Kconfig 64.0 KB
Newer Older
1
# x86 configuration
S
Sam Ravnborg 已提交
2 3 4 5
mainmenu "Linux Kernel Configuration for x86"

# Select 32 or 64 bit
config 64BIT
6 7
	bool "64-bit kernel" if ARCH = "x86"
	default ARCH = "x86_64"
S
Sam Ravnborg 已提交
8 9 10 11 12 13 14 15 16
	help
	  Say yes to build a 64-bit kernel - formerly known as x86_64
	  Say no to build a 32-bit kernel - formerly known as i386

config X86_32
	def_bool !64BIT

config X86_64
	def_bool 64BIT
17 18

### Arch settings
19
config X86
20
	def_bool y
21
	select HAVE_AOUT if X86_32
22 23
	select HAVE_READQ
	select HAVE_WRITEQ
24
	select HAVE_UNSTABLE_SCHED_CLOCK
S
Sam Ravnborg 已提交
25
	select HAVE_IDE
M
Mathieu Desnoyers 已提交
26
	select HAVE_OPROFILE
27
	select HAVE_IOREMAP_PROT
M
Mathieu Desnoyers 已提交
28
	select HAVE_KPROBES
I
Ingo Molnar 已提交
29
	select ARCH_WANT_OPTIONAL_GPIOLIB
30
	select ARCH_WANT_FRAME_POINTERS
31
	select HAVE_KRETPROBES
32
	select HAVE_FTRACE_MCOUNT_RECORD
33
	select HAVE_DYNAMIC_FTRACE
34
	select HAVE_FUNCTION_TRACER
35
	select HAVE_FUNCTION_GRAPH_TRACER
36
	select HAVE_FUNCTION_TRACE_MCOUNT_TEST
37
	select HAVE_KVM if ((X86_32 && !X86_VOYAGER && !X86_VISWS && !X86_NUMAQ) || X86_64)
I
Ingo Molnar 已提交
38
	select HAVE_ARCH_KGDB if !X86_VOYAGER
39
	select HAVE_ARCH_TRACEHOOK
40
	select HAVE_GENERIC_DMA_COHERENT if X86_32
41
	select HAVE_EFFICIENT_UNALIGNED_ACCESS
42
	select USER_STACKTRACE_SUPPORT
43

44
config ARCH_DEFCONFIG
45
	string
46 47
	default "arch/x86/configs/i386_defconfig" if X86_32
	default "arch/x86/configs/x86_64_defconfig" if X86_64
48

49
config GENERIC_TIME
50
	def_bool y
51 52

config GENERIC_CMOS_UPDATE
53
	def_bool y
54 55

config CLOCKSOURCE_WATCHDOG
56
	def_bool y
57 58

config GENERIC_CLOCKEVENTS
59
	def_bool y
60 61

config GENERIC_CLOCKEVENTS_BROADCAST
62
	def_bool y
63 64 65
	depends on X86_64 || (X86_32 && X86_LOCAL_APIC)

config LOCKDEP_SUPPORT
66
	def_bool y
67 68

config STACKTRACE_SUPPORT
69
	def_bool y
70

71 72 73
config HAVE_LATENCYTOP_SUPPORT
	def_bool y

74 75 76 77
config FAST_CMPXCHG_LOCAL
	bool
	default y

78
config MMU
79
	def_bool y
80 81

config ZONE_DMA
82
	def_bool y
83 84 85 86 87

config SBUS
	bool

config GENERIC_ISA_DMA
88
	def_bool y
89 90

config GENERIC_IOMAP
91
	def_bool y
92 93

config GENERIC_BUG
94
	def_bool y
95
	depends on BUG
96 97 98 99
	select GENERIC_BUG_RELATIVE_POINTERS if X86_64

config GENERIC_BUG_RELATIVE_POINTERS
	bool
100 101

config GENERIC_HWEIGHT
102
	def_bool y
103

104
config GENERIC_GPIO
105
	bool
106

107
config ARCH_MAY_HAVE_PC_FDC
108
	def_bool y
109

110 111 112 113 114 115
config RWSEM_GENERIC_SPINLOCK
	def_bool !X86_XADD

config RWSEM_XCHGADD_ALGORITHM
	def_bool X86_XADD

V
Venki Pallipadi 已提交
116 117 118
config ARCH_HAS_CPU_IDLE_WAIT
	def_bool y

119 120 121
config GENERIC_CALIBRATE_DELAY
	def_bool y

122 123 124 125
config GENERIC_TIME_VSYSCALL
	bool
	default X86_64

126 127 128
config ARCH_HAS_CPU_RELAX
	def_bool y

129 130 131
config ARCH_HAS_DEFAULT_IDLE
	def_bool y

132 133 134
config ARCH_HAS_CACHE_LINE_SIZE
	def_bool y

135
config HAVE_SETUP_PER_CPU_AREA
136
	def_bool X86_64_SMP || (X86_SMP && !X86_VOYAGER)
137

138 139 140
config HAVE_CPUMASK_OF_CPU_MAP
	def_bool X86_64_SMP

141 142 143 144
config ARCH_HIBERNATION_POSSIBLE
	def_bool y
	depends on !SMP || !X86_VOYAGER

J
Johannes Berg 已提交
145 146 147 148
config ARCH_SUSPEND_POSSIBLE
	def_bool y
	depends on !X86_VOYAGER

149 150 151 152 153 154 155 156 157 158 159
config ZONE_DMA32
	bool
	default X86_64

config ARCH_POPULATES_NODE_MAP
	def_bool y

config AUDIT_ARCH
	bool
	default X86_64

160 161 162
config ARCH_SUPPORTS_OPTIMIZED_INLINING
	def_bool y

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
# Use the generic interrupt handling code in kernel/irq/:
config GENERIC_HARDIRQS
	bool
	default y

config GENERIC_IRQ_PROBE
	bool
	default y

config GENERIC_PENDING_IRQ
	bool
	depends on GENERIC_HARDIRQS && SMP
	default y

config X86_SMP
	bool
179
	depends on SMP && ((X86_32 && !X86_VOYAGER) || X86_64)
180 181
	default y

182 183 184 185
config USE_GENERIC_SMP_HELPERS
	def_bool y
	depends on SMP

186 187 188 189 190 191 192 193
config X86_32_SMP
	def_bool y
	depends on X86_32 && SMP

config X86_64_SMP
	def_bool y
	depends on X86_64 && SMP

194 195
config X86_HT
	bool
196
	depends on SMP
197
	depends on (X86_32 && !X86_VOYAGER) || X86_64
198 199 200 201
	default y

config X86_BIOS_REBOOT
	bool
202
	depends on !X86_VOYAGER
203 204 205 206
	default y

config X86_TRAMPOLINE
	bool
207
	depends on X86_SMP || (X86_VOYAGER && SMP) || (64BIT && ACPI_SLEEP)
208 209 210 211
	default y

config KTIME_SCALAR
	def_bool X86_32
212
source "init/Kconfig"
213
source "kernel/Kconfig.freezer"
214

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
menu "Processor type and features"

source "kernel/time/Kconfig"

config SMP
	bool "Symmetric multi-processing support"
	---help---
	  This enables support for systems with more than one CPU. If you have
	  a system with only one CPU, like most personal computers, say N. If
	  you have a system with more than one CPU, say Y.

	  If you say N here, the kernel will run on single and multiprocessor
	  machines, but will use only one CPU of a multiprocessor machine. If
	  you say Y here, the kernel will run on many, but not all,
	  singleprocessor machines. On a singleprocessor machine, the kernel
	  will run faster if you say N here.

	  Note that if you say Y here and choose architecture "586" or
	  "Pentium" under "Processor family", the kernel will not work on 486
	  architectures. Similarly, multiprocessor kernels for the "PPro"
	  architecture may not work on all Pentium based boards.

	  People using multiprocessor machines who say Y here should also say
	  Y to "Enhanced Real Time Clock Support", below. The "Advanced Power
	  Management" code will be disabled if you say Y here.

A
Adrian Bunk 已提交
241
	  See also <file:Documentation/i386/IO-APIC.txt>,
242 243 244 245 246
	  <file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at
	  <http://www.tldp.org/docs.html#howto>.

	  If you don't know what to do here, say N.

247 248 249 250
config X86_HAS_BOOT_CPU_ID
	def_bool y
	depends on X86_VOYAGER

251 252
config SPARSE_IRQ
	bool "Support sparse irq numbering"
Y
Yinghai Lu 已提交
253
	depends on PCI_MSI || HT_IRQ
254
	help
255 256 257
	  This enables support for sparse irqs. This is useful for distro
	  kernels that want to define a high CONFIG_NR_CPUS value but still
	  want to have low kernel memory footprint on smaller machines.
258

259 260 261 262
	  ( Sparse IRQs can also be beneficial on NUMA boxes, as they spread
	    out the irq_desc[] array in a more NUMA-friendly way. )

	  If you don't know what to do here, say N.
263

264 265
config NUMA_MIGRATE_IRQ_DESC
	bool "Move irq desc when changing irq smp_affinity"
266
	depends on SPARSE_IRQ && NUMA
267 268 269 270 271 272
	default n
	help
	  This enables moving irq_desc to cpu/node that irq will use handled.

	  If you don't know what to do here, say N.

273 274
config X86_FIND_SMP_CONFIG
	def_bool y
275
	depends on X86_MPPARSE || X86_VOYAGER
276 277

config X86_MPPARSE
278 279
	bool "Enable MPS table" if ACPI
	default y
280
	depends on X86_LOCAL_APIC
281 282 283 284
	help
	  For old smp systems that do not have proper acpi support. Newer systems
	  (esp with 64bit cpus) with acpi support, MADT and DSDT will override it

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
choice
	prompt "Subarchitecture Type"
	default X86_PC

config X86_PC
	bool "PC-compatible"
	help
	  Choose this option if your computer is a standard PC or compatible.

config X86_ELAN
	bool "AMD Elan"
	depends on X86_32
	help
	  Select this for an AMD Elan processor.

	  Do not use this option for K6/Athlon/Opteron processors!

	  If unsure, choose "PC-compatible" instead.

config X86_VOYAGER
	bool "Voyager (NCR)"
I
Ingo Molnar 已提交
306
	depends on X86_32 && (SMP || BROKEN) && !PCI
307 308 309 310 311 312 313 314 315 316
	help
	  Voyager is an MCA-based 32-way capable SMP architecture proprietary
	  to NCR Corp.  Machine classes 345x/35xx/4100/51xx are Voyager-based.

	  *** WARNING ***

	  If you do not specifically know you have a Voyager based machine,
	  say N here, otherwise the kernel you build will not be bootable.

config X86_GENERICARCH
317
       bool "Generic architecture"
318 319
	depends on X86_32
       help
320 321 322 323 324 325 326
          This option compiles in the NUMAQ, Summit, bigsmp, ES7000, default
	  subarchitectures.  It is intended for a generic binary kernel.
	  if you select them all, kernel will probe it one by one. and will
	  fallback to default.

if X86_GENERICARCH

327 328
config X86_NUMAQ
	bool "NUMAQ (IBM/Sequent)"
329
	depends on SMP && X86_32 && PCI && X86_MPPARSE
330 331
	select NUMA
	help
332 333 334 335 336
	  This option is used for getting Linux to run on a NUMAQ (IBM/Sequent)
	  NUMA multiquad box. This changes the way that processors are
	  bootstrapped, and uses Clustered Logical APIC addressing mode instead
	  of Flat Logical.  You will need a new lynxer.elf file to flash your
	  firmware with - send email to <Martin.Bligh@us.ibm.com>.
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

config X86_SUMMIT
	bool "Summit/EXA (IBM x440)"
	depends on X86_32 && SMP
	help
	  This option is needed for IBM systems that use the Summit/EXA chipset.
	  In particular, it is needed for the x440.

config X86_ES7000
	bool "Support for Unisys ES7000 IA32 series"
	depends on X86_32 && SMP
	help
	  Support for Unisys ES7000 systems.  Say 'Y' here if this kernel is
	  supposed to run on an IA32-based Unisys ES7000 system.

config X86_BIGSMP
353
	bool "Support for big SMP systems with more than 8 CPUs"
354 355 356 357 358
	depends on X86_32 && SMP
	help
	  This option is needed for the systems that have more than 8 CPUs
	  and if the system is not of any sub-arch type above.

359
endif
360 361 362

config X86_VSMP
	bool "Support for ScaleMP vSMP"
363
	select PARAVIRT
I
Ingo Molnar 已提交
364
	depends on X86_64 && PCI
365
	help
366 367 368 369 370 371
	  Support for ScaleMP vSMP systems.  Say 'Y' here if this kernel is
	  supposed to run on these EM64T-based machines.  Only choose this option
	  if you have one of these machines.

endchoice

372 373
config X86_VISWS
	bool "SGI 320/540 (Visual Workstation)"
374
	depends on X86_32 && PCI && !X86_VOYAGER && X86_MPPARSE && PCI_GODIRECT
375 376 377 378 379 380 381 382 383
	help
	  The SGI Visual Workstation series is an IA32-based workstation
	  based on SGI systems chips with some legacy PC hardware attached.

	  Say Y here to create a kernel to run on the SGI 320 or 540.

	  A kernel compiled for the Visual Workstation will run on general
	  PCs as well. See <file:Documentation/sgi-visws.txt> for details.

I
Ingo Molnar 已提交
384 385 386 387 388 389 390 391 392 393
config X86_RDC321X
	bool "RDC R-321x SoC"
	depends on X86_32
	select M486
	select X86_REBOOTFIXUPS
	help
	  This option is needed for RDC R-321x system-on-chip, also known
	  as R-8610-(G).
	  If you don't have one of these chips, you should say N here.

394
config SCHED_OMIT_FRAME_POINTER
395 396
	def_bool y
	prompt "Single-depth WCHAN output"
397
	depends on X86
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
	help
	  Calculate simpler /proc/<PID>/wchan values. If this option
	  is disabled then wchan values will recurse back to the
	  caller function. This provides more accurate wchan values,
	  at the expense of slightly more scheduling overhead.

	  If in doubt, say "Y".

menuconfig PARAVIRT_GUEST
	bool "Paravirtualized guest support"
	help
	  Say Y here to get to see options related to running Linux under
	  various hypervisors.  This option alone does not add any kernel code.

	  If you say N, all options in this submenu will be skipped and disabled.

if PARAVIRT_GUEST

source "arch/x86/xen/Kconfig"

config VMI
	bool "VMI Guest support"
	select PARAVIRT
421
	depends on X86_32
422
	depends on !X86_VOYAGER
423 424 425 426 427 428
	help
	  VMI provides a paravirtualized interface to the VMware ESX server
	  (it could be used by other hypervisors in theory too, but is not
	  at the moment), by linking the kernel to a GPL-ed ROM module
	  provided by the hypervisor.

429 430 431
config KVM_CLOCK
	bool "KVM paravirtualized clock"
	select PARAVIRT
432
	select PARAVIRT_CLOCK
433
	depends on !X86_VOYAGER
434 435 436 437 438 439 440
	help
	  Turning on this option will allow you to run a paravirtualized clock
	  when running over the KVM hypervisor. Instead of relying on a PIT
	  (or probably other) emulation by the underlying device model, the host
	  provides the guest with timing infrastructure such as time of day, and
	  system time

441 442 443
config KVM_GUEST
	bool "KVM Guest support"
	select PARAVIRT
444
	depends on !X86_VOYAGER
445 446 447 448
	help
	 This option enables various optimizations for running under the KVM
	 hypervisor.

449 450
source "arch/x86/lguest/Kconfig"

451 452
config PARAVIRT
	bool "Enable paravirtualization code"
453
	depends on !X86_VOYAGER
454 455 456 457 458 459
	help
	  This changes the kernel so it can modify itself when it is run
	  under a hypervisor, potentially improving performance significantly
	  over full virtualization.  However, when run without a hypervisor
	  the kernel is theoretically slower and slightly larger.

460 461 462 463
config PARAVIRT_CLOCK
	bool
	default n

464 465
endif

466 467 468 469 470 471 472
config PARAVIRT_DEBUG
       bool "paravirt-ops debugging"
       depends on PARAVIRT && DEBUG_KERNEL
       help
         Enable to debug paravirt_ops internals.  Specifically, BUG if
	 a paravirt_op is missing when it is called.

473 474
config MEMTEST
	bool "Memtest"
Y
Yinghai Lu 已提交
475 476
	help
	  This option adds a kernel parameter 'memtest', which allows memtest
477 478 479 480 481
	  to be set.
		memtest=0, mean disabled; -- default
		memtest=1, mean do 1 test pattern;
		...
		memtest=4, mean do 4 test patterns.
T
Thomas Gleixner 已提交
482
	  If you are unsure how to answer this question, answer N.
483 484

config X86_SUMMIT_NUMA
485
	def_bool y
486
	depends on X86_32 && NUMA && X86_GENERICARCH
487 488

config X86_CYCLONE_TIMER
489
	def_bool y
490
	depends on X86_GENERICARCH
491 492 493 494

source "arch/x86/Kconfig.cpu"

config HPET_TIMER
495
	def_bool X86_64
496 497 498 499 500 501 502 503 504
	prompt "HPET Timer Support" if X86_32
	help
         Use the IA-PC HPET (High Precision Event Timer) to manage
         time in preference to the PIT and RTC, if a HPET is
         present.
         HPET is the next generation timer replacing legacy 8254s.
         The HPET provides a stable time base on SMP
         systems, unlike the TSC, but it is more expensive to access,
         as it is off-chip.  You can find the HPET spec at
505
         <http://www.intel.com/hardwaredesign/hpetspec_1.pdf>.
506 507 508 509 510 511 512 513

         You can safely choose Y here.  However, HPET will only be
         activated if the platform and the BIOS support this feature.
         Otherwise the 8254 will be used for timing services.

         Choose N to continue using the legacy 8254 timer.

config HPET_EMULATE_RTC
514
	def_bool y
515
	depends on HPET_TIMER && (RTC=y || RTC=m || RTC_DRV_CMOS=m || RTC_DRV_CMOS=y)
516 517 518

# Mark as embedded because too many people got it wrong.
# The code disables itself when not needed.
519 520 521 522 523 524 525 526 527
config DMI
	default y
	bool "Enable DMI scanning" if EMBEDDED
	help
	  Enabled scanning of DMI to identify machine quirks. Say Y
	  here unless you have verified that your setup is not
	  affected by entries in the DMI blacklist. Required by PNP
	  BIOS code.

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
config GART_IOMMU
	bool "GART IOMMU support" if EMBEDDED
	default y
	select SWIOTLB
	select AGP
	depends on X86_64 && PCI
	help
	  Support for full DMA access of devices with 32bit memory access only
	  on systems with more than 3GB. This is usually needed for USB,
	  sound, many IDE/SATA chipsets and some other devices.
	  Provides a driver for the AMD Athlon64/Opteron/Turion/Sempron GART
	  based hardware IOMMU and a software bounce buffer based IOMMU used
	  on Intel systems and as fallback.
	  The code is only active when needed (enough memory and limited
	  device) unless CONFIG_IOMMU_DEBUG or iommu=force is specified
	  too.

config CALGARY_IOMMU
	bool "IBM Calgary IOMMU support"
	select SWIOTLB
	depends on X86_64 && PCI && EXPERIMENTAL
	help
	  Support for hardware IOMMUs in IBM's xSeries x366 and x460
	  systems. Needed to run systems with more than 3GB of memory
	  properly with 32-bit PCI devices that do not support DAC
	  (Double Address Cycle). Calgary also supports bus level
	  isolation, where all DMAs pass through the IOMMU.  This
	  prevents them from going anywhere except their intended
	  destination. This catches hard-to-find kernel bugs and
	  mis-behaving drivers and devices that do not use the DMA-API
	  properly to set up their DMA buffers.  The IOMMU can be
	  turned off at boot time with the iommu=off parameter.
	  Normally the kernel will make the right choice by itself.
	  If unsure, say Y.

config CALGARY_IOMMU_ENABLED_BY_DEFAULT
564 565
	def_bool y
	prompt "Should Calgary be enabled by default?"
566 567 568 569 570 571 572 573
	depends on CALGARY_IOMMU
	help
	  Should Calgary be enabled by default? if you choose 'y', Calgary
	  will be used (if it exists). If you choose 'n', Calgary will not be
	  used even if it exists. If you choose 'n' and would like to use
	  Calgary anyway, pass 'iommu=calgary' on the kernel command line.
	  If unsure, say Y.

J
Joerg Roedel 已提交
574 575
config AMD_IOMMU
	bool "AMD IOMMU support"
I
Ingo Molnar 已提交
576
	select SWIOTLB
577
	select PCI_MSI
I
Ingo Molnar 已提交
578
	depends on X86_64 && PCI && ACPI
J
Joerg Roedel 已提交
579
	help
580 581 582 583 584 585 586 587 588
	  With this option you can enable support for AMD IOMMU hardware in
	  your system. An IOMMU is a hardware component which provides
	  remapping of DMA memory accesses from devices. With an AMD IOMMU you
	  can isolate the the DMA memory of different devices and protect the
	  system from misbehaving device drivers or hardware.

	  You can find out if your system has an AMD IOMMU if you look into
	  your BIOS for an option to enable it or if you have an IVRS ACPI
	  table.
J
Joerg Roedel 已提交
589

590 591 592 593 594 595 596 597 598 599
config AMD_IOMMU_STATS
	bool "Export AMD IOMMU statistics to debugfs"
	depends on AMD_IOMMU
	select DEBUG_FS
	help
	  This option enables code in the AMD IOMMU driver to collect various
	  statistics about whats happening in the driver and exports that
	  information to userspace via debugfs.
	  If unsure, say N.

600 601
# need this always selected by IOMMU for the VIA workaround
config SWIOTLB
J
Joerg Roedel 已提交
602
	def_bool y if X86_64
603 604 605 606 607 608 609
	help
	  Support for software bounce buffers used on x86-64 systems
	  which don't have a hardware IOMMU (e.g. the current generation
	  of Intel's x86-64 CPUs). Using this PCI devices which can only
	  access 32-bits of memory can be used on systems with more than
	  3 GB of memory. If unsure, say Y.

610
config IOMMU_HELPER
611
	def_bool (CALGARY_IOMMU || GART_IOMMU || SWIOTLB || AMD_IOMMU)
612

613 614 615
config IOMMU_API
	def_bool (AMD_IOMMU || DMAR)

616 617
config MAXSMP
	bool "Configure Maximum number of SMP Processors and NUMA Nodes"
M
Mike Travis 已提交
618 619
	depends on X86_64 && SMP && DEBUG_KERNEL && EXPERIMENTAL
	select CPUMASK_OFFSTACK
620 621 622 623
	default n
	help
	  Configure maximum number of CPUS and NUMA Nodes for this architecture.
	  If unsure, say N.
624 625

config NR_CPUS
M
Mike Travis 已提交
626 627
	int "Maximum number of CPUs" if SMP && !MAXSMP
	range 2 512 if SMP && !MAXSMP
M
Mike Travis 已提交
628
	default "1" if !SMP
629
	default "4096" if MAXSMP
M
Mike Travis 已提交
630 631
	default "32" if SMP && (X86_NUMAQ || X86_SUMMIT || X86_BIGSMP || X86_ES7000)
	default "8" if SMP
632 633
	help
	  This allows you to specify the maximum number of CPUs which this
634
	  kernel will support.  The maximum supported value is 512 and the
635 636 637 638 639 640 641
	  minimum value which makes sense is 2.

	  This is purely to save memory - each supported CPU adds
	  approximately eight kilobytes to the kernel image.

config SCHED_SMT
	bool "SMT (Hyperthreading) scheduler support"
642
	depends on X86_HT
643 644 645 646 647 648 649
	help
	  SMT scheduler support improves the CPU scheduler's decision making
	  when dealing with Intel Pentium 4 chips with HyperThreading at a
	  cost of slightly increased overhead in some places. If unsure say
	  N here.

config SCHED_MC
650 651
	def_bool y
	prompt "Multi-core scheduler support"
652
	depends on X86_HT
653 654 655 656 657 658 659 660 661
	help
	  Multi-core scheduler support improves the CPU scheduler's decision
	  making when dealing with multi-core CPU chips at a cost of slightly
	  increased overhead in some places. If unsure say N here.

source "kernel/Kconfig.preempt"

config X86_UP_APIC
	bool "Local APIC support on uniprocessors"
662
	depends on X86_32 && !SMP && !(X86_VOYAGER || X86_GENERICARCH)
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
	help
	  A local APIC (Advanced Programmable Interrupt Controller) is an
	  integrated interrupt controller in the CPU. If you have a single-CPU
	  system which has a processor with a local APIC, you can say Y here to
	  enable and use it. If you say Y here even though your machine doesn't
	  have a local APIC, then the kernel will still run with no slowdown at
	  all. The local APIC supports CPU-generated self-interrupts (timer,
	  performance counters), and the NMI watchdog which detects hard
	  lockups.

config X86_UP_IOAPIC
	bool "IO-APIC support on uniprocessors"
	depends on X86_UP_APIC
	help
	  An IO-APIC (I/O Advanced Programmable Interrupt Controller) is an
	  SMP-capable replacement for PC-style interrupt controllers. Most
	  SMP systems and many recent uniprocessor systems have one.

	  If you have a single-CPU system with an IO-APIC, you can say Y here
	  to use it. If you say Y here even though your machine doesn't have
	  an IO-APIC, then the kernel will still run with no slowdown at all.

config X86_LOCAL_APIC
686
	def_bool y
687
	depends on X86_64 || (X86_32 && (X86_UP_APIC || (SMP && !X86_VOYAGER) || X86_GENERICARCH))
688 689

config X86_IO_APIC
690
	def_bool y
691
	depends on X86_64 || (X86_32 && (X86_UP_IOAPIC || (SMP && !X86_VOYAGER) || X86_GENERICARCH))
692 693

config X86_VISWS_APIC
694
	def_bool y
695 696
	depends on X86_32 && X86_VISWS

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
config X86_REROUTE_FOR_BROKEN_BOOT_IRQS
	bool "Reroute for broken boot IRQs"
	default n
	depends on X86_IO_APIC
	help
	  This option enables a workaround that fixes a source of
	  spurious interrupts. This is recommended when threaded
	  interrupt handling is used on systems where the generation of
	  superfluous "boot interrupts" cannot be disabled.

	  Some chipsets generate a legacy INTx "boot IRQ" when the IRQ
	  entry in the chipset's IO-APIC is masked (as, e.g. the RT
	  kernel does during interrupt handling). On chipsets where this
	  boot IRQ generation cannot be disabled, this workaround keeps
	  the original IRQ line masked so that only the equivalent "boot
	  IRQ" is delivered to the CPUs. The workaround also tells the
	  kernel to set up the IRQ handler on the boot IRQ line. In this
	  way only one interrupt is delivered to the kernel. Otherwise
	  the spurious second interrupt may cause the kernel to bring
	  down (vital) interrupt lines.

	  Only affects "broken" chipsets. Interrupt sharing may be
	  increased on these systems.

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
config X86_MCE
	bool "Machine Check Exception"
	depends on !X86_VOYAGER
	---help---
	  Machine Check Exception support allows the processor to notify the
	  kernel if it detects a problem (e.g. overheating, component failure).
	  The action the kernel takes depends on the severity of the problem,
	  ranging from a warning message on the console, to halting the machine.
	  Your processor must be a Pentium or newer to support this - check the
	  flags in /proc/cpuinfo for mce.  Note that some older Pentium systems
	  have a design flaw which leads to false MCE events - hence MCE is
	  disabled on all P5 processors, unless explicitly enabled with "mce"
	  as a boot argument.  Similarly, if MCE is built in and creates a
	  problem on some new non-standard machine, you can boot with "nomce"
	  to disable it.  MCE support simply ignores non-MCE processors like
	  the 386 and 486, so nearly everyone can say Y here.

config X86_MCE_INTEL
739 740
	def_bool y
	prompt "Intel MCE features"
741 742 743 744 745 746
	depends on X86_64 && X86_MCE && X86_LOCAL_APIC
	help
	   Additional support for intel specific MCE features such as
	   the thermal monitor.

config X86_MCE_AMD
747 748
	def_bool y
	prompt "AMD MCE features"
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
	depends on X86_64 && X86_MCE && X86_LOCAL_APIC
	help
	   Additional support for AMD specific MCE features such as
	   the DRAM Error Threshold.

config X86_MCE_NONFATAL
	tristate "Check for non-fatal errors on AMD Athlon/Duron / Intel Pentium 4"
	depends on X86_32 && X86_MCE
	help
	  Enabling this feature starts a timer that triggers every 5 seconds which
	  will look at the machine check registers to see if anything happened.
	  Non-fatal problems automatically get corrected (but still logged).
	  Disable this if you don't want to see these messages.
	  Seeing the messages this option prints out may be indicative of dying
	  or out-of-spec (ie, overclocked) hardware.
	  This option only does something on certain CPUs.
	  (AMD Athlon/Duron and Intel Pentium 4)

config X86_MCE_P4THERMAL
	bool "check for P4 thermal throttling interrupt."
769
	depends on X86_32 && X86_MCE && (X86_UP_APIC || SMP)
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
	help
	  Enabling this feature will cause a message to be printed when the P4
	  enters thermal throttling.

config VM86
	bool "Enable VM86 support" if EMBEDDED
	default y
	depends on X86_32
	help
          This option is required by programs like DOSEMU to run 16-bit legacy
	  code on X86 processors. It also may be needed by software like
          XFree86 to initialize some video cards via BIOS. Disabling this
          option saves about 6k.

config TOSHIBA
	tristate "Toshiba Laptop support"
	depends on X86_32
	---help---
	  This adds a driver to safely access the System Management Mode of
	  the CPU on Toshiba portables with a genuine Toshiba BIOS. It does
	  not work on models with a Phoenix BIOS. The System Management Mode
	  is used to set the BIOS and power saving options on Toshiba portables.

	  For information on utilities to make use of this driver see the
	  Toshiba Linux utilities web site at:
	  <http://www.buzzard.org.uk/toshiba/>.

	  Say Y if you intend to run this kernel on a Toshiba portable.
	  Say N otherwise.

config I8K
	tristate "Dell laptop support"
	---help---
	  This adds a driver to safely access the System Management Mode
	  of the CPU on the Dell Inspiron 8000. The System Management Mode
	  is used to read cpu temperature and cooling fan status and to
	  control the fans on the I8K portables.

	  This driver has been tested only on the Inspiron 8000 but it may
	  also work with other Dell laptops. You can force loading on other
	  models by passing the parameter `force=1' to the module. Use at
	  your own risk.

	  For information on utilities to make use of this driver see the
	  I8K Linux utilities web site at:
	  <http://people.debian.org/~dz/i8k/>

	  Say Y if you intend to run this kernel on a Dell Inspiron 8000.
	  Say N otherwise.

config X86_REBOOTFIXUPS
821 822
	bool "Enable X86 board specific fixups for reboot"
	depends on X86_32
823 824 825 826 827 828 829 830
	---help---
	  This enables chipset and/or board specific fixups to be done
	  in order to get reboot to work correctly. This is only needed on
	  some combinations of hardware and BIOS. The symptom, for which
	  this config is intended, is when reboot ends with a stalled/hung
	  system.

	  Currently, the only fixup is for the Geode machines using
831
	  CS5530A and CS5536 chipsets and the RDC R-321x SoC.
832 833 834 835 836 837

	  Say Y if you want to enable the fixup. Currently, it's safe to
	  enable this option even if you don't need it.
	  Say N otherwise.

config MICROCODE
P
Peter Oruba 已提交
838
	tristate "/dev/cpu/microcode - microcode support"
839 840 841
	select FW_LOADER
	---help---
	  If you say Y here, you will be able to update the microcode on
842 843 844 845 846 847
	  certain Intel and AMD processors. The Intel support is for the
	  IA32 family, e.g. Pentium Pro, Pentium II, Pentium III,
	  Pentium 4, Xeon etc. The AMD support is for family 0x10 and
	  0x11 processors, e.g. Opteron, Phenom and Turion 64 Ultra.
	  You will obviously need the actual microcode binary data itself
	  which is not shipped with the Linux kernel.
848

P
Peter Oruba 已提交
849 850
	  This option selects the general module only, you need to select
	  at least one vendor specific module as well.
851 852 853 854

	  To compile this driver as a module, choose M here: the
	  module will be called microcode.

P
Peter Oruba 已提交
855
config MICROCODE_INTEL
856
       bool "Intel microcode patch loading support"
P
Peter Oruba 已提交
857 858 859 860 861 862 863 864 865 866 867
       depends on MICROCODE
       default MICROCODE
       select FW_LOADER
       --help---
         This options enables microcode patch loading support for Intel
         processors.

         For latest news and information on obtaining all the required
         Intel ingredients for this driver, check:
         <http://www.urbanmyth.org/microcode/>.

868
config MICROCODE_AMD
869
       bool "AMD microcode patch loading support"
870 871 872 873 874 875
       depends on MICROCODE
       select FW_LOADER
       --help---
         If you select this option, microcode patch loading support for AMD
	 processors will be enabled.

P
Peter Oruba 已提交
876
   config MICROCODE_OLD_INTERFACE
877
	def_bool y
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
	depends on MICROCODE

config X86_MSR
	tristate "/dev/cpu/*/msr - Model-specific register support"
	help
	  This device gives privileged processes access to the x86
	  Model-Specific Registers (MSRs).  It is a character device with
	  major 202 and minors 0 to 31 for /dev/cpu/0/msr to /dev/cpu/31/msr.
	  MSR accesses are directed to a specific CPU on multi-processor
	  systems.

config X86_CPUID
	tristate "/dev/cpu/*/cpuid - CPU information support"
	help
	  This device gives processes access to the x86 CPUID instruction to
	  be executed on a specific processor.  It is a character device
	  with major 203 and minors 0 to 31 for /dev/cpu/0/cpuid to
	  /dev/cpu/31/cpuid.

choice
	prompt "High Memory Support"
	default HIGHMEM4G if !X86_NUMAQ
	default HIGHMEM64G if X86_NUMAQ
	depends on X86_32

config NOHIGHMEM
	bool "off"
	depends on !X86_NUMAQ
	---help---
	  Linux can use up to 64 Gigabytes of physical memory on x86 systems.
	  However, the address space of 32-bit x86 processors is only 4
	  Gigabytes large. That means that, if you have a large amount of
	  physical memory, not all of it can be "permanently mapped" by the
	  kernel. The physical memory that's not permanently mapped is called
	  "high memory".

	  If you are compiling a kernel which will never run on a machine with
	  more than 1 Gigabyte total physical RAM, answer "off" here (default
	  choice and suitable for most users). This will result in a "3GB/1GB"
	  split: 3GB are mapped so that each process sees a 3GB virtual memory
	  space and the remaining part of the 4GB virtual memory space is used
	  by the kernel to permanently map as much physical memory as
	  possible.

	  If the machine has between 1 and 4 Gigabytes physical RAM, then
	  answer "4GB" here.

	  If more than 4 Gigabytes is used then answer "64GB" here. This
	  selection turns Intel PAE (Physical Address Extension) mode on.
	  PAE implements 3-level paging on IA32 processors. PAE is fully
	  supported by Linux, PAE mode is implemented on all recent Intel
	  processors (Pentium Pro and better). NOTE: If you say "64GB" here,
	  then the kernel will not boot on CPUs that don't support PAE!

	  The actual amount of total physical memory will either be
	  auto detected or can be forced by using a kernel command line option
	  such as "mem=256M". (Try "man bootparam" or see the documentation of
	  your boot loader (lilo or loadlin) about how to pass options to the
	  kernel at boot time.)

	  If unsure, say "off".

config HIGHMEM4G
	bool "4GB"
	depends on !X86_NUMAQ
	help
	  Select this if you have a 32-bit processor and between 1 and 4
	  gigabytes of physical RAM.

config HIGHMEM64G
	bool "64GB"
	depends on !M386 && !M486
	select X86_PAE
	help
	  Select this if you have a 32-bit processor and more than 4
	  gigabytes of physical RAM.

endchoice

choice
	depends on EXPERIMENTAL
	prompt "Memory split" if EMBEDDED
	default VMSPLIT_3G
	depends on X86_32
	help
	  Select the desired split between kernel and user memory.

	  If the address range available to the kernel is less than the
	  physical memory installed, the remaining memory will be available
	  as "high memory". Accessing high memory is a little more costly
	  than low memory, as it needs to be mapped into the kernel first.
	  Note that increasing the kernel address space limits the range
	  available to user programs, making the address space there
	  tighter.  Selecting anything other than the default 3G/1G split
	  will also likely make your kernel incompatible with binary-only
	  kernel modules.

	  If you are not absolutely sure what you are doing, leave this
	  option alone!

	config VMSPLIT_3G
		bool "3G/1G user/kernel split"
	config VMSPLIT_3G_OPT
		depends on !X86_PAE
		bool "3G/1G user/kernel split (for full 1G low memory)"
	config VMSPLIT_2G
		bool "2G/2G user/kernel split"
	config VMSPLIT_2G_OPT
		depends on !X86_PAE
		bool "2G/2G user/kernel split (for full 2G low memory)"
	config VMSPLIT_1G
		bool "1G/3G user/kernel split"
endchoice

config PAGE_OFFSET
	hex
	default 0xB0000000 if VMSPLIT_3G_OPT
	default 0x80000000 if VMSPLIT_2G
	default 0x78000000 if VMSPLIT_2G_OPT
	default 0x40000000 if VMSPLIT_1G
	default 0xC0000000
	depends on X86_32

config HIGHMEM
1002
	def_bool y
1003 1004 1005
	depends on X86_32 && (HIGHMEM64G || HIGHMEM4G)

config X86_PAE
1006
	bool "PAE (Physical Address Extension) Support"
1007 1008 1009 1010 1011 1012 1013
	depends on X86_32 && !HIGHMEM4G
	help
	  PAE is required for NX support, and furthermore enables
	  larger swapspace support for non-overcommit purposes. It
	  has the cost of more pagetable lookup overhead, and also
	  consumes more pagetable space per process.

1014 1015 1016
config ARCH_PHYS_ADDR_T_64BIT
       def_bool X86_64 || X86_PAE

1017 1018 1019 1020 1021 1022 1023 1024 1025
config DIRECT_GBPAGES
	bool "Enable 1GB pages for kernel pagetables" if EMBEDDED
	default y
	depends on X86_64
	help
	  Allow the kernel linear mapping to use 1GB pages on CPUs that
	  support it. This can improve the kernel's performance a tiny bit by
	  reducing TLB pressure. If in doubt, say "Y".

1026 1027
# Common NUMA Features
config NUMA
1028
	bool "Numa Memory Allocation and Scheduler Support"
1029
	depends on SMP
1030
	depends on X86_64 || (X86_32 && HIGHMEM64G && (X86_NUMAQ || X86_BIGSMP || X86_SUMMIT && ACPI) && EXPERIMENTAL)
1031
	default n if X86_PC
1032
	default y if (X86_NUMAQ || X86_SUMMIT || X86_BIGSMP)
1033 1034
	help
	  Enable NUMA (Non Uniform Memory Access) support.
1035

1036 1037 1038 1039
	  The kernel will try to allocate memory used by a CPU on the
	  local memory controller of the CPU and add some more
	  NUMA awareness to the kernel.

1040
	  For 64-bit this is recommended if the system is Intel Core i7
1041 1042 1043 1044 1045 1046 1047
	  (or later), AMD Opteron, or EM64T NUMA.

	  For 32-bit this is only needed on (rare) 32-bit-only platforms
	  that support NUMA topologies, such as NUMAQ / Summit, or if you
	  boot a 32-bit kernel on a 64-bit NUMA platform.

	  Otherwise, you should say N.
1048 1049 1050 1051 1052

comment "NUMA (Summit) requires SMP, 64GB highmem support, ACPI"
	depends on X86_32 && X86_SUMMIT && (!HIGHMEM64G || !ACPI)

config K8_NUMA
1053 1054 1055 1056
	def_bool y
	prompt "Old style AMD Opteron NUMA detection"
	depends on X86_64 && NUMA && PCI
	help
1057 1058 1059 1060 1061 1062 1063
	 Enable K8 NUMA node topology detection.  You should say Y here if
	 you have a multi processor AMD K8 system. This uses an old
	 method to read the NUMA configuration directly from the builtin
	 Northbridge of Opteron. It is recommended to use X86_64_ACPI_NUMA
	 instead, which also takes priority if both are compiled in.

config X86_64_ACPI_NUMA
1064 1065
	def_bool y
	prompt "ACPI NUMA detection"
1066 1067 1068 1069 1070
	depends on X86_64 && NUMA && ACPI && PCI
	select ACPI_NUMA
	help
	  Enable ACPI SRAT based node topology detection.

1071 1072 1073 1074 1075 1076 1077 1078 1079
# Some NUMA nodes have memory ranges that span
# other nodes.  Even though a pfn is valid and
# between a node's start and end pfns, it may not
# reside on that node.  See memmap_init_zone()
# for details.
config NODES_SPAN_OTHER_NODES
	def_bool y
	depends on X86_64_ACPI_NUMA

1080 1081 1082 1083 1084 1085 1086 1087 1088
config NUMA_EMU
	bool "NUMA emulation"
	depends on X86_64 && NUMA
	help
	  Enable NUMA emulation. A flat machine will be split
	  into virtual nodes when booted with "numa=fake=N", where N is the
	  number of nodes. This is only useful for debugging.

config NODES_SHIFT
1089
	int "Maximum NUMA Nodes (as a power of 2)" if !MAXSMP
1090
	range 1 9   if X86_64
1091
	default "9" if MAXSMP
1092 1093 1094 1095
	default "6" if X86_64
	default "4" if X86_NUMAQ
	default "3"
	depends on NEED_MULTIPLE_NODES
1096 1097 1098
	help
	  Specify the maximum number of NUMA Nodes available on the target
	  system.  Increases memory reserved to accomodate various tables.
1099 1100

config HAVE_ARCH_BOOTMEM_NODE
1101
	def_bool y
1102 1103 1104
	depends on X86_32 && NUMA

config ARCH_HAVE_MEMORY_PRESENT
1105
	def_bool y
1106 1107 1108
	depends on X86_32 && DISCONTIGMEM

config NEED_NODE_MEMMAP_SIZE
1109
	def_bool y
1110 1111 1112
	depends on X86_32 && (DISCONTIGMEM || SPARSEMEM)

config HAVE_ARCH_ALLOC_REMAP
1113
	def_bool y
1114 1115 1116 1117
	depends on X86_32 && NUMA

config ARCH_FLATMEM_ENABLE
	def_bool y
J
Jeff Chua 已提交
1118
	depends on X86_32 && ARCH_SELECT_MEMORY_MODEL && !NUMA
1119 1120 1121

config ARCH_DISCONTIGMEM_ENABLE
	def_bool y
1122
	depends on NUMA && X86_32
1123 1124 1125

config ARCH_DISCONTIGMEM_DEFAULT
	def_bool y
1126 1127 1128 1129 1130
	depends on NUMA && X86_32

config ARCH_SPARSEMEM_DEFAULT
	def_bool y
	depends on X86_64
1131 1132 1133

config ARCH_SPARSEMEM_ENABLE
	def_bool y
J
Jeff Chua 已提交
1134
	depends on X86_64 || NUMA || (EXPERIMENTAL && X86_PC) || X86_GENERICARCH
1135 1136 1137 1138 1139
	select SPARSEMEM_STATIC if X86_32
	select SPARSEMEM_VMEMMAP_ENABLE if X86_64

config ARCH_SELECT_MEMORY_MODEL
	def_bool y
1140
	depends on ARCH_SPARSEMEM_ENABLE
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

config ARCH_MEMORY_PROBE
	def_bool X86_64
	depends on MEMORY_HOTPLUG

source "mm/Kconfig"

config HIGHPTE
	bool "Allocate 3rd-level pagetables from highmem"
	depends on X86_32 && (HIGHMEM4G || HIGHMEM64G)
	help
	  The VM uses one page table entry for each page of physical memory.
	  For systems with a lot of RAM, this can be wasteful of precious
	  low memory.  Setting this option will put user-space page table
	  entries in high memory.

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
config X86_CHECK_BIOS_CORRUPTION
        bool "Check for low memory corruption"
	help
	 Periodically check for memory corruption in low memory, which
	 is suspected to be caused by BIOS.  Even when enabled in the
	 configuration, it is disabled at runtime.  Enable it by
	 setting "memory_corruption_check=1" on the kernel command
	 line.  By default it scans the low 64k of memory every 60
	 seconds; see the memory_corruption_check_size and
	 memory_corruption_check_period parameters in
	 Documentation/kernel-parameters.txt to adjust this.

	 When enabled with the default parameters, this option has
	 almost no overhead, as it reserves a relatively small amount
	 of memory and scans it infrequently.  It both detects corruption
	 and prevents it from affecting the running system.

	 It is, however, intended as a diagnostic tool; if repeatable
	 BIOS-originated corruption always affects the same memory,
	 you can use memmap= to prevent the kernel from using that
	 memory.

1179 1180 1181 1182 1183 1184 1185 1186
config X86_BOOTPARAM_MEMORY_CORRUPTION_CHECK
        bool "Set the default setting of memory_corruption_check"
	depends on X86_CHECK_BIOS_CORRUPTION
	default y
	help
	 Set whether the default state of memory_corruption_check is
	 on or off.

I
Ingo Molnar 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
config X86_RESERVE_LOW_64K
        bool "Reserve low 64K of RAM on AMI/Phoenix BIOSen"
	default y
	help
	 Reserve the first 64K of physical RAM on BIOSes that are known
	 to potentially corrupt that memory range. A numbers of BIOSes are
	 known to utilize this area during suspend/resume, so it must not
	 be used by the kernel.

	 Set this to N if you are absolutely sure that you trust the BIOS
	 to get all its memory reservations and usages right.

	 If you have doubts about the BIOS (e.g. suspend/resume does not
	 work or there's kernel crashes after certain hardware hotplug
	 events) and it's not AMI or Phoenix, then you might want to enable
	 X86_CHECK_BIOS_CORRUPTION=y to allow the kernel to check typical
	 corruption patterns.

	 Say Y if unsure.

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
config MATH_EMULATION
	bool
	prompt "Math emulation" if X86_32
	---help---
	  Linux can emulate a math coprocessor (used for floating point
	  operations) if you don't have one. 486DX and Pentium processors have
	  a math coprocessor built in, 486SX and 386 do not, unless you added
	  a 487DX or 387, respectively. (The messages during boot time can
	  give you some hints here ["man dmesg"].) Everyone needs either a
	  coprocessor or this emulation.

	  If you don't have a math coprocessor, you need to say Y here; if you
	  say Y here even though you have a coprocessor, the coprocessor will
	  be used nevertheless. (This behavior can be changed with the kernel
	  command line option "no387", which comes handy if your coprocessor
	  is broken. Try "man bootparam" or see the documentation of your boot
	  loader (lilo or loadlin) about how to pass options to the kernel at
	  boot time.) This means that it is a good idea to say Y here if you
	  intend to use this kernel on different machines.

	  More information about the internals of the Linux math coprocessor
	  emulation can be found in <file:arch/x86/math-emu/README>.

	  If you are not sure, say Y; apart from resulting in a 66 KB bigger
	  kernel, it won't hurt.

config MTRR
	bool "MTRR (Memory Type Range Register) support"
	---help---
	  On Intel P6 family processors (Pentium Pro, Pentium II and later)
	  the Memory Type Range Registers (MTRRs) may be used to control
	  processor access to memory ranges. This is most useful if you have
	  a video (VGA) card on a PCI or AGP bus. Enabling write-combining
	  allows bus write transfers to be combined into a larger transfer
	  before bursting over the PCI/AGP bus. This can increase performance
	  of image write operations 2.5 times or more. Saying Y here creates a
	  /proc/mtrr file which may be used to manipulate your processor's
	  MTRRs. Typically the X server should use this.

	  This code has a reasonably generic interface so that similar
	  control registers on other processors can be easily supported
	  as well:

	  The Cyrix 6x86, 6x86MX and M II processors have Address Range
	  Registers (ARRs) which provide a similar functionality to MTRRs. For
	  these, the ARRs are used to emulate the MTRRs.
	  The AMD K6-2 (stepping 8 and above) and K6-3 processors have two
	  MTRRs. The Centaur C6 (WinChip) has 8 MCRs, allowing
	  write-combining. All of these processors are supported by this code
	  and it makes sense to say Y here if you have one of them.

	  Saying Y here also fixes a problem with buggy SMP BIOSes which only
	  set the MTRRs for the boot CPU and not for the secondary CPUs. This
	  can lead to all sorts of problems, so it's good to say Y here.

	  You can safely say Y even if your machine doesn't have MTRRs, you'll
	  just add about 9 KB to your kernel.

1265
	  See <file:Documentation/x86/mtrr.txt> for more information.
1266

1267
config MTRR_SANITIZER
1268
	def_bool y
1269 1270 1271
	prompt "MTRR cleanup support"
	depends on MTRR
	help
T
Thomas Gleixner 已提交
1272 1273
	  Convert MTRR layout from continuous to discrete, so X drivers can
	  add writeback entries.
1274

T
Thomas Gleixner 已提交
1275 1276 1277
	  Can be disabled with disable_mtrr_cleanup on the kernel command line.
	  The largest mtrr entry size for a continous block can be set with
	  mtrr_chunk_size.
1278

1279
	  If unsure, say Y.
1280 1281

config MTRR_SANITIZER_ENABLE_DEFAULT
1282 1283 1284
	int "MTRR cleanup enable value (0-1)"
	range 0 1
	default "0"
1285 1286
	depends on MTRR_SANITIZER
	help
1287
	  Enable mtrr cleanup default value
1288

1289 1290 1291 1292 1293 1294 1295
config MTRR_SANITIZER_SPARE_REG_NR_DEFAULT
	int "MTRR cleanup spare reg num (0-7)"
	range 0 7
	default "1"
	depends on MTRR_SANITIZER
	help
	  mtrr cleanup spare entries default, it can be changed via
T
Thomas Gleixner 已提交
1296
	  mtrr_spare_reg_nr=N on the kernel command line.
1297

1298
config X86_PAT
1299
	bool
1300
	prompt "x86 PAT support"
1301
	depends on MTRR
1302 1303
	help
	  Use PAT attributes to setup page level cache control.
1304

1305 1306 1307 1308
	  PATs are the modern equivalents of MTRRs and are much more
	  flexible than MTRRs.

	  Say N here if you see bootup problems (boot crash, boot hang,
1309
	  spontaneous reboots) or a non-working video driver.
1310 1311 1312

	  If unsure, say Y.

1313
config EFI
1314
	bool "EFI runtime service support"
H
Huang, Ying 已提交
1315
	depends on ACPI
1316
	---help---
1317
	This enables the kernel to use EFI runtime services that are
1318 1319
	available (such as the EFI variable services).

1320 1321 1322 1323 1324 1325
	This option is only useful on systems that have EFI firmware.
  	In addition, you should use the latest ELILO loader available
  	at <http://elilo.sourceforge.net> in order to take advantage
  	of EFI runtime services. However, even with this option, the
  	resultant kernel should continue to boot on existing non-EFI
  	platforms.
1326 1327

config SECCOMP
1328 1329
	def_bool y
	prompt "Enable seccomp to safely compute untrusted bytecode"
1330 1331 1332 1333 1334 1335 1336
	help
	  This kernel feature is useful for number crunching applications
	  that may need to compute untrusted bytecode during their
	  execution. By using pipes or other transports made available to
	  the process as file descriptors supporting the read/write
	  syscalls, it's possible to isolate those applications in
	  their own address space using seccomp. Once seccomp is
1337
	  enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
1338 1339 1340 1341 1342 1343 1344
	  and the task is only allowed to execute a few safe syscalls
	  defined by each seccomp mode.

	  If unsure, say Y. Only embedded should say N here.

config CC_STACKPROTECTOR
	bool "Enable -fstack-protector buffer overflow detection (EXPERIMENTAL)"
1345
	depends on X86_64 && EXPERIMENTAL && BROKEN
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	help
         This option turns on the -fstack-protector GCC feature. This
	  feature puts, at the beginning of critical functions, a canary
	  value on the stack just before the return address, and validates
	  the value just before actually returning.  Stack based buffer
	  overflows (that need to overwrite this return address) now also
	  overwrite the canary, which gets detected and the attack is then
	  neutralized via a kernel panic.

	  This feature requires gcc version 4.2 or above, or a distribution
	  gcc with the feature backported. Older versions are automatically
	  detected and for those versions, this configuration option is ignored.

config CC_STACKPROTECTOR_ALL
	bool "Use stack-protector for all functions"
	depends on CC_STACKPROTECTOR
	help
	  Normally, GCC only inserts the canary value protection for
	  functions that use large-ish on-stack buffers. By enabling
	  this option, GCC will be asked to do this for ALL functions.

source kernel/Kconfig.hz

config KEXEC
	bool "kexec system call"
I
Ingo Molnar 已提交
1371
	depends on X86_BIOS_REBOOT
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
	help
	  kexec is a system call that implements the ability to shutdown your
	  current kernel, and to start another kernel.  It is like a reboot
	  but it is independent of the system firmware.   And like a reboot
	  you can start any kernel with it, not just Linux.

	  The name comes from the similarity to the exec system call.

	  It is an ongoing process to be certain the hardware in a machine
	  is properly shutdown, so do not be surprised if this code does not
	  initially work for you.  It may help to enable device hotplugging
	  support.  As of this writing the exact hardware interface is
	  strongly in flux, so no good recommendation can be made.

config CRASH_DUMP
1387
	bool "kernel crash dumps"
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	depends on X86_64 || (X86_32 && HIGHMEM)
	help
	  Generate crash dump after being started by kexec.
	  This should be normally only set in special crash dump kernels
	  which are loaded in the main kernel with kexec-tools into
	  a specially reserved region and then later executed after
	  a crash by kdump/kexec. The crash dump kernel must be compiled
	  to a memory address not used by the main kernel or BIOS using
	  PHYSICAL_START, or it must be built as a relocatable image
	  (CONFIG_RELOCATABLE=y).
	  For more details see Documentation/kdump/kdump.txt

H
Huang Ying 已提交
1400 1401 1402
config KEXEC_JUMP
	bool "kexec jump (EXPERIMENTAL)"
	depends on EXPERIMENTAL
1403
	depends on KEXEC && HIBERNATION && X86_32
H
Huang Ying 已提交
1404
	help
1405 1406
	  Jump between original kernel and kexeced kernel and invoke
	  code in physical address mode via KEXEC
H
Huang Ying 已提交
1407

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
config PHYSICAL_START
	hex "Physical address where the kernel is loaded" if (EMBEDDED || CRASH_DUMP)
	default "0x1000000" if X86_NUMAQ
	default "0x200000" if X86_64
	default "0x100000"
	help
	  This gives the physical address where the kernel is loaded.

	  If kernel is a not relocatable (CONFIG_RELOCATABLE=n) then
	  bzImage will decompress itself to above physical address and
	  run from there. Otherwise, bzImage will run from the address where
	  it has been loaded by the boot loader and will ignore above physical
	  address.

	  In normal kdump cases one does not have to set/change this option
	  as now bzImage can be compiled as a completely relocatable image
	  (CONFIG_RELOCATABLE=y) and be used to load and run from a different
	  address. This option is mainly useful for the folks who don't want
	  to use a bzImage for capturing the crash dump and want to use a
	  vmlinux instead. vmlinux is not relocatable hence a kernel needs
	  to be specifically compiled to run from a specific memory area
	  (normally a reserved region) and this option comes handy.

	  So if you are using bzImage for capturing the crash dump, leave
	  the value here unchanged to 0x100000 and set CONFIG_RELOCATABLE=y.
	  Otherwise if you plan to use vmlinux for capturing the crash dump
	  change this value to start of the reserved region (Typically 16MB
	  0x1000000). In other words, it can be set based on the "X" value as
	  specified in the "crashkernel=YM@XM" command line boot parameter
	  passed to the panic-ed kernel. Typically this parameter is set as
	  crashkernel=64M@16M. Please take a look at
	  Documentation/kdump/kdump.txt for more details about crash dumps.

	  Usage of bzImage for capturing the crash dump is recommended as
	  one does not have to build two kernels. Same kernel can be used
	  as production kernel and capture kernel. Above option should have
	  gone away after relocatable bzImage support is introduced. But it
	  is present because there are users out there who continue to use
	  vmlinux for dump capture. This option should go away down the
	  line.

	  Don't change this unless you know what you are doing.

config RELOCATABLE
	bool "Build a relocatable kernel (EXPERIMENTAL)"
	depends on EXPERIMENTAL
	help
	  This builds a kernel image that retains relocation information
	  so it can be loaded someplace besides the default 1MB.
	  The relocations tend to make the kernel binary about 10% larger,
	  but are discarded at runtime.

	  One use is for the kexec on panic case where the recovery kernel
	  must live at a different physical address than the primary
	  kernel.

	  Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address
	  it has been loaded at and the compile time physical address
	  (CONFIG_PHYSICAL_START) is ignored.

config PHYSICAL_ALIGN
	hex
	prompt "Alignment value to which kernel should be aligned" if X86_32
	default "0x100000" if X86_32
	default "0x200000" if X86_64
	range 0x2000 0x400000
	help
	  This value puts the alignment restrictions on physical address
	  where kernel is loaded and run from. Kernel is compiled for an
	  address which meets above alignment restriction.

	  If bootloader loads the kernel at a non-aligned address and
	  CONFIG_RELOCATABLE is set, kernel will move itself to nearest
	  address aligned to above value and run from there.

	  If bootloader loads the kernel at a non-aligned address and
	  CONFIG_RELOCATABLE is not set, kernel will ignore the run time
	  load address and decompress itself to the address it has been
	  compiled for and run from there. The address for which kernel is
	  compiled already meets above alignment restrictions. Hence the
	  end result is that kernel runs from a physical address meeting
	  above alignment restrictions.

	  Don't change this unless you know what you are doing.

config HOTPLUG_CPU
1494 1495
	bool "Support for hot-pluggable CPUs"
	depends on SMP && HOTPLUG && !X86_VOYAGER
1496
	---help---
1497 1498 1499 1500 1501
	  Say Y here to allow turning CPUs off and on. CPUs can be
	  controlled through /sys/devices/system/cpu.
	  ( Note: power management support will enable this option
	    automatically on SMP systems. )
	  Say N if you want to disable CPU hotplug.
1502 1503

config COMPAT_VDSO
1504 1505
	def_bool y
	prompt "Compat VDSO support"
R
Roland McGrath 已提交
1506
	depends on X86_32 || IA32_EMULATION
1507
	help
R
Roland McGrath 已提交
1508
	  Map the 32-bit VDSO to the predictable old-style address too.
1509 1510 1511 1512 1513 1514 1515
	---help---
	  Say N here if you are running a sufficiently recent glibc
	  version (2.3.3 or later), to remove the high-mapped
	  VDSO mapping and to exclusively use the randomized VDSO.

	  If unsure, say Y.

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
config CMDLINE_BOOL
	bool "Built-in kernel command line"
	default n
	help
	  Allow for specifying boot arguments to the kernel at
	  build time.  On some systems (e.g. embedded ones), it is
	  necessary or convenient to provide some or all of the
	  kernel boot arguments with the kernel itself (that is,
	  to not rely on the boot loader to provide them.)

	  To compile command line arguments into the kernel,
	  set this option to 'Y', then fill in the
	  the boot arguments in CONFIG_CMDLINE.

	  Systems with fully functional boot loaders (i.e. non-embedded)
	  should leave this option set to 'N'.

config CMDLINE
	string "Built-in kernel command string"
	depends on CMDLINE_BOOL
	default ""
	help
	  Enter arguments here that should be compiled into the kernel
	  image and used at boot time.  If the boot loader provides a
	  command line at boot time, it is appended to this string to
	  form the full kernel command line, when the system boots.

	  However, you can use the CONFIG_CMDLINE_OVERRIDE option to
	  change this behavior.

	  In most cases, the command line (whether built-in or provided
	  by the boot loader) should specify the device for the root
	  file system.

config CMDLINE_OVERRIDE
	bool "Built-in command line overrides boot loader arguments"
	default n
	depends on CMDLINE_BOOL
	help
	  Set this option to 'Y' to have the kernel ignore the boot loader
	  command line, and use ONLY the built-in command line.

	  This is used to work around broken boot loaders.  This should
	  be set to 'N' under normal conditions.

1561 1562 1563 1564 1565 1566
endmenu

config ARCH_ENABLE_MEMORY_HOTPLUG
	def_bool y
	depends on X86_64 || (X86_32 && HIGHMEM)

1567 1568 1569 1570
config ARCH_ENABLE_MEMORY_HOTREMOVE
	def_bool y
	depends on MEMORY_HOTPLUG

1571 1572 1573 1574
config HAVE_ARCH_EARLY_PFN_TO_NID
	def_bool X86_64
	depends on NUMA

1575
menu "Power management and ACPI options"
1576 1577 1578
	depends on !X86_VOYAGER

config ARCH_HIBERNATION_HEADER
1579
	def_bool y
1580 1581 1582 1583 1584 1585
	depends on X86_64 && HIBERNATION

source "kernel/power/Kconfig"

source "drivers/acpi/Kconfig"

1586 1587 1588 1589 1590
config X86_APM_BOOT
	bool
	default y
	depends on APM || APM_MODULE

1591 1592
menuconfig APM
	tristate "APM (Advanced Power Management) BIOS support"
1593
	depends on X86_32 && PM_SLEEP
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	---help---
	  APM is a BIOS specification for saving power using several different
	  techniques. This is mostly useful for battery powered laptops with
	  APM compliant BIOSes. If you say Y here, the system time will be
	  reset after a RESUME operation, the /proc/apm device will provide
	  battery status information, and user-space programs will receive
	  notification of APM "events" (e.g. battery status change).

	  If you select "Y" here, you can disable actual use of the APM
	  BIOS by passing the "apm=off" option to the kernel at boot time.

	  Note that the APM support is almost completely disabled for
	  machines with more than one CPU.

	  In order to use APM, you will need supporting software. For location
1609
	  and more information, read <file:Documentation/power/pm.txt> and the
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	  Battery Powered Linux mini-HOWTO, available from
	  <http://www.tldp.org/docs.html#howto>.

	  This driver does not spin down disk drives (see the hdparm(8)
	  manpage ("man 8 hdparm") for that), and it doesn't turn off
	  VESA-compliant "green" monitors.

	  This driver does not support the TI 4000M TravelMate and the ACER
	  486/DX4/75 because they don't have compliant BIOSes. Many "green"
	  desktop machines also don't have compliant BIOSes, and this driver
	  may cause those machines to panic during the boot phase.

	  Generally, if you don't have a battery in your machine, there isn't
	  much point in using this driver and you should say N. If you get
	  random kernel OOPSes or reboots that don't seem to be related to
	  anything, try disabling/enabling this option (or disabling/enabling
	  APM in your BIOS).

	  Some other things you should try when experiencing seemingly random,
	  "weird" problems:

	  1) make sure that you have enough swap space and that it is
	  enabled.
	  2) pass the "no-hlt" option to the kernel
	  3) switch on floating point emulation in the kernel and pass
	  the "no387" option to the kernel
	  4) pass the "floppy=nodma" option to the kernel
	  5) pass the "mem=4M" option to the kernel (thereby disabling
	  all but the first 4 MB of RAM)
	  6) make sure that the CPU is not over clocked.
	  7) read the sig11 FAQ at <http://www.bitwizard.nl/sig11/>
	  8) disable the cache from your BIOS settings
	  9) install a fan for the video card or exchange video RAM
	  10) install a better fan for the CPU
	  11) exchange RAM chips
	  12) exchange the motherboard.

	  To compile this driver as a module, choose M here: the
	  module will be called apm.

if APM

config APM_IGNORE_USER_SUSPEND
	bool "Ignore USER SUSPEND"
	help
	  This option will ignore USER SUSPEND requests. On machines with a
	  compliant APM BIOS, you want to say N. However, on the NEC Versa M
	  series notebooks, it is necessary to say Y because of a BIOS bug.

config APM_DO_ENABLE
	bool "Enable PM at boot time"
	---help---
	  Enable APM features at boot time. From page 36 of the APM BIOS
	  specification: "When disabled, the APM BIOS does not automatically
	  power manage devices, enter the Standby State, enter the Suspend
	  State, or take power saving steps in response to CPU Idle calls."
	  This driver will make CPU Idle calls when Linux is idle (unless this
	  feature is turned off -- see "Do CPU IDLE calls", below). This
	  should always save battery power, but more complicated APM features
	  will be dependent on your BIOS implementation. You may need to turn
	  this option off if your computer hangs at boot time when using APM
	  support, or if it beeps continuously instead of suspending. Turn
	  this off if you have a NEC UltraLite Versa 33/C or a Toshiba
	  T400CDT. This is off by default since most machines do fine without
	  this feature.

config APM_CPU_IDLE
	bool "Make CPU Idle calls when idle"
	help
	  Enable calls to APM CPU Idle/CPU Busy inside the kernel's idle loop.
	  On some machines, this can activate improved power savings, such as
	  a slowed CPU clock rate, when the machine is idle. These idle calls
	  are made after the idle loop has run for some length of time (e.g.,
	  333 mS). On some machines, this will cause a hang at boot time or
	  whenever the CPU becomes idle. (On machines with more than one CPU,
	  this option does nothing.)

config APM_DISPLAY_BLANK
	bool "Enable console blanking using APM"
	help
	  Enable console blanking using the APM. Some laptops can use this to
	  turn off the LCD backlight when the screen blanker of the Linux
	  virtual console blanks the screen. Note that this is only used by
	  the virtual console screen blanker, and won't turn off the backlight
	  when using the X Window system. This also doesn't have anything to
	  do with your VESA-compliant power-saving monitor. Further, this
	  option doesn't work for all laptops -- it might not turn off your
	  backlight at all, or it might print a lot of errors to the console,
	  especially if you are using gpm.

config APM_ALLOW_INTS
	bool "Allow interrupts during APM BIOS calls"
	help
	  Normally we disable external interrupts while we are making calls to
	  the APM BIOS as a measure to lessen the effects of a badly behaving
	  BIOS implementation.  The BIOS should reenable interrupts if it
	  needs to.  Unfortunately, some BIOSes do not -- especially those in
	  many of the newer IBM Thinkpads.  If you experience hangs when you
	  suspend, try setting this to Y.  Otherwise, say N.

endif # APM

source "arch/x86/kernel/cpu/cpufreq/Kconfig"

source "drivers/cpuidle/Kconfig"

A
Andy Henroid 已提交
1716 1717
source "drivers/idle/Kconfig"

1718 1719 1720 1721 1722 1723
endmenu


menu "Bus options (PCI etc.)"

config PCI
I
Ingo Molnar 已提交
1724
	bool "PCI support"
A
Adrian Bunk 已提交
1725
	default y
1726 1727 1728 1729 1730 1731 1732 1733 1734
	select ARCH_SUPPORTS_MSI if (X86_LOCAL_APIC && X86_IO_APIC)
	help
	  Find out whether you have a PCI motherboard. PCI is the name of a
	  bus system, i.e. the way the CPU talks to the other stuff inside
	  your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
	  VESA. If you have PCI, say Y, otherwise N.

choice
	prompt "PCI access mode"
1735
	depends on X86_32 && PCI
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	default PCI_GOANY
	---help---
	  On PCI systems, the BIOS can be used to detect the PCI devices and
	  determine their configuration. However, some old PCI motherboards
	  have BIOS bugs and may crash if this is done. Also, some embedded
	  PCI-based systems don't have any BIOS at all. Linux can also try to
	  detect the PCI hardware directly without using the BIOS.

	  With this option, you can specify how Linux should detect the
	  PCI devices. If you choose "BIOS", the BIOS will be used,
	  if you choose "Direct", the BIOS won't be used, and if you
	  choose "MMConfig", then PCI Express MMCONFIG will be used.
	  If you choose "Any", the kernel will try MMCONFIG, then the
	  direct access method and falls back to the BIOS if that doesn't
	  work. If unsure, go with the default, which is "Any".

config PCI_GOBIOS
	bool "BIOS"

config PCI_GOMMCONFIG
	bool "MMConfig"

config PCI_GODIRECT
	bool "Direct"

1761 1762 1763 1764
config PCI_GOOLPC
	bool "OLPC"
	depends on OLPC

1765 1766 1767
config PCI_GOANY
	bool "Any"

1768 1769 1770
endchoice

config PCI_BIOS
1771
	def_bool y
1772
	depends on X86_32 && PCI && (PCI_GOBIOS || PCI_GOANY)
1773 1774 1775

# x86-64 doesn't support PCI BIOS access from long mode so always go direct.
config PCI_DIRECT
1776
	def_bool y
1777
	depends on PCI && (X86_64 || (PCI_GODIRECT || PCI_GOANY || PCI_GOOLPC))
1778 1779

config PCI_MMCONFIG
1780
	def_bool y
1781 1782
	depends on X86_32 && PCI && ACPI && (PCI_GOMMCONFIG || PCI_GOANY)

1783
config PCI_OLPC
1784 1785
	def_bool y
	depends on PCI && OLPC && (PCI_GOOLPC || PCI_GOANY)
1786

1787
config PCI_DOMAINS
1788
	def_bool y
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
	depends on PCI

config PCI_MMCONFIG
	bool "Support mmconfig PCI config space access"
	depends on X86_64 && PCI && ACPI

config DMAR
	bool "Support for DMA Remapping Devices (EXPERIMENTAL)"
	depends on X86_64 && PCI_MSI && ACPI && EXPERIMENTAL
	help
	  DMA remapping (DMAR) devices support enables independent address
	  translations for Direct Memory Access (DMA) from devices.
	  These DMA remapping devices are reported via ACPI tables
	  and include PCI device scope covered by these DMA
	  remapping devices.

1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
config DMAR_DEFAULT_ON
	def_bool n
	prompt "Enable DMA Remapping Devices by default"
	depends on DMAR
	help
	  Selecting this option will enable a DMAR device at boot time if
	  one is found. If this option is not selected, DMAR support can
	  be enabled by passing intel_iommu=on to the kernel. It is
	  recommended you say N here while the DMAR code remains
	  experimental.

1816
config DMAR_GFX_WA
1817 1818
	def_bool y
	prompt "Support for Graphics workaround"
1819 1820 1821 1822 1823 1824 1825 1826 1827
	depends on DMAR
	help
	 Current Graphics drivers tend to use physical address
	 for DMA and avoid using DMA APIs. Setting this config
	 option permits the IOMMU driver to set a unity map for
	 all the OS-visible memory. Hence the driver can continue
	 to use physical addresses for DMA.

config DMAR_FLOPPY_WA
1828
	def_bool y
1829 1830 1831 1832 1833 1834 1835
	depends on DMAR
	help
	 Floppy disk drivers are know to bypass DMA API calls
	 thereby failing to work when IOMMU is enabled. This
	 workaround will setup a 1:1 mapping for the first
	 16M to make floppy (an ISA device) work.

1836 1837 1838 1839 1840 1841 1842 1843
config INTR_REMAP
	bool "Support for Interrupt Remapping (EXPERIMENTAL)"
	depends on X86_64 && X86_IO_APIC && PCI_MSI && ACPI && EXPERIMENTAL
	help
	 Supports Interrupt remapping for IO-APIC and MSI devices.
	 To use x2apic mode in the CPU's which support x2APIC enhancements or
	 to support platforms with CPU's having > 8 bit APIC ID, say Y.

1844 1845 1846 1847 1848 1849
source "drivers/pci/pcie/Kconfig"

source "drivers/pci/Kconfig"

# x86_64 have no ISA slots, but do have ISA-style DMA.
config ISA_DMA_API
1850
	def_bool y
1851 1852 1853 1854 1855

if X86_32

config ISA
	bool "ISA support"
1856
	depends on !X86_VOYAGER
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
	help
	  Find out whether you have ISA slots on your motherboard.  ISA is the
	  name of a bus system, i.e. the way the CPU talks to the other stuff
	  inside your box.  Other bus systems are PCI, EISA, MicroChannel
	  (MCA) or VESA.  ISA is an older system, now being displaced by PCI;
	  newer boards don't support it.  If you have ISA, say Y, otherwise N.

config EISA
	bool "EISA support"
	depends on ISA
	---help---
	  The Extended Industry Standard Architecture (EISA) bus was
	  developed as an open alternative to the IBM MicroChannel bus.

	  The EISA bus provided some of the features of the IBM MicroChannel
	  bus while maintaining backward compatibility with cards made for
	  the older ISA bus.  The EISA bus saw limited use between 1988 and
	  1995 when it was made obsolete by the PCI bus.

	  Say Y here if you are building a kernel for an EISA-based machine.

	  Otherwise, say N.

source "drivers/eisa/Kconfig"

config MCA
1883
	bool "MCA support" if !X86_VOYAGER
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
	default y if X86_VOYAGER
	help
	  MicroChannel Architecture is found in some IBM PS/2 machines and
	  laptops.  It is a bus system similar to PCI or ISA. See
	  <file:Documentation/mca.txt> (and especially the web page given
	  there) before attempting to build an MCA bus kernel.

source "drivers/mca/Kconfig"

config SCx200
	tristate "NatSemi SCx200 support"
	depends on !X86_VOYAGER
	help
	  This provides basic support for National Semiconductor's
	  (now AMD's) Geode processors.  The driver probes for the
	  PCI-IDs of several on-chip devices, so its a good dependency
	  for other scx200_* drivers.

	  If compiled as a module, the driver is named scx200.

config SCx200HR_TIMER
	tristate "NatSemi SCx200 27MHz High-Resolution Timer Support"
	depends on SCx200 && GENERIC_TIME
	default y
	help
	  This driver provides a clocksource built upon the on-chip
	  27MHz high-resolution timer.  Its also a workaround for
	  NSC Geode SC-1100's buggy TSC, which loses time when the
	  processor goes idle (as is done by the scheduler).  The
	  other workaround is idle=poll boot option.

config GEODE_MFGPT_TIMER
1916 1917
	def_bool y
	prompt "Geode Multi-Function General Purpose Timer (MFGPT) events"
1918 1919 1920 1921 1922 1923 1924
	depends on MGEODE_LX && GENERIC_TIME && GENERIC_CLOCKEVENTS
	help
	  This driver provides a clock event source based on the MFGPT
	  timer(s) in the CS5535 and CS5536 companion chip for the geode.
	  MFGPTs have a better resolution and max interval than the
	  generic PIT, and are suitable for use as high-res timers.

1925 1926 1927 1928 1929 1930 1931
config OLPC
	bool "One Laptop Per Child support"
	default n
	help
	  Add support for detecting the unique features of the OLPC
	  XO hardware.

1932 1933
endif # X86_32

1934 1935
config K8_NB
	def_bool y
1936
	depends on AGP_AMD64 || (X86_64 && (GART_IOMMU || (PCI && NUMA)))
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951

source "drivers/pcmcia/Kconfig"

source "drivers/pci/hotplug/Kconfig"

endmenu


menu "Executable file formats / Emulations"

source "fs/Kconfig.binfmt"

config IA32_EMULATION
	bool "IA32 Emulation"
	depends on X86_64
R
Roland McGrath 已提交
1952
	select COMPAT_BINFMT_ELF
1953 1954 1955 1956 1957 1958 1959
	help
	  Include code to run 32-bit programs under a 64-bit kernel. You should
	  likely turn this on, unless you're 100% sure that you don't have any
	  32-bit programs left.

config IA32_AOUT
       tristate "IA32 a.out support"
1960
       depends on IA32_EMULATION
1961 1962 1963 1964
       help
         Support old a.out binaries in the 32bit emulation.

config COMPAT
1965
	def_bool y
1966 1967 1968 1969 1970 1971 1972
	depends on IA32_EMULATION

config COMPAT_FOR_U64_ALIGNMENT
	def_bool COMPAT
	depends on X86_64

config SYSVIPC_COMPAT
1973
	def_bool y
1974
	depends on COMPAT && SYSVIPC
1975 1976 1977 1978

endmenu


K
Keith Packard 已提交
1979 1980 1981 1982
config HAVE_ATOMIC_IOMAP
	def_bool y
	depends on X86_32

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
source "net/Kconfig"

source "drivers/Kconfig"

source "drivers/firmware/Kconfig"

source "fs/Kconfig"

source "arch/x86/Kconfig.debug"

source "security/Kconfig"

source "crypto/Kconfig"

1997 1998
source "arch/x86/kvm/Kconfig"

1999
source "lib/Kconfig"