dmar.c 34.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (c) 2006, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
17 18 19 20
 * Copyright (C) 2006-2008 Intel Corporation
 * Author: Ashok Raj <ashok.raj@intel.com>
 * Author: Shaohua Li <shaohua.li@intel.com>
 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21
 *
22
 * This file implements early detection/parsing of Remapping Devices
23 24
 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
 * tables.
25 26
 *
 * These routines are used by both DMA-remapping and Interrupt-remapping
27 28 29 30
 */

#include <linux/pci.h>
#include <linux/dmar.h>
K
Kay, Allen M 已提交
31 32
#include <linux/iova.h>
#include <linux/intel-iommu.h>
33
#include <linux/timer.h>
34 35
#include <linux/irq.h>
#include <linux/interrupt.h>
36
#include <linux/tboot.h>
37
#include <linux/dmi.h>
38
#include <linux/slab.h>
39
#include <asm/iommu_table.h>
40

41
#define PREFIX "DMAR: "
42 43 44 45 46 47 48 49

/* No locks are needed as DMA remapping hardware unit
 * list is constructed at boot time and hotplug of
 * these units are not supported by the architecture.
 */
LIST_HEAD(dmar_drhd_units);

static struct acpi_table_header * __initdata dmar_tbl;
50
static acpi_size dmar_tbl_size;
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
{
	/*
	 * add INCLUDE_ALL at the tail, so scan the list will find it at
	 * the very end.
	 */
	if (drhd->include_all)
		list_add_tail(&drhd->list, &dmar_drhd_units);
	else
		list_add(&drhd->list, &dmar_drhd_units);
}

static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
					   struct pci_dev **dev, u16 segment)
{
	struct pci_bus *bus;
	struct pci_dev *pdev = NULL;
	struct acpi_dmar_pci_path *path;
	int count;

	bus = pci_find_bus(segment, scope->bus);
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (count) {
		if (pdev)
			pci_dev_put(pdev);
		/*
		 * Some BIOSes list non-exist devices in DMAR table, just
		 * ignore it
		 */
		if (!bus) {
			printk(KERN_WARNING
			PREFIX "Device scope bus [%d] not found\n",
			scope->bus);
			break;
		}
		pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
		if (!pdev) {
			printk(KERN_WARNING PREFIX
			"Device scope device [%04x:%02x:%02x.%02x] not found\n",
				segment, bus->number, path->dev, path->fn);
			break;
		}
		path ++;
		count --;
		bus = pdev->subordinate;
	}
	if (!pdev) {
		printk(KERN_WARNING PREFIX
		"Device scope device [%04x:%02x:%02x.%02x] not found\n",
		segment, scope->bus, path->dev, path->fn);
		*dev = NULL;
		return 0;
	}
	if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
			pdev->subordinate) || (scope->entry_type == \
			ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
		pci_dev_put(pdev);
		printk(KERN_WARNING PREFIX
			"Device scope type does not match for %s\n",
			 pci_name(pdev));
		return -EINVAL;
	}
	*dev = pdev;
	return 0;
}

static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
				       struct pci_dev ***devices, u16 segment)
{
	struct acpi_dmar_device_scope *scope;
	void * tmp = start;
	int index;
	int ret;

	*cnt = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
			(*cnt)++;
135
		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
136
			printk(KERN_WARNING PREFIX
137 138
			       "Unsupported device scope\n");
		}
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
		start += scope->length;
	}
	if (*cnt == 0)
		return 0;

	*devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
	if (!*devices)
		return -ENOMEM;

	start = tmp;
	index = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
			ret = dmar_parse_one_dev_scope(scope,
				&(*devices)[index], segment);
			if (ret) {
				kfree(*devices);
				return ret;
			}
			index ++;
		}
		start += scope->length;
	}

	return 0;
}

/**
 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
 * structure which uniquely represent one DMA remapping hardware unit
 * present in the platform
 */
static int __init
dmar_parse_one_drhd(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct dmar_drhd_unit *dmaru;
	int ret = 0;

180
	drhd = (struct acpi_dmar_hardware_unit *)header;
181 182 183 184
	dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
	if (!dmaru)
		return -ENOMEM;

185
	dmaru->hdr = header;
186
	dmaru->reg_base_addr = drhd->address;
187
	dmaru->segment = drhd->segment;
188 189
	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */

190 191 192 193 194 195 196 197 198
	ret = alloc_iommu(dmaru);
	if (ret) {
		kfree(dmaru);
		return ret;
	}
	dmar_register_drhd_unit(dmaru);
	return 0;
}

199
static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
200 201
{
	struct acpi_dmar_hardware_unit *drhd;
202
	int ret = 0;
203 204 205

	drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;

206 207 208 209
	if (dmaru->include_all)
		return 0;

	ret = dmar_parse_dev_scope((void *)(drhd + 1),
210
				((void *)drhd) + drhd->header.length,
211 212
				&dmaru->devices_cnt, &dmaru->devices,
				drhd->segment);
213
	if (ret) {
214
		list_del(&dmaru->list);
215
		kfree(dmaru);
216
	}
217 218 219
	return ret;
}

220 221 222 223 224 225 226 227 228
#ifdef CONFIG_DMAR
LIST_HEAD(dmar_rmrr_units);

static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
{
	list_add(&rmrr->list, &dmar_rmrr_units);
}


229 230 231 232 233 234 235 236 237 238
static int __init
dmar_parse_one_rmrr(struct acpi_dmar_header *header)
{
	struct acpi_dmar_reserved_memory *rmrr;
	struct dmar_rmrr_unit *rmrru;

	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
	if (!rmrru)
		return -ENOMEM;

239
	rmrru->hdr = header;
240 241 242
	rmrr = (struct acpi_dmar_reserved_memory *)header;
	rmrru->base_address = rmrr->base_address;
	rmrru->end_address = rmrr->end_address;
243 244 245 246 247 248 249 250 251 252 253 254

	dmar_register_rmrr_unit(rmrru);
	return 0;
}

static int __init
rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
{
	struct acpi_dmar_reserved_memory *rmrr;
	int ret;

	rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
255
	ret = dmar_parse_dev_scope((void *)(rmrr + 1),
256
		((void *)rmrr) + rmrr->header.length,
257 258
		&rmrru->devices_cnt, &rmrru->devices, rmrr->segment);

259 260
	if (ret || (rmrru->devices_cnt == 0)) {
		list_del(&rmrru->list);
261
		kfree(rmrru);
262
	}
263 264
	return ret;
}
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

static LIST_HEAD(dmar_atsr_units);

static int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
	if (!atsru)
		return -ENOMEM;

	atsru->hdr = hdr;
	atsru->include_all = atsr->flags & 0x1;

	list_add(&atsru->list, &dmar_atsr_units);

	return 0;
}

static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
{
	int rc;
	struct acpi_dmar_atsr *atsr;

	if (atsru->include_all)
		return 0;

	atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
	rc = dmar_parse_dev_scope((void *)(atsr + 1),
				(void *)atsr + atsr->header.length,
				&atsru->devices_cnt, &atsru->devices,
				atsr->segment);
	if (rc || !atsru->devices_cnt) {
		list_del(&atsru->list);
		kfree(atsru);
	}

	return rc;
}

int dmar_find_matched_atsr_unit(struct pci_dev *dev)
{
	int i;
	struct pci_bus *bus;
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

314 315
	dev = pci_physfn(dev);

316 317 318 319 320 321 322 323 324 325 326 327
	list_for_each_entry(atsru, &dmar_atsr_units, list) {
		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (atsr->segment == pci_domain_nr(dev->bus))
			goto found;
	}

	return 0;

found:
	for (bus = dev->bus; bus; bus = bus->parent) {
		struct pci_dev *bridge = bus->self;

328
		if (!bridge || !pci_is_pcie(bridge) ||
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
		    bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
			return 0;

		if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
			for (i = 0; i < atsru->devices_cnt; i++)
				if (atsru->devices[i] == bridge)
					return 1;
			break;
		}
	}

	if (atsru->include_all)
		return 1;

	return 0;
}
345
#endif
346

347
#ifdef CONFIG_ACPI_NUMA
348 349 350 351 352 353 354
static int __init
dmar_parse_one_rhsa(struct acpi_dmar_header *header)
{
	struct acpi_dmar_rhsa *rhsa;
	struct dmar_drhd_unit *drhd;

	rhsa = (struct acpi_dmar_rhsa *)header;
355
	for_each_drhd_unit(drhd) {
356 357 358 359 360 361
		if (drhd->reg_base_addr == rhsa->base_address) {
			int node = acpi_map_pxm_to_node(rhsa->proximity_domain);

			if (!node_online(node))
				node = -1;
			drhd->iommu->node = node;
362 363
			return 0;
		}
364
	}
365 366 367 368 369 370 371 372
	WARN_TAINT(
		1, TAINT_FIRMWARE_WORKAROUND,
		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		drhd->reg_base_addr,
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
373

374
	return 0;
375
}
376
#endif
377

378 379 380 381 382
static void __init
dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_reserved_memory *rmrr;
383
	struct acpi_dmar_atsr *atsr;
384
	struct acpi_dmar_rhsa *rhsa;
385 386 387

	switch (header->type) {
	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
388 389
		drhd = container_of(header, struct acpi_dmar_hardware_unit,
				    header);
390
		printk (KERN_INFO PREFIX
391 392
			"DRHD base: %#016Lx flags: %#x\n",
			(unsigned long long)drhd->address, drhd->flags);
393 394
		break;
	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
395 396
		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
				    header);
397
		printk (KERN_INFO PREFIX
398
			"RMRR base: %#016Lx end: %#016Lx\n",
F
Fenghua Yu 已提交
399 400
			(unsigned long long)rmrr->base_address,
			(unsigned long long)rmrr->end_address);
401
		break;
402 403 404 405
	case ACPI_DMAR_TYPE_ATSR:
		atsr = container_of(header, struct acpi_dmar_atsr, header);
		printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags);
		break;
406 407 408 409 410 411
	case ACPI_DMAR_HARDWARE_AFFINITY:
		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
		printk(KERN_INFO PREFIX "RHSA base: %#016Lx proximity domain: %#x\n",
		       (unsigned long long)rhsa->base_address,
		       rhsa->proximity_domain);
		break;
412 413 414
	}
}

415 416 417 418 419 420 421 422
/**
 * dmar_table_detect - checks to see if the platform supports DMAR devices
 */
static int __init dmar_table_detect(void)
{
	acpi_status status = AE_OK;

	/* if we could find DMAR table, then there are DMAR devices */
423 424 425
	status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
				(struct acpi_table_header **)&dmar_tbl,
				&dmar_tbl_size);
426 427 428 429 430 431 432 433

	if (ACPI_SUCCESS(status) && !dmar_tbl) {
		printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
		status = AE_NOT_FOUND;
	}

	return (ACPI_SUCCESS(status) ? 1 : 0);
}
434

435 436 437 438 439 440 441 442 443 444
/**
 * parse_dmar_table - parses the DMA reporting table
 */
static int __init
parse_dmar_table(void)
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	int ret = 0;

445 446 447 448 449 450
	/*
	 * Do it again, earlier dmar_tbl mapping could be mapped with
	 * fixed map.
	 */
	dmar_table_detect();

451 452 453 454 455 456
	/*
	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
	 */
	dmar_tbl = tboot_get_dmar_table(dmar_tbl);

457 458 459 460
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	if (!dmar)
		return -ENODEV;

F
Fenghua Yu 已提交
461
	if (dmar->width < PAGE_SHIFT - 1) {
F
Fenghua Yu 已提交
462
		printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
463 464 465 466 467 468 469 470 471
		return -EINVAL;
	}

	printk (KERN_INFO PREFIX "Host address width %d\n",
		dmar->width + 1);

	entry_header = (struct acpi_dmar_header *)(dmar + 1);
	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
472 473 474 475 476 477 478 479
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
			printk(KERN_WARNING PREFIX
				"Invalid 0-length structure\n");
			ret = -EINVAL;
			break;
		}

480 481 482 483 484 485 486
		dmar_table_print_dmar_entry(entry_header);

		switch (entry_header->type) {
		case ACPI_DMAR_TYPE_HARDWARE_UNIT:
			ret = dmar_parse_one_drhd(entry_header);
			break;
		case ACPI_DMAR_TYPE_RESERVED_MEMORY:
487
#ifdef CONFIG_DMAR
488
			ret = dmar_parse_one_rmrr(entry_header);
489 490 491 492 493
#endif
			break;
		case ACPI_DMAR_TYPE_ATSR:
#ifdef CONFIG_DMAR
			ret = dmar_parse_one_atsr(entry_header);
494
#endif
495
			break;
496
		case ACPI_DMAR_HARDWARE_AFFINITY:
497
#ifdef CONFIG_ACPI_NUMA
498
			ret = dmar_parse_one_rhsa(entry_header);
499
#endif
500
			break;
501 502
		default:
			printk(KERN_WARNING PREFIX
503 504
				"Unknown DMAR structure type %d\n",
				entry_header->type);
505 506 507 508 509 510 511 512 513 514 515
			ret = 0; /* for forward compatibility */
			break;
		}
		if (ret)
			break;

		entry_header = ((void *)entry_header + entry_header->length);
	}
	return ret;
}

516
static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
			  struct pci_dev *dev)
{
	int index;

	while (dev) {
		for (index = 0; index < cnt; index++)
			if (dev == devices[index])
				return 1;

		/* Check our parent */
		dev = dev->bus->self;
	}

	return 0;
}

struct dmar_drhd_unit *
dmar_find_matched_drhd_unit(struct pci_dev *dev)
{
536 537 538
	struct dmar_drhd_unit *dmaru = NULL;
	struct acpi_dmar_hardware_unit *drhd;

539 540
	dev = pci_physfn(dev);

541 542 543 544 545 546 547 548
	list_for_each_entry(dmaru, &dmar_drhd_units, list) {
		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit,
				    header);

		if (dmaru->include_all &&
		    drhd->segment == pci_domain_nr(dev->bus))
			return dmaru;
549

550 551 552
		if (dmar_pci_device_match(dmaru->devices,
					  dmaru->devices_cnt, dev))
			return dmaru;
553 554 555 556 557
	}

	return NULL;
}

558 559
int __init dmar_dev_scope_init(void)
{
560
	struct dmar_drhd_unit *drhd, *drhd_n;
561 562
	int ret = -ENODEV;

563
	list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
564 565 566 567 568
		ret = dmar_parse_dev(drhd);
		if (ret)
			return ret;
	}

569 570
#ifdef CONFIG_DMAR
	{
571
		struct dmar_rmrr_unit *rmrr, *rmrr_n;
572 573
		struct dmar_atsr_unit *atsr, *atsr_n;

574
		list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
575 576 577 578
			ret = rmrr_parse_dev(rmrr);
			if (ret)
				return ret;
		}
579 580 581 582 583 584

		list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
			ret = atsr_parse_dev(atsr);
			if (ret)
				return ret;
		}
585
	}
586
#endif
587 588 589 590

	return ret;
}

591 592 593

int __init dmar_table_init(void)
{
594
	static int dmar_table_initialized;
F
Fenghua Yu 已提交
595 596
	int ret;

597 598 599 600 601
	if (dmar_table_initialized)
		return 0;

	dmar_table_initialized = 1;

F
Fenghua Yu 已提交
602 603
	ret = parse_dmar_table();
	if (ret) {
604 605
		if (ret != -ENODEV)
			printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
F
Fenghua Yu 已提交
606 607 608
		return ret;
	}

609 610 611 612
	if (list_empty(&dmar_drhd_units)) {
		printk(KERN_INFO PREFIX "No DMAR devices found\n");
		return -ENODEV;
	}
F
Fenghua Yu 已提交
613

614
#ifdef CONFIG_DMAR
615
	if (list_empty(&dmar_rmrr_units))
F
Fenghua Yu 已提交
616
		printk(KERN_INFO PREFIX "No RMRR found\n");
617 618 619

	if (list_empty(&dmar_atsr_units))
		printk(KERN_INFO PREFIX "No ATSR found\n");
620
#endif
F
Fenghua Yu 已提交
621

622 623 624
	return 0;
}

625 626
static void warn_invalid_dmar(u64 addr, const char *message)
{
627 628 629 630 631 632 633 634
	WARN_TAINT_ONCE(
		1, TAINT_FIRMWARE_WORKAROUND,
		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		addr, message,
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
635
}
636

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
int __init check_zero_address(void)
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	struct acpi_dmar_hardware_unit *drhd;

	dmar = (struct acpi_table_dmar *)dmar_tbl;
	entry_header = (struct acpi_dmar_header *)(dmar + 1);

	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
			printk(KERN_WARNING PREFIX
				"Invalid 0-length structure\n");
			return 0;
		}

		if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
656 657 658
			void __iomem *addr;
			u64 cap, ecap;

659 660
			drhd = (void *)entry_header;
			if (!drhd->address) {
661
				warn_invalid_dmar(0, "");
662 663 664 665 666 667 668 669 670 671 672 673
				goto failed;
			}

			addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
			if (!addr ) {
				printk("IOMMU: can't validate: %llx\n", drhd->address);
				goto failed;
			}
			cap = dmar_readq(addr + DMAR_CAP_REG);
			ecap = dmar_readq(addr + DMAR_ECAP_REG);
			early_iounmap(addr, VTD_PAGE_SIZE);
			if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
674 675
				warn_invalid_dmar(drhd->address,
						  " returns all ones");
676
				goto failed;
677 678 679 680 681 682
			}
		}

		entry_header = ((void *)entry_header + entry_header->length);
	}
	return 1;
683 684 685 686 687 688

failed:
#ifdef CONFIG_DMAR
	dmar_disabled = 1;
#endif
	return 0;
689 690
}

691
int __init detect_intel_iommu(void)
692 693 694
{
	int ret;

695
	ret = dmar_table_detect();
696 697
	if (ret)
		ret = check_zero_address();
698
	{
699
#ifdef CONFIG_INTR_REMAP
700 701 702 703 704 705 706 707
		struct acpi_table_dmar *dmar;
		/*
		 * for now we will disable dma-remapping when interrupt
		 * remapping is enabled.
		 * When support for queued invalidation for IOTLB invalidation
		 * is added, we will not need this any more.
		 */
		dmar = (struct acpi_table_dmar *) dmar_tbl;
708
		if (ret && cpu_has_x2apic && dmar->flags & 0x1)
709 710 711
			printk(KERN_INFO
			       "Queued invalidation will be enabled to support "
			       "x2apic and Intr-remapping.\n");
712 713
#endif
#ifdef CONFIG_DMAR
714
		if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
715
			iommu_detected = 1;
C
Chris Wright 已提交
716 717 718
			/* Make sure ACS will be enabled */
			pci_request_acs();
		}
719 720 721 722
#endif
#ifdef CONFIG_X86
		if (ret)
			x86_init.iommu.iommu_init = intel_iommu_init;
723
#endif
724
	}
725
	early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
726
	dmar_tbl = NULL;
727

728
	return ret ? 1 : -ENODEV;
729 730 731
}


732
int alloc_iommu(struct dmar_drhd_unit *drhd)
733
{
734
	struct intel_iommu *iommu;
735 736
	int map_size;
	u32 ver;
737
	static int iommu_allocated = 0;
738
	int agaw = 0;
F
Fenghua Yu 已提交
739
	int msagaw = 0;
740

741
	if (!drhd->reg_base_addr) {
742
		warn_invalid_dmar(0, "");
743 744 745
		return -EINVAL;
	}

746 747
	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
	if (!iommu)
748
		return -ENOMEM;
749 750

	iommu->seq_id = iommu_allocated++;
751
	sprintf (iommu->name, "dmar%d", iommu->seq_id);
752

F
Fenghua Yu 已提交
753
	iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
754 755 756 757 758 759 760
	if (!iommu->reg) {
		printk(KERN_ERR "IOMMU: can't map the region\n");
		goto error;
	}
	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);

761
	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
762
		warn_invalid_dmar(drhd->reg_base_addr, " returns all ones");
763 764 765
		goto err_unmap;
	}

766
#ifdef CONFIG_DMAR
W
Weidong Han 已提交
767 768 769
	agaw = iommu_calculate_agaw(iommu);
	if (agaw < 0) {
		printk(KERN_ERR
F
Fenghua Yu 已提交
770 771
		       "Cannot get a valid agaw for iommu (seq_id = %d)\n",
		       iommu->seq_id);
772
		goto err_unmap;
F
Fenghua Yu 已提交
773 774 775 776 777
	}
	msagaw = iommu_calculate_max_sagaw(iommu);
	if (msagaw < 0) {
		printk(KERN_ERR
			"Cannot get a valid max agaw for iommu (seq_id = %d)\n",
W
Weidong Han 已提交
778
			iommu->seq_id);
779
		goto err_unmap;
W
Weidong Han 已提交
780
	}
781
#endif
W
Weidong Han 已提交
782
	iommu->agaw = agaw;
F
Fenghua Yu 已提交
783
	iommu->msagaw = msagaw;
W
Weidong Han 已提交
784

785 786
	iommu->node = -1;

787 788 789
	/* the registers might be more than one page */
	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
		cap_max_fault_reg_offset(iommu->cap));
F
Fenghua Yu 已提交
790 791
	map_size = VTD_PAGE_ALIGN(map_size);
	if (map_size > VTD_PAGE_SIZE) {
792 793 794 795 796 797 798 799 800
		iounmap(iommu->reg);
		iommu->reg = ioremap(drhd->reg_base_addr, map_size);
		if (!iommu->reg) {
			printk(KERN_ERR "IOMMU: can't map the region\n");
			goto error;
		}
	}

	ver = readl(iommu->reg + DMAR_VER_REG);
Y
Yinghai Lu 已提交
801 802
	pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
		iommu->seq_id,
F
Fenghua Yu 已提交
803 804 805 806
		(unsigned long long)drhd->reg_base_addr,
		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
		(unsigned long long)iommu->cap,
		(unsigned long long)iommu->ecap);
807 808 809 810

	spin_lock_init(&iommu->register_lock);

	drhd->iommu = iommu;
811
	return 0;
812 813 814 815

 err_unmap:
	iounmap(iommu->reg);
 error:
816
	kfree(iommu);
817
	return -1;
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
}

void free_iommu(struct intel_iommu *iommu)
{
	if (!iommu)
		return;

#ifdef CONFIG_DMAR
	free_dmar_iommu(iommu);
#endif

	if (iommu->reg)
		iounmap(iommu->reg);
	kfree(iommu);
}
833 834 835 836 837 838

/*
 * Reclaim all the submitted descriptors which have completed its work.
 */
static inline void reclaim_free_desc(struct q_inval *qi)
{
839 840
	while (qi->desc_status[qi->free_tail] == QI_DONE ||
	       qi->desc_status[qi->free_tail] == QI_ABORT) {
841 842 843 844 845 846
		qi->desc_status[qi->free_tail] = QI_FREE;
		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
		qi->free_cnt++;
	}
}

847 848 849
static int qi_check_fault(struct intel_iommu *iommu, int index)
{
	u32 fault;
850
	int head, tail;
851 852 853
	struct q_inval *qi = iommu->qi;
	int wait_index = (index + 1) % QI_LENGTH;

854 855 856
	if (qi->desc_status[wait_index] == QI_ABORT)
		return -EAGAIN;

857 858 859 860 861 862 863 864 865
	fault = readl(iommu->reg + DMAR_FSTS_REG);

	/*
	 * If IQE happens, the head points to the descriptor associated
	 * with the error. No new descriptors are fetched until the IQE
	 * is cleared.
	 */
	if (fault & DMA_FSTS_IQE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
866 867 868 869 870
		if ((head >> DMAR_IQ_SHIFT) == index) {
			printk(KERN_ERR "VT-d detected invalid descriptor: "
				"low=%llx, high=%llx\n",
				(unsigned long long)qi->desc[index].low,
				(unsigned long long)qi->desc[index].high);
871 872 873 874 875 876 877 878 879
			memcpy(&qi->desc[index], &qi->desc[wait_index],
					sizeof(struct qi_desc));
			__iommu_flush_cache(iommu, &qi->desc[index],
					sizeof(struct qi_desc));
			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
			return -EINVAL;
		}
	}

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
	/*
	 * If ITE happens, all pending wait_desc commands are aborted.
	 * No new descriptors are fetched until the ITE is cleared.
	 */
	if (fault & DMA_FSTS_ITE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
		head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
		head |= 1;
		tail = readl(iommu->reg + DMAR_IQT_REG);
		tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;

		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);

		do {
			if (qi->desc_status[head] == QI_IN_USE)
				qi->desc_status[head] = QI_ABORT;
			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
		} while (head != tail);

		if (qi->desc_status[wait_index] == QI_ABORT)
			return -EAGAIN;
	}

	if (fault & DMA_FSTS_ICE)
		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);

906 907 908
	return 0;
}

909 910 911 912
/*
 * Submit the queued invalidation descriptor to the remapping
 * hardware unit and wait for its completion.
 */
913
int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
914
{
915
	int rc;
916 917 918 919 920 921
	struct q_inval *qi = iommu->qi;
	struct qi_desc *hw, wait_desc;
	int wait_index, index;
	unsigned long flags;

	if (!qi)
922
		return 0;
923 924 925

	hw = qi->desc;

926 927 928
restart:
	rc = 0;

929
	spin_lock_irqsave(&qi->q_lock, flags);
930
	while (qi->free_cnt < 3) {
931
		spin_unlock_irqrestore(&qi->q_lock, flags);
932
		cpu_relax();
933
		spin_lock_irqsave(&qi->q_lock, flags);
934 935 936 937 938 939 940 941 942
	}

	index = qi->free_head;
	wait_index = (index + 1) % QI_LENGTH;

	qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;

	hw[index] = *desc;

943 944
	wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
945 946 947 948 949 950 951 952 953 954 955 956 957 958
	wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);

	hw[wait_index] = wait_desc;

	__iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
	__iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));

	qi->free_head = (qi->free_head + 2) % QI_LENGTH;
	qi->free_cnt -= 2;

	/*
	 * update the HW tail register indicating the presence of
	 * new descriptors.
	 */
959
	writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
960 961

	while (qi->desc_status[wait_index] != QI_DONE) {
962 963 964 965 966 967 968
		/*
		 * We will leave the interrupts disabled, to prevent interrupt
		 * context to queue another cmd while a cmd is already submitted
		 * and waiting for completion on this cpu. This is to avoid
		 * a deadlock where the interrupt context can wait indefinitely
		 * for free slots in the queue.
		 */
969 970
		rc = qi_check_fault(iommu, index);
		if (rc)
971
			break;
972

973 974 975 976
		spin_unlock(&qi->q_lock);
		cpu_relax();
		spin_lock(&qi->q_lock);
	}
977 978

	qi->desc_status[index] = QI_DONE;
979 980

	reclaim_free_desc(qi);
981
	spin_unlock_irqrestore(&qi->q_lock, flags);
982

983 984 985
	if (rc == -EAGAIN)
		goto restart;

986
	return rc;
987 988 989 990 991 992 993 994 995 996 997 998
}

/*
 * Flush the global interrupt entry cache.
 */
void qi_global_iec(struct intel_iommu *iommu)
{
	struct qi_desc desc;

	desc.low = QI_IEC_TYPE;
	desc.high = 0;

999
	/* should never fail */
1000 1001 1002
	qi_submit_sync(&desc, iommu);
}

1003 1004
void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
		      u64 type)
1005 1006 1007 1008 1009 1010 1011
{
	struct qi_desc desc;

	desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
			| QI_CC_GRAN(type) | QI_CC_TYPE;
	desc.high = 0;

1012
	qi_submit_sync(&desc, iommu);
1013 1014
}

1015 1016
void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
		    unsigned int size_order, u64 type)
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
{
	u8 dw = 0, dr = 0;

	struct qi_desc desc;
	int ih = 0;

	if (cap_write_drain(iommu->cap))
		dw = 1;

	if (cap_read_drain(iommu->cap))
		dr = 1;

	desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
	desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
		| QI_IOTLB_AM(size_order);

1034
	qi_submit_sync(&desc, iommu);
1035 1036
}

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
			u64 addr, unsigned mask)
{
	struct qi_desc desc;

	if (mask) {
		BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
		addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
		desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
	} else
		desc.high = QI_DEV_IOTLB_ADDR(addr);

	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
		qdep = 0;

	desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
		   QI_DIOTLB_TYPE;

	qi_submit_sync(&desc, iommu);
}

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
/*
 * Disable Queued Invalidation interface.
 */
void dmar_disable_qi(struct intel_iommu *iommu)
{
	unsigned long flags;
	u32 sts;
	cycles_t start_time = get_cycles();

	if (!ecap_qis(iommu->ecap))
		return;

	spin_lock_irqsave(&iommu->register_lock, flags);

	sts =  dmar_readq(iommu->reg + DMAR_GSTS_REG);
	if (!(sts & DMA_GSTS_QIES))
		goto end;

	/*
	 * Give a chance to HW to complete the pending invalidation requests.
	 */
	while ((readl(iommu->reg + DMAR_IQT_REG) !=
		readl(iommu->reg + DMAR_IQH_REG)) &&
		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
		cpu_relax();

	iommu->gcmd &= ~DMA_GCMD_QIE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
		      !(sts & DMA_GSTS_QIES), sts);
end:
	spin_unlock_irqrestore(&iommu->register_lock, flags);
}

1093 1094 1095 1096 1097
/*
 * Enable queued invalidation.
 */
static void __dmar_enable_qi(struct intel_iommu *iommu)
{
1098
	u32 sts;
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	unsigned long flags;
	struct q_inval *qi = iommu->qi;

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

	spin_lock_irqsave(&iommu->register_lock, flags);

	/* write zero to the tail reg */
	writel(0, iommu->reg + DMAR_IQT_REG);

	dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));

	iommu->gcmd |= DMA_GCMD_QIE;
1113
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1114 1115 1116 1117 1118 1119 1120

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);

	spin_unlock_irqrestore(&iommu->register_lock, flags);
}

1121 1122 1123 1124 1125 1126 1127 1128
/*
 * Enable Queued Invalidation interface. This is a must to support
 * interrupt-remapping. Also used by DMA-remapping, which replaces
 * register based IOTLB invalidation.
 */
int dmar_enable_qi(struct intel_iommu *iommu)
{
	struct q_inval *qi;
1129
	struct page *desc_page;
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	/*
	 * queued invalidation is already setup and enabled.
	 */
	if (iommu->qi)
		return 0;

1140
	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1141 1142 1143 1144 1145
	if (!iommu->qi)
		return -ENOMEM;

	qi = iommu->qi;

1146 1147 1148

	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (!desc_page) {
1149 1150 1151 1152 1153
		kfree(qi);
		iommu->qi = 0;
		return -ENOMEM;
	}

1154 1155
	qi->desc = page_address(desc_page);

1156
	qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
	if (!qi->desc_status) {
		free_page((unsigned long) qi->desc);
		kfree(qi);
		iommu->qi = 0;
		return -ENOMEM;
	}

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

	spin_lock_init(&qi->q_lock);

1169
	__dmar_enable_qi(iommu);
1170 1171 1172

	return 0;
}
1173 1174 1175

/* iommu interrupt handling. Most stuff are MSI-like. */

1176 1177 1178 1179 1180 1181 1182
enum faulttype {
	DMA_REMAP,
	INTR_REMAP,
	UNKNOWN,
};

static const char *dma_remap_fault_reasons[] =
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
{
	"Software",
	"Present bit in root entry is clear",
	"Present bit in context entry is clear",
	"Invalid context entry",
	"Access beyond MGAW",
	"PTE Write access is not set",
	"PTE Read access is not set",
	"Next page table ptr is invalid",
	"Root table address invalid",
	"Context table ptr is invalid",
	"non-zero reserved fields in RTP",
	"non-zero reserved fields in CTP",
	"non-zero reserved fields in PTE",
};
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209

static const char *intr_remap_fault_reasons[] =
{
	"Detected reserved fields in the decoded interrupt-remapped request",
	"Interrupt index exceeded the interrupt-remapping table size",
	"Present field in the IRTE entry is clear",
	"Error accessing interrupt-remapping table pointed by IRTA_REG",
	"Detected reserved fields in the IRTE entry",
	"Blocked a compatibility format interrupt request",
	"Blocked an interrupt request due to source-id verification failure",
};

1210 1211
#define MAX_FAULT_REASON_IDX 	(ARRAY_SIZE(fault_reason_strings) - 1)

1212
const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1213
{
1214 1215 1216 1217 1218 1219 1220 1221 1222
	if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
				     ARRAY_SIZE(intr_remap_fault_reasons))) {
		*fault_type = INTR_REMAP;
		return intr_remap_fault_reasons[fault_reason - 0x20];
	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
		*fault_type = DMA_REMAP;
		return dma_remap_fault_reasons[fault_reason];
	} else {
		*fault_type = UNKNOWN;
1223
		return "Unknown";
1224
	}
1225 1226
}

1227
void dmar_msi_unmask(struct irq_data *data)
1228
{
1229
	struct intel_iommu *iommu = irq_data_get_irq_data(data);
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
	unsigned long flag;

	/* unmask it */
	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(0, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

1240
void dmar_msi_mask(struct irq_data *data)
1241 1242
{
	unsigned long flag;
1243
	struct intel_iommu *iommu = irq_data_get_irq_data(data);
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280

	/* mask it */
	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

void dmar_msi_write(int irq, struct msi_msg *msg)
{
	struct intel_iommu *iommu = get_irq_data(irq);
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
	writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
	writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

void dmar_msi_read(int irq, struct msi_msg *msg)
{
	struct intel_iommu *iommu = get_irq_data(irq);
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
	msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
	msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
		u8 fault_reason, u16 source_id, unsigned long long addr)
{
	const char *reason;
1281
	int fault_type;
1282

1283
	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1284

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	if (fault_type == INTR_REMAP)
		printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
		       "fault index %llx\n"
			"INTR-REMAP:[fault reason %02d] %s\n",
			(source_id >> 8), PCI_SLOT(source_id & 0xFF),
			PCI_FUNC(source_id & 0xFF), addr >> 48,
			fault_reason, reason);
	else
		printk(KERN_ERR
		       "DMAR:[%s] Request device [%02x:%02x.%d] "
		       "fault addr %llx \n"
		       "DMAR:[fault reason %02d] %s\n",
		       (type ? "DMA Read" : "DMA Write"),
		       (source_id >> 8), PCI_SLOT(source_id & 0xFF),
		       PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1300 1301 1302 1303
	return 0;
}

#define PRIMARY_FAULT_REG_LEN (16)
1304
irqreturn_t dmar_fault(int irq, void *dev_id)
1305 1306 1307 1308 1309 1310 1311 1312
{
	struct intel_iommu *iommu = dev_id;
	int reg, fault_index;
	u32 fault_status;
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1313 1314 1315
	if (fault_status)
		printk(KERN_ERR "DRHD: handling fault status reg %x\n",
		       fault_status);
1316 1317 1318

	/* TBD: ignore advanced fault log currently */
	if (!(fault_status & DMA_FSTS_PPF))
1319
		goto clear_rest;
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355

	fault_index = dma_fsts_fault_record_index(fault_status);
	reg = cap_fault_reg_offset(iommu->cap);
	while (1) {
		u8 fault_reason;
		u16 source_id;
		u64 guest_addr;
		int type;
		u32 data;

		/* highest 32 bits */
		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 12);
		if (!(data & DMA_FRCD_F))
			break;

		fault_reason = dma_frcd_fault_reason(data);
		type = dma_frcd_type(data);

		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 8);
		source_id = dma_frcd_source_id(data);

		guest_addr = dmar_readq(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN);
		guest_addr = dma_frcd_page_addr(guest_addr);
		/* clear the fault */
		writel(DMA_FRCD_F, iommu->reg + reg +
			fault_index * PRIMARY_FAULT_REG_LEN + 12);

		spin_unlock_irqrestore(&iommu->register_lock, flag);

		dmar_fault_do_one(iommu, type, fault_reason,
				source_id, guest_addr);

		fault_index++;
1356
		if (fault_index >= cap_num_fault_regs(iommu->cap))
1357 1358 1359
			fault_index = 0;
		spin_lock_irqsave(&iommu->register_lock, flag);
	}
1360 1361
clear_rest:
	/* clear all the other faults */
1362
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1363
	writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1364 1365 1366 1367 1368 1369 1370 1371 1372

	spin_unlock_irqrestore(&iommu->register_lock, flag);
	return IRQ_HANDLED;
}

int dmar_set_interrupt(struct intel_iommu *iommu)
{
	int irq, ret;

1373 1374 1375 1376 1377 1378
	/*
	 * Check if the fault interrupt is already initialized.
	 */
	if (iommu->irq)
		return 0;

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	irq = create_irq();
	if (!irq) {
		printk(KERN_ERR "IOMMU: no free vectors\n");
		return -EINVAL;
	}

	set_irq_data(irq, iommu);
	iommu->irq = irq;

	ret = arch_setup_dmar_msi(irq);
	if (ret) {
		set_irq_data(irq, NULL);
		iommu->irq = 0;
		destroy_irq(irq);
1393
		return ret;
1394 1395 1396 1397 1398 1399 1400
	}

	ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
	if (ret)
		printk(KERN_ERR "IOMMU: can't request irq\n");
	return ret;
}
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419

int __init enable_drhd_fault_handling(void)
{
	struct dmar_drhd_unit *drhd;

	/*
	 * Enable fault control interrupt.
	 */
	for_each_drhd_unit(drhd) {
		int ret;
		struct intel_iommu *iommu = drhd->iommu;
		ret = dmar_set_interrupt(iommu);

		if (ret) {
			printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
			       " interrupt, ret %d\n",
			       (unsigned long long)drhd->reg_base_addr, ret);
			return -1;
		}
1420 1421 1422 1423 1424

		/*
		 * Clear any previous faults.
		 */
		dmar_fault(iommu->irq, iommu);
1425 1426 1427 1428
	}

	return 0;
}
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453

/*
 * Re-enable Queued Invalidation interface.
 */
int dmar_reenable_qi(struct intel_iommu *iommu)
{
	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	if (!iommu->qi)
		return -ENOENT;

	/*
	 * First disable queued invalidation.
	 */
	dmar_disable_qi(iommu);
	/*
	 * Then enable queued invalidation again. Since there is no pending
	 * invalidation requests now, it's safe to re-enable queued
	 * invalidation.
	 */
	__dmar_enable_qi(iommu);

	return 0;
}
1454 1455 1456 1457

/*
 * Check interrupt remapping support in DMAR table description.
 */
1458
int __init dmar_ir_support(void)
1459 1460 1461
{
	struct acpi_table_dmar *dmar;
	dmar = (struct acpi_table_dmar *)dmar_tbl;
1462 1463
	if (!dmar)
		return 0;
1464 1465
	return dmar->flags & 0x1;
}
1466
IOMMU_INIT_POST(detect_intel_iommu);