setup.c 13.5 KB
Newer Older
H
Haavard Skinnemoen 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * Copyright (C) 2004-2006 Atmel Corporation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/clk.h>
#include <linux/init.h>
11
#include <linux/initrd.h>
H
Haavard Skinnemoen 已提交
12 13 14 15 16 17
#include <linux/sched.h>
#include <linux/console.h>
#include <linux/ioport.h>
#include <linux/bootmem.h>
#include <linux/fs.h>
#include <linux/module.h>
18
#include <linux/pfn.h>
H
Haavard Skinnemoen 已提交
19 20
#include <linux/root_dev.h>
#include <linux/cpu.h>
21
#include <linux/kernel.h>
H
Haavard Skinnemoen 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

#include <asm/sections.h>
#include <asm/processor.h>
#include <asm/pgtable.h>
#include <asm/setup.h>
#include <asm/sysreg.h>

#include <asm/arch/board.h>
#include <asm/arch/init.h>

extern int root_mountflags;

/*
 * Bootloader-provided information about physical memory
 */
struct tag_mem_range *mem_phys;
struct tag_mem_range *mem_reserved;
struct tag_mem_range *mem_ramdisk;

/*
 * Initialize loops_per_jiffy as 5000000 (500MIPS).
 * Better make it too large than too small...
 */
struct avr32_cpuinfo boot_cpu_data = {
	.loops_per_jiffy = 5000000
};
EXPORT_SYMBOL(boot_cpu_data);

50
static char __initdata command_line[COMMAND_LINE_SIZE];
H
Haavard Skinnemoen 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

/*
 * Should be more than enough, but if you have a _really_ complex
 * setup, you might need to increase the size of this...
 */
static struct tag_mem_range __initdata mem_range_cache[32];
static unsigned mem_range_next_free;

/*
 * Standard memory resources
 */
static struct resource mem_res[] = {
	{
		.name	= "Kernel code",
		.start	= 0,
		.end	= 0,
		.flags	= IORESOURCE_MEM
	},
	{
		.name	= "Kernel data",
		.start	= 0,
		.end	= 0,
		.flags	= IORESOURCE_MEM,
	},
};

#define kernel_code	mem_res[0]
#define kernel_data	mem_res[1]

/*
 * Early framebuffer allocation. Works as follows:
 *   - If fbmem_size is zero, nothing will be allocated or reserved.
 *   - If fbmem_start is zero when setup_bootmem() is called,
 *     fbmem_size bytes will be allocated from the bootmem allocator.
 *   - If fbmem_start is nonzero, an area of size fbmem_size will be
 *     reserved at the physical address fbmem_start if necessary. If
 *     the area isn't in a memory region known to the kernel, it will
 *     be left alone.
 *
 * Board-specific code may use these variables to set up platform data
 * for the framebuffer driver if fbmem_size is nonzero.
 */
static unsigned long __initdata fbmem_start;
static unsigned long __initdata fbmem_size;

/*
 * "fbmem=xxx[kKmM]" allocates the specified amount of boot memory for
 * use as framebuffer.
 *
 * "fbmem=xxx[kKmM]@yyy[kKmM]" defines a memory region of size xxx and
 * starting at yyy to be reserved for use as framebuffer.
 *
 * The kernel won't verify that the memory region starting at yyy
 * actually contains usable RAM.
 */
static int __init early_parse_fbmem(char *p)
{
	fbmem_size = memparse(p, &p);
	if (*p == '@')
		fbmem_start = memparse(p, &p);
	return 0;
}
early_param("fbmem", early_parse_fbmem);

static inline void __init resource_init(void)
{
	struct tag_mem_range *region;

	kernel_code.start = __pa(init_mm.start_code);
	kernel_code.end = __pa(init_mm.end_code - 1);
	kernel_data.start = __pa(init_mm.end_code);
	kernel_data.end = __pa(init_mm.brk - 1);

	for (region = mem_phys; region; region = region->next) {
		struct resource *res;
		unsigned long phys_start, phys_end;

		if (region->size == 0)
			continue;

		phys_start = region->addr;
		phys_end = phys_start + region->size - 1;

		res = alloc_bootmem_low(sizeof(*res));
		res->name = "System RAM";
		res->start = phys_start;
		res->end = phys_end;
		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;

		request_resource (&iomem_resource, res);

		if (kernel_code.start >= res->start &&
		    kernel_code.end <= res->end)
			request_resource (res, &kernel_code);
		if (kernel_data.start >= res->start &&
		    kernel_data.end <= res->end)
			request_resource (res, &kernel_data);
	}
}

static int __init parse_tag_core(struct tag *tag)
{
	if (tag->hdr.size > 2) {
		if ((tag->u.core.flags & 1) == 0)
			root_mountflags &= ~MS_RDONLY;
		ROOT_DEV = new_decode_dev(tag->u.core.rootdev);
	}
	return 0;
}
__tagtable(ATAG_CORE, parse_tag_core);

static int __init parse_tag_mem_range(struct tag *tag,
				      struct tag_mem_range **root)
{
	struct tag_mem_range *cur, **pprev;
	struct tag_mem_range *new;

	/*
	 * Ignore zero-sized entries. If we're running standalone, the
	 * SDRAM code may emit such entries if something goes
	 * wrong...
	 */
	if (tag->u.mem_range.size == 0)
		return 0;

	/*
	 * Copy the data so the bootmem init code doesn't need to care
	 * about it.
	 */
180
	if (mem_range_next_free >= ARRAY_SIZE(mem_range_cache))
H
Haavard Skinnemoen 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
		panic("Physical memory map too complex!\n");

	new = &mem_range_cache[mem_range_next_free++];
	*new = tag->u.mem_range;

	pprev = root;
	cur = *root;
	while (cur) {
		pprev = &cur->next;
		cur = cur->next;
	}

	*pprev = new;
	new->next = NULL;

	return 0;
}

static int __init parse_tag_mem(struct tag *tag)
{
	return parse_tag_mem_range(tag, &mem_phys);
}
__tagtable(ATAG_MEM, parse_tag_mem);

static int __init parse_tag_cmdline(struct tag *tag)
{
207
	strlcpy(boot_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
H
Haavard Skinnemoen 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
	return 0;
}
__tagtable(ATAG_CMDLINE, parse_tag_cmdline);

static int __init parse_tag_rdimg(struct tag *tag)
{
	return parse_tag_mem_range(tag, &mem_ramdisk);
}
__tagtable(ATAG_RDIMG, parse_tag_rdimg);

static int __init parse_tag_clock(struct tag *tag)
{
	/*
	 * We'll figure out the clocks by peeking at the system
	 * manager regs directly.
	 */
	return 0;
}
__tagtable(ATAG_CLOCK, parse_tag_clock);

static int __init parse_tag_rsvd_mem(struct tag *tag)
{
	return parse_tag_mem_range(tag, &mem_reserved);
}
__tagtable(ATAG_RSVD_MEM, parse_tag_rsvd_mem);

/*
 * Scan the tag table for this tag, and call its parse function. The
 * tag table is built by the linker from all the __tagtable
 * declarations.
 */
static int __init parse_tag(struct tag *tag)
{
	extern struct tagtable __tagtable_begin, __tagtable_end;
	struct tagtable *t;

	for (t = &__tagtable_begin; t < &__tagtable_end; t++)
		if (tag->hdr.tag == t->tag) {
			t->parse(tag);
			break;
		}

	return t < &__tagtable_end;
}

/*
 * Parse all tags in the list we got from the boot loader
 */
static void __init parse_tags(struct tag *t)
{
	for (; t->hdr.tag != ATAG_NONE; t = tag_next(t))
		if (!parse_tag(t))
			printk(KERN_WARNING
			       "Ignoring unrecognised tag 0x%08x\n",
			       t->hdr.tag);
}

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
static void __init print_memory_map(const char *what,
				    struct tag_mem_range *mem)
{
	printk ("%s:\n", what);
	for (; mem; mem = mem->next) {
		printk ("  %08lx - %08lx\n",
			(unsigned long)mem->addr,
			(unsigned long)(mem->addr + mem->size));
	}
}

#define MAX_LOWMEM	HIGHMEM_START
#define MAX_LOWMEM_PFN	PFN_DOWN(MAX_LOWMEM)

/*
 * Sort a list of memory regions in-place by ascending address.
 *
 * We're using bubble sort because we only have singly linked lists
 * with few elements.
 */
static void __init sort_mem_list(struct tag_mem_range **pmem)
{
	int done;
	struct tag_mem_range **a, **b;

	if (!*pmem)
		return;

	do {
		done = 1;
		a = pmem, b = &(*pmem)->next;
		while (*b) {
			if ((*a)->addr > (*b)->addr) {
				struct tag_mem_range *tmp;
				tmp = (*b)->next;
				(*b)->next = *a;
				*a = *b;
				*b = tmp;
				done = 0;
			}
			a = &(*a)->next;
			b = &(*a)->next;
		}
	} while (!done);
}

/*
 * Find a free memory region large enough for storing the
 * bootmem bitmap.
 */
static unsigned long __init
find_bootmap_pfn(const struct tag_mem_range *mem)
{
	unsigned long bootmap_pages, bootmap_len;
	unsigned long node_pages = PFN_UP(mem->size);
	unsigned long bootmap_addr = mem->addr;
	struct tag_mem_range *reserved = mem_reserved;
	struct tag_mem_range *ramdisk = mem_ramdisk;
	unsigned long kern_start = __pa(_stext);
	unsigned long kern_end = __pa(_end);

	bootmap_pages = bootmem_bootmap_pages(node_pages);
	bootmap_len = bootmap_pages << PAGE_SHIFT;

	/*
	 * Find a large enough region without reserved pages for
	 * storing the bootmem bitmap. We can take advantage of the
	 * fact that all lists have been sorted.
	 *
	 * We have to check explicitly reserved regions as well as the
	 * kernel image and any RAMDISK images...
	 *
	 * Oh, and we have to make sure we don't overwrite the taglist
	 * since we're going to use it until the bootmem allocator is
	 * fully up and running.
	 */
	while (1) {
		if ((bootmap_addr < kern_end) &&
		    ((bootmap_addr + bootmap_len) > kern_start))
			bootmap_addr = kern_end;

		while (reserved &&
		       (bootmap_addr >= (reserved->addr + reserved->size)))
			reserved = reserved->next;

		if (reserved &&
		    ((bootmap_addr + bootmap_len) >= reserved->addr)) {
			bootmap_addr = reserved->addr + reserved->size;
			continue;
		}

		while (ramdisk &&
		       (bootmap_addr >= (ramdisk->addr + ramdisk->size)))
			ramdisk = ramdisk->next;

		if (!ramdisk ||
		    ((bootmap_addr + bootmap_len) < ramdisk->addr))
			break;

		bootmap_addr = ramdisk->addr + ramdisk->size;
	}

	if ((PFN_UP(bootmap_addr) + bootmap_len) >= (mem->addr + mem->size))
		return ~0UL;

	return PFN_UP(bootmap_addr);
}

static void __init setup_bootmem(void)
{
	unsigned bootmap_size;
	unsigned long first_pfn, bootmap_pfn, pages;
	unsigned long max_pfn, max_low_pfn;
	unsigned long kern_start = __pa(_stext);
	unsigned long kern_end = __pa(_end);
	unsigned node = 0;
	struct tag_mem_range *bank, *res;

	sort_mem_list(&mem_phys);
	sort_mem_list(&mem_reserved);

	print_memory_map("Physical memory", mem_phys);
	print_memory_map("Reserved memory", mem_reserved);

	nodes_clear(node_online_map);

	if (mem_ramdisk) {
#ifdef CONFIG_BLK_DEV_INITRD
		initrd_start = (unsigned long)__va(mem_ramdisk->addr);
		initrd_end = initrd_start + mem_ramdisk->size;

		print_memory_map("RAMDISK images", mem_ramdisk);
		if (mem_ramdisk->next)
			printk(KERN_WARNING
			       "Warning: Only the first RAMDISK image "
			       "will be used\n");
		sort_mem_list(&mem_ramdisk);
#else
		printk(KERN_WARNING "RAM disk image present, but "
		       "no initrd support in kernel!\n");
#endif
	}

	if (mem_phys->next)
		printk(KERN_WARNING "Only using first memory bank\n");

	for (bank = mem_phys; bank; bank = NULL) {
		first_pfn = PFN_UP(bank->addr);
		max_low_pfn = max_pfn = PFN_DOWN(bank->addr + bank->size);
		bootmap_pfn = find_bootmap_pfn(bank);
		if (bootmap_pfn > max_pfn)
			panic("No space for bootmem bitmap!\n");

		if (max_low_pfn > MAX_LOWMEM_PFN) {
			max_low_pfn = MAX_LOWMEM_PFN;
#ifndef CONFIG_HIGHMEM
			/*
			 * Lowmem is memory that can be addressed
			 * directly through P1/P2
			 */
			printk(KERN_WARNING
			       "Node %u: Only %ld MiB of memory will be used.\n",
			       node, MAX_LOWMEM >> 20);
			printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
#else
#error HIGHMEM is not supported by AVR32 yet
#endif
		}

		/* Initialize the boot-time allocator with low memory only. */
		bootmap_size = init_bootmem_node(NODE_DATA(node), bootmap_pfn,
						 first_pfn, max_low_pfn);

		printk("Node %u: bdata = %p, bdata->node_bootmem_map = %p\n",
		       node, NODE_DATA(node)->bdata,
		       NODE_DATA(node)->bdata->node_bootmem_map);

		/*
		 * Register fully available RAM pages with the bootmem
		 * allocator.
		 */
		pages = max_low_pfn - first_pfn;
		free_bootmem_node (NODE_DATA(node), PFN_PHYS(first_pfn),
				   PFN_PHYS(pages));

		/*
		 * Reserve space for the kernel image (if present in
		 * this node)...
		 */
		if ((kern_start >= PFN_PHYS(first_pfn)) &&
		    (kern_start < PFN_PHYS(max_pfn))) {
			printk("Node %u: Kernel image %08lx - %08lx\n",
			       node, kern_start, kern_end);
			reserve_bootmem_node(NODE_DATA(node), kern_start,
					     kern_end - kern_start);
		}

		/* ...the bootmem bitmap... */
		reserve_bootmem_node(NODE_DATA(node),
				     PFN_PHYS(bootmap_pfn),
				     bootmap_size);

		/* ...any RAMDISK images... */
		for (res = mem_ramdisk; res; res = res->next) {
			if (res->addr > PFN_PHYS(max_pfn))
				break;

			if (res->addr >= PFN_PHYS(first_pfn)) {
				printk("Node %u: RAMDISK %08lx - %08lx\n",
				       node,
				       (unsigned long)res->addr,
				       (unsigned long)(res->addr + res->size));
				reserve_bootmem_node(NODE_DATA(node),
						     res->addr, res->size);
			}
		}

		/* ...and any other reserved regions. */
		for (res = mem_reserved; res; res = res->next) {
			if (res->addr > PFN_PHYS(max_pfn))
				break;

			if (res->addr >= PFN_PHYS(first_pfn)) {
				printk("Node %u: Reserved %08lx - %08lx\n",
				       node,
				       (unsigned long)res->addr,
				       (unsigned long)(res->addr + res->size));
				reserve_bootmem_node(NODE_DATA(node),
						     res->addr, res->size);
			}
		}

		node_set_online(node);
	}
}

H
Haavard Skinnemoen 已提交
501 502 503 504 505 506 507 508
void __init setup_arch (char **cmdline_p)
{
	struct clk *cpu_clk;

	parse_tags(bootloader_tags);

	setup_processor();
	setup_platform();
509
	setup_board();
H
Haavard Skinnemoen 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534

	cpu_clk = clk_get(NULL, "cpu");
	if (IS_ERR(cpu_clk)) {
		printk(KERN_WARNING "Warning: Unable to get CPU clock\n");
	} else {
		unsigned long cpu_hz = clk_get_rate(cpu_clk);

		/*
		 * Well, duh, but it's probably a good idea to
		 * increment the use count.
		 */
		clk_enable(cpu_clk);

		boot_cpu_data.clk = cpu_clk;
		boot_cpu_data.loops_per_jiffy = cpu_hz * 4;
		printk("CPU: Running at %lu.%03lu MHz\n",
		       ((cpu_hz + 500) / 1000) / 1000,
		       ((cpu_hz + 500) / 1000) % 1000);
	}

	init_mm.start_code = (unsigned long) &_text;
	init_mm.end_code = (unsigned long) &_etext;
	init_mm.end_data = (unsigned long) &_edata;
	init_mm.brk = (unsigned long) &_end;

535
	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
H
Haavard Skinnemoen 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
	*cmdline_p = command_line;
	parse_early_param();

	setup_bootmem();

	board_setup_fbmem(fbmem_start, fbmem_size);

#ifdef CONFIG_VT
	conswitchp = &dummy_con;
#endif

	paging_init();

	resource_init();
}