx_IR *ir = container_of(work, struct em28xx_IR, work.work);
323 324

	em28xx_ir_handle_key(ir);
325
	schedule_delayed_work(&ir->work, msecs_to_jiffies(ir->polling));
326 327
}

328
static void em28xx_ir_start(struct em28xx_IR *ir)
329
{
330 331
	INIT_DELAYED_WORK(&ir->work, em28xx_ir_work);
	schedule_delayed_work(&ir->work, 0);
332 333 334 335
}

static void em28xx_ir_stop(struct em28xx_IR *ir)
{
336
	cancel_delayed_work_sync(&ir->work);
337 338 339 340 341 342
}

int em28xx_ir_init(struct em28xx *dev)
{
	struct em28xx_IR *ir;
	struct input_dev *input_dev;
343
	u8 ir_config;
344 345
	int err = -ENOMEM;

346
	if (dev->board.ir_codes == NULL) {
347 348 349 350
		/* No remote control support */
		return 0;
	}

351 352 353 354 355 356
	ir = kzalloc(sizeof(*ir), GFP_KERNEL);
	input_dev = input_allocate_device();
	if (!ir || !input_dev)
		goto err_out_free;

	ir->input = input_dev;
357 358 359 360 361 362 363 364 365 366 367 368 369
	ir_config = EM2874_IR_RC5;

	/* Adjust xclk based o IR table for RC5/NEC tables */
	if (dev->board.ir_codes->ir_type == IR_TYPE_RC5) {
		dev->board.xclk |= EM28XX_XCLK_IR_RC5_MODE;
		ir->full_code = 1;
	} else  if (dev->board.ir_codes->ir_type == IR_TYPE_NEC) {
		dev->board.xclk &= ~EM28XX_XCLK_IR_RC5_MODE;
		ir_config = EM2874_IR_NEC;
		ir->full_code = 1;
	}
	em28xx_write_reg_bits(dev, EM28XX_R0F_XCLK, dev->board.xclk,
			      EM28XX_XCLK_IR_RC5_MODE);
370

371 372 373 374 375
	/* Setup the proper handler based on the chip */
	switch (dev->chip_id) {
	case CHIP_ID_EM2860:
	case CHIP_ID_EM2883:
		ir->get_key = default_polling_getkey;
376
		break;
377 378 379 380 381 382
	case CHIP_ID_EM2874:
		ir->get_key = em2874_polling_getkey;
		em28xx_write_regs(dev, EM2874_R50_IR_CONFIG, &ir_config, 1);
		break;
	default:
		printk("Unrecognized em28xx chip id: IR not supported\n");
383 384 385
		goto err_out_free;
	}

386 387 388
	/* This is how often we ask the chip for IR information */
	ir->polling = 100; /* ms */

389 390 391 392 393 394 395
	/* init input device */
	snprintf(ir->name, sizeof(ir->name), "em28xx IR (%s)",
						dev->name);

	usb_make_path(dev->udev, ir->phys, sizeof(ir->phys));
	strlcat(ir->phys, "/input0", sizeof(ir->phys));

396
	err = ir_input_init(input_dev, &ir->ir, IR_TYPE_OTHER);
397 398 399
	if (err < 0)
		goto err_out_free;

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	input_dev->name = ir->name;
	input_dev->phys = ir->phys;
	input_dev->id.bustype = BUS_USB;
	input_dev->id.version = 1;
	input_dev->id.vendor = le16_to_cpu(dev->udev->descriptor.idVendor);
	input_dev->id.product = le16_to_cpu(dev->udev->descriptor.idProduct);

	input_dev->dev.parent = &dev->udev->dev;
	/* record handles to ourself */
	ir->dev = dev;
	dev->ir = ir;

	em28xx_ir_start(ir);

	/* all done */
415
	err = ir_input_register(ir->input, dev->board.ir_codes);
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
	if (err)
		goto err_out_stop;

	return 0;
 err_out_stop:
	em28xx_ir_stop(ir);
	dev->ir = NULL;
 err_out_free:
	kfree(ir);
	return err;
}

int em28xx_ir_fini(struct em28xx *dev)
{
	struct em28xx_IR *ir = dev->ir;

	/* skip detach on non attached boards */
	if (!ir)
		return 0;

	em28xx_ir_stop(ir);
437
	ir_input_unregister(ir->input);
438 439 440 441 442 443 444 445 446 447 448
	kfree(ir);

	/* done */
	dev->ir = NULL;
	return 0;
}

/**********************************************************
 Handle Webcam snapshot button
 **********************************************************/

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
static void em28xx_query_sbutton(struct work_struct *work)
{
	/* Poll the register and see if the button is depressed */
	struct em28xx *dev =
		container_of(work, struct em28xx, sbutton_query_work.work);
	int ret;

	ret = em28xx_read_reg(dev, EM28XX_R0C_USBSUSP);

	if (ret & EM28XX_R0C_USBSUSP_SNAPSHOT) {
		u8 cleared;
		/* Button is depressed, clear the register */
		cleared = ((u8) ret) & ~EM28XX_R0C_USBSUSP_SNAPSHOT;
		em28xx_write_regs(dev, EM28XX_R0C_USBSUSP, &cleared, 1);

		/* Not emulate the keypress */
		input_report_key(dev->sbutton_input_dev, EM28XX_SNAPSHOT_KEY,
				 1);
		/* Now unpress the key */
		input_report_key(dev->sbutton_input_dev, EM28XX_SNAPSHOT_KEY,
				 0);
	}

	/* Schedule next poll */
	schedule_delayed_work(&dev->sbutton_query_work,
			      msecs_to_jiffies(EM28XX_SBUTTON_QUERY_INTERVAL));
}

void em28xx_register_snapshot_button(struct em28xx *dev)
{
	struct input_dev *input_dev;
	int err;

	em28xx_info("Registering snapshot button...\n");
	input_dev = input_allocate_device();
	if (!input_dev) {
		em28xx_errdev("input_allocate_device failed\n");
		return;
	}

	usb_make_path(dev->udev, dev->snapshot_button_path,
		      sizeof(dev->snapshot_button_path));
	strlcat(dev->snapshot_button_path, "/sbutton",
		sizeof(dev->snapshot_button_path));
	INIT_DELAYED_WORK(&dev->sbutton_query_work, em28xx_query_sbutton);

	input_dev->name = "em28xx snapshot button";
	input_dev->phys = dev->snapshot_button_path;
	input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REP);
	set_bit(EM28XX_SNAPSHOT_KEY, input_dev->keybit);
	input_dev->keycodesize = 0;
	input_dev->keycodemax = 0;
	input_dev->id.bustype = BUS_USB;
	input_dev->id.vendor = le16_to_cpu(dev->udev->descriptor.idVendor);
	input_dev->id.product = le16_to_cpu(dev->udev->descriptor.idProduct);
	input_dev->id.version = 1;
	input_dev->dev.parent = &dev->udev->dev;

	err = input_register_device(input_dev);
	if (err) {
		em28xx_errdev("input_register_device failed\n");
		input_free_device(input_dev);
		return;
	}

	dev->sbutton_input_dev = input_dev;
	schedule_delayed_work(&dev->sbutton_query_work,
			      msecs_to_jiffies(EM28XX_SBUTTON_QUERY_INTERVAL));
	return;

}

void em28xx_deregister_snapshot_button(struct em28xx *dev)
{
	if (dev->sbutton_input_dev != NULL) {
		em28xx_info("Deregistering snapshot button\n");
		cancel_rearming_delayed_work(&dev->sbutton_query_work);
		input_unregister_device(dev->sbutton_input_dev);
		dev->sbutton_input_dev = NULL;
	}
	return;
}