core.c 31.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 *  Kernel Probes (KProbes)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) IBM Corporation, 2002, 2004
 *
 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
 *		Probes initial implementation ( includes contributions from
 *		Rusty Russell).
 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
 *		interface to access function arguments.
25 26
 * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
 *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
L
Linus Torvalds 已提交
27 28
 * 2005-Mar	Roland McGrath <roland@redhat.com>
 *		Fixed to handle %rip-relative addressing mode correctly.
29 30 31 32
 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
 *		<prasanna@in.ibm.com> added function-return probes.
 * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
33
 *		Added function return probes functionality
34
 * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35
 *		kprobe-booster and kretprobe-booster for i386.
36
 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37
 *		and kretprobe-booster for x86-64
38
 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 40
 *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
 *		unified x86 kprobes code.
L
Linus Torvalds 已提交
41 42 43 44 45
 */
#include <linux/kprobes.h>
#include <linux/ptrace.h>
#include <linux/string.h>
#include <linux/slab.h>
46
#include <linux/hardirq.h>
L
Linus Torvalds 已提交
47
#include <linux/preempt.h>
48
#include <linux/module.h>
49
#include <linux/kdebug.h>
50
#include <linux/kallsyms.h>
51
#include <linux/ftrace.h>
52

53 54
#include <asm/cacheflush.h>
#include <asm/desc.h>
L
Linus Torvalds 已提交
55
#include <asm/pgtable.h>
56
#include <asm/uaccess.h>
57
#include <asm/alternative.h>
58
#include <asm/insn.h>
59
#include <asm/debugreg.h>
L
Linus Torvalds 已提交
60

61
#include "common.h"
62

L
Linus Torvalds 已提交
63 64
void jprobe_return_end(void);

65 66
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
L
Linus Torvalds 已提交
67

68
#define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
69 70 71 72 73 74 75 76 77 78

#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
	 << (row % 32))
	/*
	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
	 * Groups, and some special opcodes can not boost.
79 80
	 * This is non-const and volatile to keep gcc from statically
	 * optimizing it out, as variable_test_bit makes gcc think only
81
	 * *(unsigned long*) is used.
82
	 */
83
static volatile u32 twobyte_is_boostable[256 / 32] = {
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
	/*      ----------------------------------------------          */
	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
	/*      -----------------------------------------------         */
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
};
#undef W

107 108 109 110 111
struct kretprobe_blackpoint kretprobe_blacklist[] = {
	{"__switch_to", }, /* This function switches only current task, but
			      doesn't switch kernel stack.*/
	{NULL, NULL}	/* Terminator */
};
112

113 114
const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);

115
static void __kprobes __synthesize_relative_insn(void *from, void *to, u8 op)
116
{
117 118
	struct __arch_relative_insn {
		u8 op;
119
		s32 raddr;
120
	} __packed *insn;
121 122 123 124 125 126 127

	insn = (struct __arch_relative_insn *)from;
	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
	insn->op = op;
}

/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
128
void __kprobes synthesize_reljump(void *from, void *to)
129 130
{
	__synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
131 132
}

133 134 135 136 137 138
/* Insert a call instruction at address 'from', which calls address 'to'.*/
void __kprobes synthesize_relcall(void *from, void *to)
{
	__synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
}

139
/*
140
 * Skip the prefixes of the instruction.
141
 */
142
static kprobe_opcode_t *__kprobes skip_prefixes(kprobe_opcode_t *insn)
143
{
144 145 146 147 148 149 150
	insn_attr_t attr;

	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
	while (inat_is_legacy_prefix(attr)) {
		insn++;
		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
	}
151
#ifdef CONFIG_X86_64
152 153
	if (inat_is_rex_prefix(attr))
		insn++;
154
#endif
155
	return insn;
156 157
}

158
/*
159 160
 * Returns non-zero if opcode is boostable.
 * RIP relative instructions are adjusted at copying time in 64 bits mode
161
 */
162
int __kprobes can_boost(kprobe_opcode_t *opcodes)
163 164 165 166
{
	kprobe_opcode_t opcode;
	kprobe_opcode_t *orig_opcodes = opcodes;

167
	if (search_exception_tables((unsigned long)opcodes))
168 169
		return 0;	/* Page fault may occur on this address. */

170 171 172 173 174 175 176 177 178
retry:
	if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
		return 0;
	opcode = *(opcodes++);

	/* 2nd-byte opcode */
	if (opcode == 0x0f) {
		if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
			return 0;
179 180
		return test_bit(*opcodes,
				(unsigned long *)twobyte_is_boostable);
181 182 183
	}

	switch (opcode & 0xf0) {
184
#ifdef CONFIG_X86_64
185 186
	case 0x40:
		goto retry; /* REX prefix is boostable */
187
#endif
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
	case 0x60:
		if (0x63 < opcode && opcode < 0x67)
			goto retry; /* prefixes */
		/* can't boost Address-size override and bound */
		return (opcode != 0x62 && opcode != 0x67);
	case 0x70:
		return 0; /* can't boost conditional jump */
	case 0xc0:
		/* can't boost software-interruptions */
		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
	case 0xd0:
		/* can boost AA* and XLAT */
		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
	case 0xe0:
		/* can boost in/out and absolute jmps */
		return ((opcode & 0x04) || opcode == 0xea);
	case 0xf0:
		if ((opcode & 0x0c) == 0 && opcode != 0xf1)
			goto retry; /* lock/rep(ne) prefix */
		/* clear and set flags are boostable */
		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
	default:
		/* segment override prefixes are boostable */
		if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
			goto retry; /* prefixes */
		/* CS override prefix and call are not boostable */
		return (opcode != 0x2e && opcode != 0x9a);
	}
}

218 219
static unsigned long
__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
220 221
{
	struct kprobe *kp;
222

223
	kp = get_kprobe((void *)addr);
224
	/* There is no probe, return original address */
225
	if (!kp)
226
		return addr;
227 228 229 230

	/*
	 *  Basically, kp->ainsn.insn has an original instruction.
	 *  However, RIP-relative instruction can not do single-stepping
231
	 *  at different place, __copy_instruction() tweaks the displacement of
232 233 234 235 236 237 238 239 240 241 242
	 *  that instruction. In that case, we can't recover the instruction
	 *  from the kp->ainsn.insn.
	 *
	 *  On the other hand, kp->opcode has a copy of the first byte of
	 *  the probed instruction, which is overwritten by int3. And
	 *  the instruction at kp->addr is not modified by kprobes except
	 *  for the first byte, we can recover the original instruction
	 *  from it and kp->opcode.
	 */
	memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
	buf[0] = kp->opcode;
243 244 245 246 247 248 249 250
	return (unsigned long)buf;
}

/*
 * Recover the probed instruction at addr for further analysis.
 * Caller must lock kprobes by kprobe_mutex, or disable preemption
 * for preventing to release referencing kprobes.
 */
251
unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
252 253 254 255 256 257 258 259
{
	unsigned long __addr;

	__addr = __recover_optprobed_insn(buf, addr);
	if (__addr != addr)
		return __addr;

	return __recover_probed_insn(buf, addr);
260 261 262 263 264
}

/* Check if paddr is at an instruction boundary */
static int __kprobes can_probe(unsigned long paddr)
{
265
	unsigned long addr, __addr, offset = 0;
266 267 268
	struct insn insn;
	kprobe_opcode_t buf[MAX_INSN_SIZE];

N
Namhyung Kim 已提交
269
	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
270 271 272 273 274 275 276 277 278
		return 0;

	/* Decode instructions */
	addr = paddr - offset;
	while (addr < paddr) {
		/*
		 * Check if the instruction has been modified by another
		 * kprobe, in which case we replace the breakpoint by the
		 * original instruction in our buffer.
279 280 281
		 * Also, jump optimization will change the breakpoint to
		 * relative-jump. Since the relative-jump itself is
		 * normally used, we just go through if there is no kprobe.
282
		 */
283 284
		__addr = recover_probed_instruction(buf, addr);
		kernel_insn_init(&insn, (void *)__addr);
285
		insn_get_length(&insn);
286 287 288 289 290 291 292

		/*
		 * Another debugging subsystem might insert this breakpoint.
		 * In that case, we can't recover it.
		 */
		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
			return 0;
293 294 295 296 297 298
		addr += insn.length;
	}

	return (addr == paddr);
}

L
Linus Torvalds 已提交
299
/*
300
 * Returns non-zero if opcode modifies the interrupt flag.
L
Linus Torvalds 已提交
301
 */
302
static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
L
Linus Torvalds 已提交
303
{
304 305 306
	/* Skip prefixes */
	insn = skip_prefixes(insn);

L
Linus Torvalds 已提交
307 308 309 310 311 312 313
	switch (*insn) {
	case 0xfa:		/* cli */
	case 0xfb:		/* sti */
	case 0xcf:		/* iret/iretd */
	case 0x9d:		/* popf/popfd */
		return 1;
	}
314

L
Linus Torvalds 已提交
315 316 317 318
	return 0;
}

/*
319 320
 * Copy an instruction and adjust the displacement if the instruction
 * uses the %rip-relative addressing mode.
321
 * If it does, Return the address of the 32-bit displacement word.
L
Linus Torvalds 已提交
322
 * If not, return null.
323
 * Only applicable to 64-bit x86.
L
Linus Torvalds 已提交
324
 */
325
int __kprobes __copy_instruction(u8 *dest, u8 *src)
L
Linus Torvalds 已提交
326
{
327
	struct insn insn;
328
	kprobe_opcode_t buf[MAX_INSN_SIZE];
329

330
	kernel_insn_init(&insn, (void *)recover_probed_instruction(buf, (unsigned long)src));
331
	insn_get_length(&insn);
332
	/* Another subsystem puts a breakpoint, failed to recover */
333
	if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
334
		return 0;
335 336 337
	memcpy(dest, insn.kaddr, insn.length);

#ifdef CONFIG_X86_64
338 339 340
	if (insn_rip_relative(&insn)) {
		s64 newdisp;
		u8 *disp;
341
		kernel_insn_init(&insn, dest);
342 343 344 345 346 347 348 349 350 351 352 353 354
		insn_get_displacement(&insn);
		/*
		 * The copied instruction uses the %rip-relative addressing
		 * mode.  Adjust the displacement for the difference between
		 * the original location of this instruction and the location
		 * of the copy that will actually be run.  The tricky bit here
		 * is making sure that the sign extension happens correctly in
		 * this calculation, since we need a signed 32-bit result to
		 * be sign-extended to 64 bits when it's added to the %rip
		 * value and yield the same 64-bit result that the sign-
		 * extension of the original signed 32-bit displacement would
		 * have given.
		 */
355
		newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest;
356 357 358 359 360
		if ((s64) (s32) newdisp != newdisp) {
			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
			pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value);
			return 0;
		}
361
		disp = (u8 *) dest + insn_offset_displacement(&insn);
362
		*(s32 *) disp = (s32) newdisp;
L
Linus Torvalds 已提交
363
	}
364
#endif
365
	return insn.length;
366
}
L
Linus Torvalds 已提交
367

368
static int __kprobes arch_copy_kprobe(struct kprobe *p)
L
Linus Torvalds 已提交
369
{
370 371
	int ret;

372
	/* Copy an instruction with recovering if other optprobe modifies it.*/
373 374 375
	ret = __copy_instruction(p->ainsn.insn, p->addr);
	if (!ret)
		return -EINVAL;
376

377
	/*
378 379
	 * __copy_instruction can modify the displacement of the instruction,
	 * but it doesn't affect boostable check.
380
	 */
381
	if (can_boost(p->ainsn.insn))
382
		p->ainsn.boostable = 0;
383
	else
384
		p->ainsn.boostable = -1;
385

386 387 388
	/* Check whether the instruction modifies Interrupt Flag or not */
	p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);

389 390
	/* Also, displacement change doesn't affect the first byte */
	p->opcode = p->ainsn.insn[0];
391 392

	return 0;
L
Linus Torvalds 已提交
393 394
}

395 396
int __kprobes arch_prepare_kprobe(struct kprobe *p)
{
397 398 399
	if (alternatives_text_reserved(p->addr, p->addr))
		return -EINVAL;

400 401
	if (!can_probe((unsigned long)p->addr))
		return -EILSEQ;
402 403 404 405
	/* insn: must be on special executable page on x86. */
	p->ainsn.insn = get_insn_slot();
	if (!p->ainsn.insn)
		return -ENOMEM;
406 407

	return arch_copy_kprobe(p);
408 409
}

410
void __kprobes arch_arm_kprobe(struct kprobe *p)
L
Linus Torvalds 已提交
411
{
412
	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
L
Linus Torvalds 已提交
413 414
}

415
void __kprobes arch_disarm_kprobe(struct kprobe *p)
L
Linus Torvalds 已提交
416
{
417
	text_poke(p->addr, &p->opcode, 1);
418 419
}

420
void __kprobes arch_remove_kprobe(struct kprobe *p)
421
{
422 423 424 425
	if (p->ainsn.insn) {
		free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
		p->ainsn.insn = NULL;
	}
L
Linus Torvalds 已提交
426 427
}

428
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
429
{
430 431
	kcb->prev_kprobe.kp = kprobe_running();
	kcb->prev_kprobe.status = kcb->kprobe_status;
432 433
	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
434 435
}

436
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
437
{
C
Christoph Lameter 已提交
438
	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
439
	kcb->kprobe_status = kcb->prev_kprobe.status;
440 441
	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
442 443
}

444
static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
445
				struct kprobe_ctlblk *kcb)
446
{
C
Christoph Lameter 已提交
447
	__this_cpu_write(current_kprobe, p);
448
	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
449
		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
450
	if (p->ainsn.if_modifier)
451
		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
452 453
}

H
Harvey Harrison 已提交
454
static void __kprobes clear_btf(void)
R
Roland McGrath 已提交
455
{
P
Peter Zijlstra 已提交
456 457 458 459 460 461
	if (test_thread_flag(TIF_BLOCKSTEP)) {
		unsigned long debugctl = get_debugctlmsr();

		debugctl &= ~DEBUGCTLMSR_BTF;
		update_debugctlmsr(debugctl);
	}
R
Roland McGrath 已提交
462 463
}

H
Harvey Harrison 已提交
464
static void __kprobes restore_btf(void)
R
Roland McGrath 已提交
465
{
P
Peter Zijlstra 已提交
466 467 468 469 470 471
	if (test_thread_flag(TIF_BLOCKSTEP)) {
		unsigned long debugctl = get_debugctlmsr();

		debugctl |= DEBUGCTLMSR_BTF;
		update_debugctlmsr(debugctl);
	}
R
Roland McGrath 已提交
472 473
}

474 475
void __kprobes
arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
476
{
477
	unsigned long *sara = stack_addr(regs);
478

479
	ri->ret_addr = (kprobe_opcode_t *) *sara;
480

481 482
	/* Replace the return addr with trampoline addr */
	*sara = (unsigned long) &kretprobe_trampoline;
483
}
484

485 486
static void __kprobes
setup_singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb, int reenter)
487
{
488 489 490
	if (setup_detour_execution(p, regs, reenter))
		return;

491
#if !defined(CONFIG_PREEMPT)
492 493
	if (p->ainsn.boostable == 1 && !p->post_handler) {
		/* Boost up -- we can execute copied instructions directly */
494 495 496 497 498 499 500
		if (!reenter)
			reset_current_kprobe();
		/*
		 * Reentering boosted probe doesn't reset current_kprobe,
		 * nor set current_kprobe, because it doesn't use single
		 * stepping.
		 */
501 502 503 504 505
		regs->ip = (unsigned long)p->ainsn.insn;
		preempt_enable_no_resched();
		return;
	}
#endif
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
	if (reenter) {
		save_previous_kprobe(kcb);
		set_current_kprobe(p, regs, kcb);
		kcb->kprobe_status = KPROBE_REENTER;
	} else
		kcb->kprobe_status = KPROBE_HIT_SS;
	/* Prepare real single stepping */
	clear_btf();
	regs->flags |= X86_EFLAGS_TF;
	regs->flags &= ~X86_EFLAGS_IF;
	/* single step inline if the instruction is an int3 */
	if (p->opcode == BREAKPOINT_INSTRUCTION)
		regs->ip = (unsigned long)p->addr;
	else
		regs->ip = (unsigned long)p->ainsn.insn;
521 522
}

H
Harvey Harrison 已提交
523 524 525 526 527
/*
 * We have reentered the kprobe_handler(), since another probe was hit while
 * within the handler. We save the original kprobes variables and just single
 * step on the instruction of the new probe without calling any user handlers.
 */
528 529
static int __kprobes
reenter_kprobe(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
H
Harvey Harrison 已提交
530
{
531 532 533
	switch (kcb->kprobe_status) {
	case KPROBE_HIT_SSDONE:
	case KPROBE_HIT_ACTIVE:
534
		kprobes_inc_nmissed_count(p);
535
		setup_singlestep(p, regs, kcb, 1);
536 537
		break;
	case KPROBE_HIT_SS:
538 539 540 541 542 543 544 545 546 547
		/* A probe has been hit in the codepath leading up to, or just
		 * after, single-stepping of a probed instruction. This entire
		 * codepath should strictly reside in .kprobes.text section.
		 * Raise a BUG or we'll continue in an endless reentering loop
		 * and eventually a stack overflow.
		 */
		printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
		       p->addr);
		dump_kprobe(p);
		BUG();
548 549 550
	default:
		/* impossible cases */
		WARN_ON(1);
551
		return 0;
552
	}
553

554
	return 1;
H
Harvey Harrison 已提交
555
}
556

557 558
/*
 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
559
 * remain disabled throughout this function.
560 561
 */
static int __kprobes kprobe_handler(struct pt_regs *regs)
L
Linus Torvalds 已提交
562
{
563
	kprobe_opcode_t *addr;
564
	struct kprobe *p;
565 566
	struct kprobe_ctlblk *kcb;

567
	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
568 569
	/*
	 * We don't want to be preempted for the entire
570 571 572
	 * duration of kprobe processing. We conditionally
	 * re-enable preemption at the end of this function,
	 * and also in reenter_kprobe() and setup_singlestep().
573 574
	 */
	preempt_disable();
L
Linus Torvalds 已提交
575

576
	kcb = get_kprobe_ctlblk();
577
	p = get_kprobe(addr);
578

579 580
	if (p) {
		if (kprobe_running()) {
581 582
			if (reenter_kprobe(p, regs, kcb))
				return 1;
L
Linus Torvalds 已提交
583
		} else {
584 585
			set_current_kprobe(p, regs, kcb);
			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
586

L
Linus Torvalds 已提交
587
			/*
588 589 590 591 592 593
			 * If we have no pre-handler or it returned 0, we
			 * continue with normal processing.  If we have a
			 * pre-handler and it returned non-zero, it prepped
			 * for calling the break_handler below on re-entry
			 * for jprobe processing, so get out doing nothing
			 * more here.
L
Linus Torvalds 已提交
594
			 */
595
			if (!p->pre_handler || !p->pre_handler(p, regs))
596
				setup_singlestep(p, regs, kcb, 0);
597
			return 1;
598
		}
599 600 601 602 603 604 605 606 607 608 609 610 611
	} else if (*addr != BREAKPOINT_INSTRUCTION) {
		/*
		 * The breakpoint instruction was removed right
		 * after we hit it.  Another cpu has removed
		 * either a probepoint or a debugger breakpoint
		 * at this address.  In either case, no further
		 * handling of this interrupt is appropriate.
		 * Back up over the (now missing) int3 and run
		 * the original instruction.
		 */
		regs->ip = (unsigned long)addr;
		preempt_enable_no_resched();
		return 1;
612
	} else if (kprobe_running()) {
C
Christoph Lameter 已提交
613
		p = __this_cpu_read(current_kprobe);
614
		if (p->break_handler && p->break_handler(p, regs)) {
615 616
			if (!skip_singlestep(p, regs, kcb))
				setup_singlestep(p, regs, kcb, 0);
617
			return 1;
L
Linus Torvalds 已提交
618
		}
619
	} /* else: not a kprobe fault; let the kernel handle it */
L
Linus Torvalds 已提交
620

621
	preempt_enable_no_resched();
622
	return 0;
L
Linus Torvalds 已提交
623 624
}

625
/*
626 627
 * When a retprobed function returns, this code saves registers and
 * calls trampoline_handler() runs, which calls the kretprobe's handler.
628
 */
629
static void __used __kprobes kretprobe_trampoline_holder(void)
630
{
631 632
	asm volatile (
			".global kretprobe_trampoline\n"
633
			"kretprobe_trampoline: \n"
634
#ifdef CONFIG_X86_64
635 636 637
			/* We don't bother saving the ss register */
			"	pushq %rsp\n"
			"	pushfq\n"
638
			SAVE_REGS_STRING
639 640 641 642
			"	movq %rsp, %rdi\n"
			"	call trampoline_handler\n"
			/* Replace saved sp with true return address. */
			"	movq %rax, 152(%rsp)\n"
643
			RESTORE_REGS_STRING
644
			"	popfq\n"
645 646
#else
			"	pushf\n"
647
			SAVE_REGS_STRING
648 649 650
			"	movl %esp, %eax\n"
			"	call trampoline_handler\n"
			/* Move flags to cs */
651 652
			"	movl 56(%esp), %edx\n"
			"	movl %edx, 52(%esp)\n"
653
			/* Replace saved flags with true return address. */
654
			"	movl %eax, 56(%esp)\n"
655
			RESTORE_REGS_STRING
656 657
			"	popf\n"
#endif
658
			"	ret\n");
659
}
660 661

/*
662
 * Called from kretprobe_trampoline
663
 */
664
static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
665
{
B
bibo,mao 已提交
666
	struct kretprobe_instance *ri = NULL;
667
	struct hlist_head *head, empty_rp;
668
	struct hlist_node *tmp;
669
	unsigned long flags, orig_ret_address = 0;
670
	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
671
	kprobe_opcode_t *correct_ret_addr = NULL;
672

673
	INIT_HLIST_HEAD(&empty_rp);
674
	kretprobe_hash_lock(current, &head, &flags);
675
	/* fixup registers */
676
#ifdef CONFIG_X86_64
677
	regs->cs = __KERNEL_CS;
678 679
#else
	regs->cs = __KERNEL_CS | get_kernel_rpl();
680
	regs->gs = 0;
681
#endif
682
	regs->ip = trampoline_address;
683
	regs->orig_ax = ~0UL;
684

685 686
	/*
	 * It is possible to have multiple instances associated with a given
687
	 * task either because multiple functions in the call path have
688
	 * return probes installed on them, and/or more than one
689 690 691
	 * return probe was registered for a target function.
	 *
	 * We can handle this because:
692
	 *     - instances are always pushed into the head of the list
693
	 *     - when multiple return probes are registered for the same
694 695 696
	 *	 function, the (chronologically) first instance's ret_addr
	 *	 will be the real return address, and all the rest will
	 *	 point to kretprobe_trampoline.
697
	 */
698
	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
B
bibo,mao 已提交
699
		if (ri->task != current)
700
			/* another task is sharing our hash bucket */
B
bibo,mao 已提交
701
			continue;
702

703 704 705 706 707 708 709 710 711 712 713 714 715 716
		orig_ret_address = (unsigned long)ri->ret_addr;

		if (orig_ret_address != trampoline_address)
			/*
			 * This is the real return address. Any other
			 * instances associated with this task are for
			 * other calls deeper on the call stack
			 */
			break;
	}

	kretprobe_assert(ri, orig_ret_address, trampoline_address);

	correct_ret_addr = ri->ret_addr;
717
	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
718 719 720 721 722
		if (ri->task != current)
			/* another task is sharing our hash bucket */
			continue;

		orig_ret_address = (unsigned long)ri->ret_addr;
723
		if (ri->rp && ri->rp->handler) {
C
Christoph Lameter 已提交
724
			__this_cpu_write(current_kprobe, &ri->rp->kp);
725
			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
726
			ri->ret_addr = correct_ret_addr;
727
			ri->rp->handler(ri, regs);
C
Christoph Lameter 已提交
728
			__this_cpu_write(current_kprobe, NULL);
729
		}
730

731
		recycle_rp_inst(ri, &empty_rp);
732 733 734 735 736 737 738 739

		if (orig_ret_address != trampoline_address)
			/*
			 * This is the real return address. Any other
			 * instances associated with this task are for
			 * other calls deeper on the call stack
			 */
			break;
740
	}
741

742
	kretprobe_hash_unlock(current, &flags);
743

744
	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
745 746 747
		hlist_del(&ri->hlist);
		kfree(ri);
	}
748
	return (void *)orig_ret_address;
749 750
}

L
Linus Torvalds 已提交
751 752 753 754 755 756 757 758 759 760 761 762
/*
 * Called after single-stepping.  p->addr is the address of the
 * instruction whose first byte has been replaced by the "int 3"
 * instruction.  To avoid the SMP problems that can occur when we
 * temporarily put back the original opcode to single-step, we
 * single-stepped a copy of the instruction.  The address of this
 * copy is p->ainsn.insn.
 *
 * This function prepares to return from the post-single-step
 * interrupt.  We have to fix up the stack as follows:
 *
 * 0) Except in the case of absolute or indirect jump or call instructions,
763
 * the new ip is relative to the copied instruction.  We need to make
L
Linus Torvalds 已提交
764 765 766
 * it relative to the original instruction.
 *
 * 1) If the single-stepped instruction was pushfl, then the TF and IF
767
 * flags are set in the just-pushed flags, and may need to be cleared.
L
Linus Torvalds 已提交
768 769 770 771
 *
 * 2) If the single-stepped instruction was a call, the return address
 * that is atop the stack is the address following the copied instruction.
 * We need to make it the address following the original instruction.
772 773 774 775 776
 *
 * If this is the first time we've single-stepped the instruction at
 * this probepoint, and the instruction is boostable, boost it: add a
 * jump instruction after the copied instruction, that jumps to the next
 * instruction after the probepoint.
L
Linus Torvalds 已提交
777
 */
778 779
static void __kprobes
resume_execution(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
L
Linus Torvalds 已提交
780
{
781 782 783
	unsigned long *tos = stack_addr(regs);
	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
	unsigned long orig_ip = (unsigned long)p->addr;
L
Linus Torvalds 已提交
784 785
	kprobe_opcode_t *insn = p->ainsn.insn;

786 787
	/* Skip prefixes */
	insn = skip_prefixes(insn);
L
Linus Torvalds 已提交
788

789
	regs->flags &= ~X86_EFLAGS_TF;
L
Linus Torvalds 已提交
790
	switch (*insn) {
M
Masami Hiramatsu 已提交
791
	case 0x9c:	/* pushfl */
792
		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
793
		*tos |= kcb->kprobe_old_flags;
L
Linus Torvalds 已提交
794
		break;
M
Masami Hiramatsu 已提交
795 796
	case 0xc2:	/* iret/ret/lret */
	case 0xc3:
797
	case 0xca:
M
Masami Hiramatsu 已提交
798 799 800 801
	case 0xcb:
	case 0xcf:
	case 0xea:	/* jmp absolute -- ip is correct */
		/* ip is already adjusted, no more changes required */
802
		p->ainsn.boostable = 1;
M
Masami Hiramatsu 已提交
803 804
		goto no_change;
	case 0xe8:	/* call relative - Fix return addr */
805
		*tos = orig_ip + (*tos - copy_ip);
L
Linus Torvalds 已提交
806
		break;
H
Harvey Harrison 已提交
807
#ifdef CONFIG_X86_32
808 809 810 811
	case 0x9a:	/* call absolute -- same as call absolute, indirect */
		*tos = orig_ip + (*tos - copy_ip);
		goto no_change;
#endif
L
Linus Torvalds 已提交
812
	case 0xff:
813
		if ((insn[1] & 0x30) == 0x10) {
814 815 816 817 818 819
			/*
			 * call absolute, indirect
			 * Fix return addr; ip is correct.
			 * But this is not boostable
			 */
			*tos = orig_ip + (*tos - copy_ip);
M
Masami Hiramatsu 已提交
820
			goto no_change;
821 822 823 824 825 826
		} else if (((insn[1] & 0x31) == 0x20) ||
			   ((insn[1] & 0x31) == 0x21)) {
			/*
			 * jmp near and far, absolute indirect
			 * ip is correct. And this is boostable
			 */
827
			p->ainsn.boostable = 1;
M
Masami Hiramatsu 已提交
828
			goto no_change;
L
Linus Torvalds 已提交
829 830 831 832 833
		}
	default:
		break;
	}

834
	if (p->ainsn.boostable == 0) {
835 836
		if ((regs->ip > copy_ip) &&
		    (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
837 838 839 840
			/*
			 * These instructions can be executed directly if it
			 * jumps back to correct address.
			 */
841 842
			synthesize_reljump((void *)regs->ip,
				(void *)orig_ip + (regs->ip - copy_ip));
843 844 845 846 847 848
			p->ainsn.boostable = 1;
		} else {
			p->ainsn.boostable = -1;
		}
	}

849
	regs->ip += orig_ip - copy_ip;
850

M
Masami Hiramatsu 已提交
851
no_change:
R
Roland McGrath 已提交
852
	restore_btf();
L
Linus Torvalds 已提交
853 854
}

855 856
/*
 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
857
 * remain disabled throughout this function.
858 859
 */
static int __kprobes post_kprobe_handler(struct pt_regs *regs)
L
Linus Torvalds 已提交
860
{
861 862 863 864
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	if (!cur)
L
Linus Torvalds 已提交
865 866
		return 0;

867 868 869
	resume_execution(cur, regs, kcb);
	regs->flags |= kcb->kprobe_saved_flags;

870 871 872
	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
		kcb->kprobe_status = KPROBE_HIT_SSDONE;
		cur->post_handler(cur, regs, 0);
873
	}
L
Linus Torvalds 已提交
874

875
	/* Restore back the original saved kprobes variables and continue. */
876 877
	if (kcb->kprobe_status == KPROBE_REENTER) {
		restore_previous_kprobe(kcb);
878 879
		goto out;
	}
880
	reset_current_kprobe();
881
out:
L
Linus Torvalds 已提交
882 883 884
	preempt_enable_no_resched();

	/*
885
	 * if somebody else is singlestepping across a probe point, flags
L
Linus Torvalds 已提交
886 887 888
	 * will have TF set, in which case, continue the remaining processing
	 * of do_debug, as if this is not a probe hit.
	 */
889
	if (regs->flags & X86_EFLAGS_TF)
L
Linus Torvalds 已提交
890 891 892 893 894
		return 0;

	return 1;
}

895
int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
L
Linus Torvalds 已提交
896
{
897 898 899
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

900
	switch (kcb->kprobe_status) {
901 902 903 904 905
	case KPROBE_HIT_SS:
	case KPROBE_REENTER:
		/*
		 * We are here because the instruction being single
		 * stepped caused a page fault. We reset the current
906
		 * kprobe and the ip points back to the probe address
907 908 909
		 * and allow the page fault handler to continue as a
		 * normal page fault.
		 */
910
		regs->ip = (unsigned long)cur->addr;
911
		regs->flags |= kcb->kprobe_old_flags;
912 913 914 915
		if (kcb->kprobe_status == KPROBE_REENTER)
			restore_previous_kprobe(kcb);
		else
			reset_current_kprobe();
L
Linus Torvalds 已提交
916
		preempt_enable_no_resched();
917 918 919 920 921
		break;
	case KPROBE_HIT_ACTIVE:
	case KPROBE_HIT_SSDONE:
		/*
		 * We increment the nmissed count for accounting,
922
		 * we can also use npre/npostfault count for accounting
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
		 * these specific fault cases.
		 */
		kprobes_inc_nmissed_count(cur);

		/*
		 * We come here because instructions in the pre/post
		 * handler caused the page_fault, this could happen
		 * if handler tries to access user space by
		 * copy_from_user(), get_user() etc. Let the
		 * user-specified handler try to fix it first.
		 */
		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
			return 1;

		/*
		 * In case the user-specified fault handler returned
		 * zero, try to fix up.
		 */
941 942
		if (fixup_exception(regs))
			return 1;
H
Harvey Harrison 已提交
943

944
		/*
945
		 * fixup routine could not handle it,
946 947 948 949 950
		 * Let do_page_fault() fix it.
		 */
		break;
	default:
		break;
L
Linus Torvalds 已提交
951 952 953 954 955 956 957
	}
	return 0;
}

/*
 * Wrapper routine for handling exceptions.
 */
958 959
int __kprobes
kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data)
L
Linus Torvalds 已提交
960
{
J
Jan Engelhardt 已提交
961
	struct die_args *args = data;
962 963
	int ret = NOTIFY_DONE;

964
	if (args->regs && user_mode_vm(args->regs))
965 966
		return ret;

L
Linus Torvalds 已提交
967 968 969
	switch (val) {
	case DIE_INT3:
		if (kprobe_handler(args->regs))
970
			ret = NOTIFY_STOP;
L
Linus Torvalds 已提交
971 972
		break;
	case DIE_DEBUG:
973 974 975 976 977 978
		if (post_kprobe_handler(args->regs)) {
			/*
			 * Reset the BS bit in dr6 (pointed by args->err) to
			 * denote completion of processing
			 */
			(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
979
			ret = NOTIFY_STOP;
980
		}
L
Linus Torvalds 已提交
981 982
		break;
	case DIE_GPF:
983 984 985 986 987 988
		/*
		 * To be potentially processing a kprobe fault and to
		 * trust the result from kprobe_running(), we have
		 * be non-preemptible.
		 */
		if (!preemptible() && kprobe_running() &&
L
Linus Torvalds 已提交
989
		    kprobe_fault_handler(args->regs, args->trapnr))
990
			ret = NOTIFY_STOP;
L
Linus Torvalds 已提交
991 992 993 994
		break;
	default:
		break;
	}
995
	return ret;
L
Linus Torvalds 已提交
996 997
}

998
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
L
Linus Torvalds 已提交
999 1000 1001
{
	struct jprobe *jp = container_of(p, struct jprobe, kp);
	unsigned long addr;
1002
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
L
Linus Torvalds 已提交
1003

1004
	kcb->jprobe_saved_regs = *regs;
1005 1006 1007
	kcb->jprobe_saved_sp = stack_addr(regs);
	addr = (unsigned long)(kcb->jprobe_saved_sp);

L
Linus Torvalds 已提交
1008 1009 1010 1011 1012 1013 1014
	/*
	 * As Linus pointed out, gcc assumes that the callee
	 * owns the argument space and could overwrite it, e.g.
	 * tailcall optimization. So, to be absolutely safe
	 * we also save and restore enough stack bytes to cover
	 * the argument area.
	 */
1015
	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
1016
	       MIN_STACK_SIZE(addr));
1017
	regs->flags &= ~X86_EFLAGS_IF;
1018
	trace_hardirqs_off();
1019
	regs->ip = (unsigned long)(jp->entry);
L
Linus Torvalds 已提交
1020 1021 1022
	return 1;
}

1023
void __kprobes jprobe_return(void)
L
Linus Torvalds 已提交
1024
{
1025 1026
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	asm volatile (
#ifdef CONFIG_X86_64
			"       xchg   %%rbx,%%rsp	\n"
#else
			"       xchgl   %%ebx,%%esp	\n"
#endif
			"       int3			\n"
			"       .globl jprobe_return_end\n"
			"       jprobe_return_end:	\n"
			"       nop			\n"::"b"
			(kcb->jprobe_saved_sp):"memory");
L
Linus Torvalds 已提交
1038 1039
}

1040
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
L
Linus Torvalds 已提交
1041
{
1042
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1043
	u8 *addr = (u8 *) (regs->ip - 1);
L
Linus Torvalds 已提交
1044 1045
	struct jprobe *jp = container_of(p, struct jprobe, kp);

1046 1047
	if ((addr > (u8 *) jprobe_return) &&
	    (addr < (u8 *) jprobe_return_end)) {
1048
		if (stack_addr(regs) != kcb->jprobe_saved_sp) {
M
Masami Hiramatsu 已提交
1049
			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1050 1051
			printk(KERN_ERR
			       "current sp %p does not match saved sp %p\n",
1052
			       stack_addr(regs), kcb->jprobe_saved_sp);
1053
			printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1054
			show_regs(saved_regs);
1055
			printk(KERN_ERR "Current registers\n");
1056
			show_regs(regs);
L
Linus Torvalds 已提交
1057 1058
			BUG();
		}
1059
		*regs = kcb->jprobe_saved_regs;
1060 1061 1062
		memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
		       kcb->jprobes_stack,
		       MIN_STACK_SIZE(kcb->jprobe_saved_sp));
1063
		preempt_enable_no_resched();
L
Linus Torvalds 已提交
1064 1065 1066 1067
		return 1;
	}
	return 0;
}
1068

1069
int __init arch_init_kprobes(void)
1070
{
1071
	return arch_init_optprobes();
1072
}
1073 1074 1075 1076 1077

int __kprobes arch_trampoline_kprobe(struct kprobe *p)
{
	return 0;
}