i915_gem.c 118.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
32
#include "intel_drv.h"
33
#include <linux/swap.h>
J
Jesse Barnes 已提交
34
#include <linux/pci.h>
35

36 37
#define I915_GEM_GPU_DOMAINS	(~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))

38 39 40 41 42 43 44 45 46
static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
47
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
48 49 50 51
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
static int i915_gem_evict_something(struct drm_device *dev);
52 53 54
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
55

J
Jesse Barnes 已提交
56 57
int i915_gem_do_init(struct drm_device *dev, unsigned long start,
		     unsigned long end)
58 59 60
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
61 62 63
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
64 65 66
		return -EINVAL;
	}

J
Jesse Barnes 已提交
67 68
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
69

J
Jesse Barnes 已提交
70 71 72 73
	dev->gtt_total = (uint32_t) (end - start);

	return 0;
}
74

J
Jesse Barnes 已提交
75 76 77 78 79 80 81 82 83
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
84 85
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
86
	return ret;
87 88
}

89 90 91 92 93 94 95 96 97 98
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	args->aper_size = dev->gtt_total;
99 100
	args->aper_available_size = (args->aper_size -
				     atomic_read(&dev->pin_memory));
101 102 103 104

	return 0;
}

105 106 107 108 109 110 111 112 113 114

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
115 116
	int ret;
	u32 handle;
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
	obj = drm_gem_object_alloc(dev, args->size);
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
	mutex_lock(&dev->struct_mutex);
	drm_gem_object_handle_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	if (ret)
		return ret;

	args->handle = handle;

	return 0;
}

138 139 140 141 142 143 144
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
	char __iomem *vaddr;
145
	int unwritten;
146 147 148 149

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
150
	unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
151 152
	kunmap_atomic(vaddr, KM_USER0);

153 154 155 156
	if (unwritten)
		return -EFAULT;

	return 0;
157 158
}

159 160 161 162 163 164 165 166 167
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
static inline int
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

	dst_vaddr = kmap_atomic(dst_page, KM_USER0);
	if (dst_vaddr == NULL)
		return -ENOMEM;

	src_vaddr = kmap_atomic(src_page, KM_USER1);
	if (src_vaddr == NULL) {
		kunmap_atomic(dst_vaddr, KM_USER0);
		return -ENOMEM;
	}

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

	kunmap_atomic(src_vaddr, KM_USER1);
	kunmap_atomic(dst_vaddr, KM_USER0);

	return 0;
}

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
static inline int
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

	gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
	if (gpu_vaddr == NULL)
		return -ENOMEM;

	cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
	if (cpu_vaddr == NULL) {
		kunmap_atomic(gpu_vaddr, KM_USER0);
		return -ENOMEM;
	}

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	kunmap_atomic(cpu_vaddr, KM_USER1);
	kunmap_atomic(gpu_vaddr, KM_USER0);

	return 0;
}

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
	int ret;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	mutex_lock(&dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

	obj_priv = obj->driver_private;
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_read(obj_priv->pages,
				      page_base, page_offset,
				      user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
341
	int do_bit17_swizzling;
342 343 344 345 346 347 348 349 350 351 352

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

353
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
354 355 356 357 358
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
359
				      num_pages, 1, 0, user_pages, NULL);
360 361 362 363 364 365
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
	}

366 367
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	mutex_lock(&dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

	obj_priv = obj->driver_private;
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

402 403 404 405 406 407 408 409 410 411 412 413 414 415
		if (do_bit17_swizzling) {
			ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
						    shmem_page_offset,
						    user_pages[data_page_index],
						    data_page_offset,
						    page_length,
						    1);
		} else {
			ret = slow_shmem_copy(user_pages[data_page_index],
					      data_page_offset,
					      obj_priv->pages[shmem_page_index],
					      shmem_page_offset,
					      page_length);
		}
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
433
	drm_free_large(user_pages);
434 435 436 437

	return ret;
}

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
	obj_priv = obj->driver_private;

	/* Bounds check source.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
		drm_gem_object_unreference(obj);
		return -EINVAL;
	}

467
	if (i915_gem_object_needs_bit17_swizzle(obj)) {
468
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
469 470 471 472 473 474
	} else {
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
		if (ret != 0)
			ret = i915_gem_shmem_pread_slow(dev, obj, args,
							file_priv);
	}
475 476 477

	drm_gem_object_unreference(obj);

478
	return ret;
479 480
}

481 482
/* This is the fast write path which cannot handle
 * page faults in the source data
483
 */
484 485 486 487 488 489

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
490 491
{
	char *vaddr_atomic;
492
	unsigned long unwritten;
493

494 495 496 497 498 499 500 501 502 503 504 505 506 507
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
	io_mapping_unmap_atomic(vaddr_atomic);
	if (unwritten)
		return -EFAULT;
	return 0;
}

/* Here's the write path which can sleep for
 * page faults
 */

static inline int
508 509 510 511
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
512
{
513
	char *src_vaddr, *dst_vaddr;
514 515
	unsigned long unwritten;

516 517 518 519 520 521 522
	dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
	src_vaddr = kmap_atomic(user_page, KM_USER1);
	unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
						      src_vaddr + user_offset,
						      length);
	kunmap_atomic(src_vaddr, KM_USER1);
	io_mapping_unmap_atomic(dst_vaddr);
523 524
	if (unwritten)
		return -EFAULT;
525 526 527
	return 0;
}

528 529 530 531 532 533 534
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
	char __iomem *vaddr;
535
	unsigned long unwritten;
536 537 538 539

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
540
	unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
541 542
	kunmap_atomic(vaddr, KM_USER0);

543 544
	if (unwritten)
		return -EFAULT;
545 546 547
	return 0;
}

548 549 550 551
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
552
static int
553 554 555
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
556 557
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
558
	drm_i915_private_t *dev_priv = dev->dev_private;
559
	ssize_t remain;
560
	loff_t offset, page_base;
561
	char __user *user_data;
562 563
	int page_offset, page_length;
	int ret;
564 565 566 567 568 569 570 571 572 573 574 575 576

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
	if (!access_ok(VERIFY_READ, user_data, remain))
		return -EFAULT;


	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_object_pin(obj, 0);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}
577
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
578 579 580 581 582 583 584 585 586
	if (ret)
		goto fail;

	obj_priv = obj->driver_private;
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
587 588 589
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
590
		 */
591 592 593 594 595 596 597 598 599 600
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
				       page_offset, user_data, page_length);

		/* If we get a fault while copying data, then (presumably) our
601 602
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
603
		 */
604 605
		if (ret)
			goto fail;
606

607 608 609
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
610 611 612 613 614 615 616 617 618
	}

fail:
	i915_gem_object_unpin(obj);
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

619 620 621 622 623 624 625
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
626
static int
627 628 629
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
630
{
631 632 633 634 635 636 637 638 639
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
640
	int ret;
641 642 643 644 645 646 647 648 649 650 651 652
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

653
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
654 655 656 657 658 659 660 661 662 663 664
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
665 666

	mutex_lock(&dev->struct_mutex);
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
	ret = i915_gem_object_pin(obj, 0);
	if (ret)
		goto out_unlock;

	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
		goto out_unpin_object;

	obj_priv = obj->driver_private;
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

		ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
					gtt_page_base, gtt_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);

		/* If we get a fault while copying data, then (presumably) our
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
		 */
		if (ret)
			goto out_unpin_object;

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_object:
	i915_gem_object_unpin(obj);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
723
	drm_free_large(user_pages);
724 725 726 727

	return ret;
}

728 729 730 731
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
732
static int
733 734 735
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
736
{
737 738 739 740 741
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
742
	int ret;
743 744 745

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
746 747 748

	mutex_lock(&dev->struct_mutex);

749 750 751
	ret = i915_gem_object_get_pages(obj);
	if (ret != 0)
		goto fail_unlock;
752

753
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
	if (ret != 0)
		goto fail_put_pages;

	obj_priv = obj->driver_private;
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_write(obj_priv->pages,
				       page_base, page_offset,
				       user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
816
	int do_bit17_swizzling;
817 818 819 820 821 822 823 824 825 826 827

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

828
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
829 830 831 832 833 834 835 836 837 838
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
839 840
	}

841 842
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

843 844 845 846 847 848 849 850 851 852 853
	mutex_lock(&dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
	if (ret != 0)
		goto fail_put_pages;

	obj_priv = obj->driver_private;
854
	offset = args->offset;
855
	obj_priv->dirty = 1;
856

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

877 878 879 880 881 882 883 884 885 886 887 888 889 890
		if (do_bit17_swizzling) {
			ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
						    shmem_page_offset,
						    user_pages[data_page_index],
						    data_page_offset,
						    page_length,
						    0);
		} else {
			ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length);
		}
891 892 893 894 895 896
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
897 898
	}

899 900 901
fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
902
	mutex_unlock(&dev->struct_mutex);
903 904 905
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
906
	drm_free_large(user_pages);
907

908
	return ret;
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
	obj_priv = obj->driver_private;

	/* Bounds check destination.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
		drm_gem_object_unreference(obj);
		return -EINVAL;
	}

	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
946 947 948
	if (obj_priv->phys_obj)
		ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
949 950 951 952 953 954
		 dev->gtt_total != 0) {
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
						       file_priv);
		}
955 956
	} else if (i915_gem_object_needs_bit17_swizzle(obj)) {
		ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
957 958 959 960 961 962 963
	} else {
		ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
							 file_priv);
		}
	}
964 965 966 967 968 969 970 971 972 973 974 975

#if WATCH_PWRITE
	if (ret)
		DRM_INFO("pwrite failed %d\n", ret);
#endif

	drm_gem_object_unreference(obj);

	return ret;
}

/**
976 977
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
978 979 980 981 982
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
983
	struct drm_i915_private *dev_priv = dev->dev_private;
984 985
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
986
	struct drm_i915_gem_object *obj_priv;
987 988
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
989 990 991 992 993
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

994
	/* Only handle setting domains to types used by the CPU. */
995
	if (write_domain & I915_GEM_GPU_DOMAINS)
996 997
		return -EINVAL;

998
	if (read_domains & I915_GEM_GPU_DOMAINS)
999 1000 1001 1002 1003 1004 1005 1006
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1007 1008 1009
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
1010
	obj_priv = obj->driver_private;
1011 1012

	mutex_lock(&dev->struct_mutex);
1013 1014 1015

	intel_mark_busy(dev, obj);

1016
#if WATCH_BUF
1017
	DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1018
		 obj, obj->size, read_domains, write_domain);
1019
#endif
1020 1021
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1022

1023 1024 1025 1026 1027 1028 1029 1030
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
			list_move_tail(&obj_priv->fence_list,
				       &dev_priv->mm.fence_list);
		}

1031 1032 1033 1034 1035 1036
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1037
	} else {
1038
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1039 1040
	}

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	mutex_lock(&dev->struct_mutex);
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}

#if WATCH_BUF
1069
	DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1070 1071 1072 1073 1074
		 __func__, args->handle, obj, obj->size);
#endif
	obj_priv = obj->driver_private;

	/* Pinned buffers may be scanout, so flush the cache */
1075 1076 1077
	if (obj_priv->pin_count)
		i915_gem_object_flush_cpu_write_domain(obj);

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
	mutex_lock(&dev->struct_mutex);
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1149
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
		ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return VM_FAULT_SIGBUS;
		}
1163 1164 1165 1166 1167 1168 1169

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return VM_FAULT_SIGBUS;
		}

J
Jesse Barnes 已提交
1170
		list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1171 1172 1173
	}

	/* Need a new fence register? */
1174
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1175
		ret = i915_gem_object_get_fence_reg(obj);
1176 1177
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
1178
			return VM_FAULT_SIGBUS;
1179
		}
1180
	}
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);

	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	case -EFAULT:
1195
	case -EINVAL:
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
		return VM_FAULT_SIGBUS;
	default:
		return VM_FAULT_NOPAGE;
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct drm_map_list *list;
1220
	struct drm_local_map *map;
1221 1222 1223 1224
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1225
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
	if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1265
	kfree(list->map);
1266 1267 1268 1269

	return ret;
}

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
 * Preserve the reservation of the mmaping with the DRM core code, but
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1284
void
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1312
		kfree(list->map);
1313 1314 1315 1316 1317 1318
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
	if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
	if (IS_I9XX(dev))
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;

	mutex_lock(&dev->struct_mutex);

	obj_priv = obj->driver_private;

	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1393 1394 1395
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
1396
			return ret;
1397
		}
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
	}

	args->offset = obj_priv->mmap_offset;

	obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);

	/* Make sure the alignment is correct for fence regs etc */
	if (obj_priv->agp_mem &&
	    (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
		ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
J
Jesse Barnes 已提交
1423
		list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1424 1425 1426 1427 1428 1429 1430 1431
	}

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1432
void
1433
i915_gem_object_put_pages(struct drm_gem_object *obj)
1434 1435 1436 1437 1438
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int page_count = obj->size / PAGE_SIZE;
	int i;

1439
	BUG_ON(obj_priv->pages_refcount == 0);
1440

1441 1442
	if (--obj_priv->pages_refcount != 0)
		return;
1443

1444 1445 1446
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1447
	for (i = 0; i < page_count; i++)
1448
		if (obj_priv->pages[i] != NULL) {
1449
			if (obj_priv->dirty)
1450 1451 1452
				set_page_dirty(obj_priv->pages[i]);
			mark_page_accessed(obj_priv->pages[i]);
			page_cache_release(obj_priv->pages[i]);
1453 1454 1455
		}
	obj_priv->dirty = 0;

1456
	drm_free_large(obj_priv->pages);
1457
	obj_priv->pages = NULL;
1458 1459 1460
}

static void
1461
i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
	/* Move from whatever list we were on to the tail of execution. */
1473
	spin_lock(&dev_priv->mm.active_list_lock);
1474 1475
	list_move_tail(&obj_priv->list,
		       &dev_priv->mm.active_list);
1476
	spin_unlock(&dev_priv->mm.active_list_lock);
1477
	obj_priv->last_rendering_seqno = seqno;
1478 1479
}

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	BUG_ON(!obj_priv->active);
	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
	obj_priv->last_rendering_seqno = 0;
}
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	i915_verify_inactive(dev, __FILE__, __LINE__);
	if (obj_priv->pin_count != 0)
		list_del_init(&obj_priv->list);
	else
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1505
	obj_priv->last_rendering_seqno = 0;
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

/**
 * Creates a new sequence number, emitting a write of it to the status page
 * plus an interrupt, which will trigger i915_user_interrupt_handler.
 *
 * Must be called with struct_lock held.
 *
 * Returned sequence numbers are nonzero on success.
 */
static uint32_t
1522 1523
i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
		 uint32_t flush_domains)
1524 1525
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1526
	struct drm_i915_file_private *i915_file_priv = NULL;
1527 1528 1529 1530 1531
	struct drm_i915_gem_request *request;
	uint32_t seqno;
	int was_empty;
	RING_LOCALS;

1532 1533 1534
	if (file_priv != NULL)
		i915_file_priv = file_priv->driver_priv;

1535
	request = kzalloc(sizeof(*request), GFP_KERNEL);
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
	if (request == NULL)
		return 0;

	/* Grab the seqno we're going to make this request be, and bump the
	 * next (skipping 0 so it can be the reserved no-seqno value).
	 */
	seqno = dev_priv->mm.next_gem_seqno;
	dev_priv->mm.next_gem_seqno++;
	if (dev_priv->mm.next_gem_seqno == 0)
		dev_priv->mm.next_gem_seqno++;

	BEGIN_LP_RING(4);
	OUT_RING(MI_STORE_DWORD_INDEX);
	OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	OUT_RING(seqno);

	OUT_RING(MI_USER_INTERRUPT);
	ADVANCE_LP_RING();

	DRM_DEBUG("%d\n", seqno);

	request->seqno = seqno;
	request->emitted_jiffies = jiffies;
	was_empty = list_empty(&dev_priv->mm.request_list);
	list_add_tail(&request->list, &dev_priv->mm.request_list);
1561 1562 1563 1564 1565 1566
	if (i915_file_priv) {
		list_add_tail(&request->client_list,
			      &i915_file_priv->mm.request_list);
	} else {
		INIT_LIST_HEAD(&request->client_list);
	}
1567

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
	/* Associate any objects on the flushing list matching the write
	 * domain we're flushing with our flush.
	 */
	if (flush_domains != 0) {
		struct drm_i915_gem_object *obj_priv, *next;

		list_for_each_entry_safe(obj_priv, next,
					 &dev_priv->mm.flushing_list, list) {
			struct drm_gem_object *obj = obj_priv->obj;

			if ((obj->write_domain & flush_domains) ==
			    obj->write_domain) {
				obj->write_domain = 0;
				i915_gem_object_move_to_active(obj, seqno);
			}
		}

	}

1587
	if (was_empty && !dev_priv->mm.suspended)
1588
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1589 1590 1591 1592 1593 1594 1595 1596 1597
	return seqno;
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1598
static uint32_t
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
i915_retire_commands(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
	uint32_t flush_domains = 0;
	RING_LOCALS;

	/* The sampler always gets flushed on i965 (sigh) */
	if (IS_I965G(dev))
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
	BEGIN_LP_RING(2);
	OUT_RING(cmd);
	OUT_RING(0); /* noop */
	ADVANCE_LP_RING();
	return flush_domains;
}

/**
 * Moves buffers associated only with the given active seqno from the active
 * to inactive list, potentially freeing them.
 */
static void
i915_gem_retire_request(struct drm_device *dev,
			struct drm_i915_gem_request *request)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
1629
	spin_lock(&dev_priv->mm.active_list_lock);
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
	while (!list_empty(&dev_priv->mm.active_list)) {
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

		obj_priv = list_first_entry(&dev_priv->mm.active_list,
					    struct drm_i915_gem_object,
					    list);
		obj = obj_priv->obj;

		/* If the seqno being retired doesn't match the oldest in the
		 * list, then the oldest in the list must still be newer than
		 * this seqno.
		 */
		if (obj_priv->last_rendering_seqno != request->seqno)
1644
			goto out;
1645

1646 1647 1648 1649 1650
#if WATCH_LRU
		DRM_INFO("%s: retire %d moves to inactive list %p\n",
			 __func__, request->seqno, obj);
#endif

1651 1652
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
1653 1654 1655 1656 1657 1658 1659 1660
		else {
			/* Take a reference on the object so it won't be
			 * freed while the spinlock is held.  The list
			 * protection for this spinlock is safe when breaking
			 * the lock like this since the next thing we do
			 * is just get the head of the list again.
			 */
			drm_gem_object_reference(obj);
1661
			i915_gem_object_move_to_inactive(obj);
1662 1663 1664 1665
			spin_unlock(&dev_priv->mm.active_list_lock);
			drm_gem_object_unreference(obj);
			spin_lock(&dev_priv->mm.active_list_lock);
		}
1666
	}
1667 1668
out:
	spin_unlock(&dev_priv->mm.active_list_lock);
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
}

/**
 * Returns true if seq1 is later than seq2.
 */
static int
i915_seqno_passed(uint32_t seq1, uint32_t seq2)
{
	return (int32_t)(seq1 - seq2) >= 0;
}

uint32_t
i915_get_gem_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1697 1698 1699
	if (!dev_priv->hw_status_page)
		return;

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	seqno = i915_get_gem_seqno(dev);

	while (!list_empty(&dev_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;
		uint32_t retiring_seqno;

		request = list_first_entry(&dev_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   list);
		retiring_seqno = request->seqno;

		if (i915_seqno_passed(seqno, retiring_seqno) ||
		    dev_priv->mm.wedged) {
			i915_gem_retire_request(dev, request);

			list_del(&request->list);
1716
			list_del(&request->client_list);
1717
			kfree(request);
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
		} else
			break;
	}
}

void
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

	mutex_lock(&dev->struct_mutex);
	i915_gem_retire_requests(dev);
1735 1736
	if (!dev_priv->mm.suspended &&
	    !list_empty(&dev_priv->mm.request_list))
1737
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1738 1739 1740 1741 1742 1743 1744
	mutex_unlock(&dev->struct_mutex);
}

/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
1745
static int
1746 1747 1748
i915_wait_request(struct drm_device *dev, uint32_t seqno)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1749
	u32 ier;
1750 1751 1752 1753 1754
	int ret = 0;

	BUG_ON(seqno == 0);

	if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1755 1756 1757 1758
		if (IS_IGDNG(dev))
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1759 1760 1761 1762 1763 1764 1765
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
		dev_priv->mm.waiting_gem_seqno = seqno;
		i915_user_irq_get(dev);
		ret = wait_event_interruptible(dev_priv->irq_queue,
					       i915_seqno_passed(i915_get_gem_seqno(dev),
								 seqno) ||
					       dev_priv->mm.wedged);
		i915_user_irq_put(dev);
		dev_priv->mm.waiting_gem_seqno = 0;
	}
	if (dev_priv->mm.wedged)
		ret = -EIO;

	if (ret && ret != -ERESTARTSYS)
		DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
			  __func__, ret, seqno, i915_get_gem_seqno(dev));

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
		i915_gem_retire_requests(dev);

	return ret;
}

static void
i915_gem_flush(struct drm_device *dev,
	       uint32_t invalidate_domains,
	       uint32_t flush_domains)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t cmd;
	RING_LOCALS;

#if WATCH_EXEC
	DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
		  invalidate_domains, flush_domains);
#endif

	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);

1810
	if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
		/*
		 * read/write caches:
		 *
		 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
		 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
		 * also flushed at 2d versus 3d pipeline switches.
		 *
		 * read-only caches:
		 *
		 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
		 * MI_READ_FLUSH is set, and is always flushed on 965.
		 *
		 * I915_GEM_DOMAIN_COMMAND may not exist?
		 *
		 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
		 * invalidated when MI_EXE_FLUSH is set.
		 *
		 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
		 * invalidated with every MI_FLUSH.
		 *
		 * TLBs:
		 *
		 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
		 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
		 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
		 * are flushed at any MI_FLUSH.
		 */

		cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
		if ((invalidate_domains|flush_domains) &
		    I915_GEM_DOMAIN_RENDER)
			cmd &= ~MI_NO_WRITE_FLUSH;
		if (!IS_I965G(dev)) {
			/*
			 * On the 965, the sampler cache always gets flushed
			 * and this bit is reserved.
			 */
			if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
				cmd |= MI_READ_FLUSH;
		}
		if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
			cmd |= MI_EXE_FLUSH;

#if WATCH_EXEC
		DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
#endif
		BEGIN_LP_RING(2);
		OUT_RING(cmd);
		OUT_RING(0); /* noop */
		ADVANCE_LP_RING();
	}
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
i915_gem_object_wait_rendering(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int ret;

1875 1876
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
1877
	 */
1878
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
#if WATCH_BUF
		DRM_INFO("%s: object %p wait for seqno %08x\n",
			  __func__, obj, obj_priv->last_rendering_seqno);
#endif
		ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
		if (ret != 0)
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
1899
int
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int ret = 0;

#if WATCH_BUF
	DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
	DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
#endif
	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

1918 1919 1920 1921 1922 1923
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

1924 1925 1926 1927 1928 1929
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
1930
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1931
	if (ret) {
1932 1933
		if (ret != -ERESTARTSYS)
			DRM_ERROR("set_domain failed: %d\n", ret);
1934 1935 1936
		return ret;
	}

1937 1938
	BUG_ON(obj_priv->active);

1939 1940 1941 1942 1943 1944
	if (obj_priv->agp_mem != NULL) {
		drm_unbind_agp(obj_priv->agp_mem);
		drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
		obj_priv->agp_mem = NULL;
	}

1945
	i915_gem_object_put_pages(obj);
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

	if (obj_priv->gtt_space) {
		atomic_dec(&dev->gtt_count);
		atomic_sub(obj->size, &dev->gtt_memory);

		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
	}

	/* Remove ourselves from the LRU list if present. */
	if (!list_empty(&obj_priv->list))
		list_del_init(&obj_priv->list);

	return 0;
}

static int
i915_gem_evict_something(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	for (;;) {
		/* If there's an inactive buffer available now, grab it
		 * and be done.
		 */
		if (!list_empty(&dev_priv->mm.inactive_list)) {
			obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
						    struct drm_i915_gem_object,
						    list);
			obj = obj_priv->obj;
			BUG_ON(obj_priv->pin_count != 0);
#if WATCH_LRU
			DRM_INFO("%s: evicting %p\n", __func__, obj);
#endif
			BUG_ON(obj_priv->active);

			/* Wait on the rendering and unbind the buffer. */
			ret = i915_gem_object_unbind(obj);
			break;
		}

		/* If we didn't get anything, but the ring is still processing
		 * things, wait for one of those things to finish and hopefully
		 * leave us a buffer to evict.
		 */
		if (!list_empty(&dev_priv->mm.request_list)) {
			struct drm_i915_gem_request *request;

			request = list_first_entry(&dev_priv->mm.request_list,
						   struct drm_i915_gem_request,
						   list);

			ret = i915_wait_request(dev, request->seqno);
			if (ret)
				break;

			/* if waiting caused an object to become inactive,
			 * then loop around and wait for it. Otherwise, we
			 * assume that waiting freed and unbound something,
			 * so there should now be some space in the GTT
			 */
			if (!list_empty(&dev_priv->mm.inactive_list))
				continue;
			break;
		}

		/* If we didn't have anything on the request list but there
		 * are buffers awaiting a flush, emit one and try again.
		 * When we wait on it, those buffers waiting for that flush
		 * will get moved to inactive.
		 */
		if (!list_empty(&dev_priv->mm.flushing_list)) {
			obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
						    struct drm_i915_gem_object,
						    list);
			obj = obj_priv->obj;

			i915_gem_flush(dev,
				       obj->write_domain,
				       obj->write_domain);
2029
			i915_add_request(dev, NULL, obj->write_domain);
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042

			obj = NULL;
			continue;
		}

		DRM_ERROR("inactive empty %d request empty %d "
			  "flushing empty %d\n",
			  list_empty(&dev_priv->mm.inactive_list),
			  list_empty(&dev_priv->mm.request_list),
			  list_empty(&dev_priv->mm.flushing_list));
		/* If we didn't do any of the above, there's nothing to be done
		 * and we just can't fit it in.
		 */
C
Chris Wilson 已提交
2043
		return -ENOSPC;
2044 2045 2046 2047
	}
	return ret;
}

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
static int
i915_gem_evict_everything(struct drm_device *dev)
{
	int ret;

	for (;;) {
		ret = i915_gem_evict_something(dev);
		if (ret != 0)
			break;
	}
C
Chris Wilson 已提交
2058
	if (ret == -ENOSPC)
2059
		return 0;
2060 2061 2062
	return ret;
}

2063
int
2064
i915_gem_object_get_pages(struct drm_gem_object *obj)
2065 2066 2067 2068 2069 2070 2071 2072
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;
	int ret;

2073
	if (obj_priv->pages_refcount++ != 0)
2074 2075 2076 2077 2078 2079
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2080
	BUG_ON(obj_priv->pages != NULL);
2081
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2082
	if (obj_priv->pages == NULL) {
2083
		DRM_ERROR("Faled to allocate page list\n");
2084
		obj_priv->pages_refcount--;
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
		page = read_mapping_page(mapping, i, NULL);
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			DRM_ERROR("read_mapping_page failed: %d\n", ret);
2095
			i915_gem_object_put_pages(obj);
2096 2097
			return ret;
		}
2098
		obj_priv->pages[i] = page;
2099
	}
2100 2101 2102 2103

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2104 2105 2106
	return 0;
}

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int regnum = obj_priv->fence_reg;
2134
	int tile_width;
2135
	uint32_t fence_reg, val;
2136 2137 2138 2139
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2140
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2141
		     __func__, obj_priv->gtt_offset, obj->size);
2142 2143 2144
		return;
	}

2145 2146 2147
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2148
	else
2149 2150 2151 2152 2153
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2154 2155 2156 2157 2158 2159 2160 2161

	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2162 2163 2164 2165 2166
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2178
	uint32_t fence_size_bits;
2179

2180
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2181
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2182
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2183
		     __func__, obj_priv->gtt_offset);
2184 2185 2186
		return;
	}

2187 2188 2189 2190
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2191 2192 2193
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2194 2195 2196
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2216 2217
int
i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2218 2219
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2220
	struct drm_i915_private *dev_priv = dev->dev_private;
2221 2222
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct drm_i915_fence_reg *reg = NULL;
2223 2224
	struct drm_i915_gem_object *old_obj_priv = NULL;
	int i, ret, avail;
2225

2226 2227 2228 2229 2230 2231
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
		list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
		return 0;
	}

2232 2233 2234 2235 2236
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2237 2238 2239 2240 2241
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2242 2243
		break;
	case I915_TILING_Y:
2244 2245 2246 2247 2248
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2249 2250 2251 2252
		break;
	}

	/* First try to find a free reg */
2253
	avail = 0;
2254 2255 2256 2257
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			break;
2258 2259 2260 2261

		old_obj_priv = reg->obj->driver_private;
		if (!old_obj_priv->pin_count)
		    avail++;
2262 2263 2264 2265
	}

	/* None available, try to steal one or wait for a user to finish */
	if (i == dev_priv->num_fence_regs) {
2266
		struct drm_gem_object *old_obj = NULL;
2267

2268
		if (avail == 0)
C
Chris Wilson 已提交
2269
			return -ENOSPC;
2270

2271 2272 2273
		list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
				    fence_list) {
			old_obj = old_obj_priv->obj;
2274 2275 2276 2277

			if (old_obj_priv->pin_count)
				continue;

2278 2279 2280 2281 2282 2283
			/* Take a reference, as otherwise the wait_rendering
			 * below may cause the object to get freed out from
			 * under us.
			 */
			drm_gem_object_reference(old_obj);

2284 2285
			/* i915 uses fences for GPU access to tiled buffers */
			if (IS_I965G(dev) || !old_obj_priv->active)
2286
				break;
2287

2288 2289 2290 2291 2292 2293 2294 2295
			/* This brings the object to the head of the LRU if it
			 * had been written to.  The only way this should
			 * result in us waiting longer than the expected
			 * optimal amount of time is if there was a
			 * fence-using buffer later that was read-only.
			 */
			i915_gem_object_flush_gpu_write_domain(old_obj);
			ret = i915_gem_object_wait_rendering(old_obj);
2296 2297
			if (ret != 0) {
				drm_gem_object_unreference(old_obj);
2298
				return ret;
2299
			}
2300

2301
			break;
2302 2303 2304 2305 2306 2307
		}

		/*
		 * Zap this virtual mapping so we can set up a fence again
		 * for this object next time we need it.
		 */
2308 2309
		i915_gem_release_mmap(old_obj);

2310
		i = old_obj_priv->fence_reg;
2311 2312
		reg = &dev_priv->fence_regs[i];

2313
		old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2314
		list_del_init(&old_obj_priv->fence_list);
2315

2316
		drm_gem_object_unreference(old_obj);
2317 2318 2319
	}

	obj_priv->fence_reg = i;
2320 2321
	list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);

2322 2323 2324 2325 2326 2327 2328 2329
	reg->obj = obj;

	if (IS_I965G(dev))
		i965_write_fence_reg(reg);
	else if (IS_I9XX(dev))
		i915_write_fence_reg(reg);
	else
		i830_write_fence_reg(reg);
2330 2331

	return 0;
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2345
	drm_i915_private_t *dev_priv = dev->dev_private;
2346 2347 2348 2349
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	if (IS_I965G(dev))
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	else {
		uint32_t fence_reg;

		if (obj_priv->fence_reg < 8)
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
		else
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
						       8) * 4;

		I915_WRITE(fence_reg, 0);
	}
2361 2362 2363

	dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2364
	list_del_init(&obj_priv->fence_list);
2365 2366
}

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
	if (!IS_I965G(dev)) {
		int ret;

		i915_gem_object_flush_gpu_write_domain(obj);
		i915_gem_object_flush_gtt_write_domain(obj);
		ret = i915_gem_object_wait_rendering(obj);
		if (ret != 0)
			return ret;
	}

	i915_gem_clear_fence_reg (obj);

	return 0;
}

2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	struct drm_mm_node *free_space;
	int page_count, ret;

2415 2416
	if (dev_priv->mm.suspended)
		return -EBUSY;
2417
	if (alignment == 0)
2418
		alignment = i915_gem_get_gtt_alignment(obj);
2419
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
	if (free_space != NULL) {
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
		if (obj_priv->gtt_space != NULL) {
			obj_priv->gtt_space->private = obj;
			obj_priv->gtt_offset = obj_priv->gtt_space->start;
		}
	}
	if (obj_priv->gtt_space == NULL) {
2436 2437
		bool lists_empty;

2438 2439 2440 2441 2442 2443
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
#if WATCH_LRU
		DRM_INFO("%s: GTT full, evicting something\n", __func__);
#endif
2444 2445 2446 2447 2448 2449
		spin_lock(&dev_priv->mm.active_list_lock);
		lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
			       list_empty(&dev_priv->mm.flushing_list) &&
			       list_empty(&dev_priv->mm.active_list));
		spin_unlock(&dev_priv->mm.active_list_lock);
		if (lists_empty) {
2450
			DRM_ERROR("GTT full, but LRU list empty\n");
C
Chris Wilson 已提交
2451
			return -ENOSPC;
2452 2453 2454 2455
		}

		ret = i915_gem_evict_something(dev);
		if (ret != 0) {
2456 2457
			if (ret != -ERESTARTSYS)
				DRM_ERROR("Failed to evict a buffer %d\n", ret);
2458 2459 2460 2461 2462 2463
			return ret;
		}
		goto search_free;
	}

#if WATCH_BUF
2464
	DRM_INFO("Binding object of size %zd at 0x%08x\n",
2465 2466
		 obj->size, obj_priv->gtt_offset);
#endif
2467
	ret = i915_gem_object_get_pages(obj);
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
		return ret;
	}

	page_count = obj->size / PAGE_SIZE;
	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2479
					       obj_priv->pages,
2480
					       page_count,
2481 2482
					       obj_priv->gtt_offset,
					       obj_priv->agp_type);
2483
	if (obj_priv->agp_mem == NULL) {
2484
		i915_gem_object_put_pages(obj);
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
		return -ENOMEM;
	}
	atomic_inc(&dev->gtt_count);
	atomic_add(obj->size, &dev->gtt_memory);

	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2496 2497
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510

	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
	struct drm_i915_gem_object	*obj_priv = obj->driver_private;

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2511
	if (obj_priv->pages == NULL)
2512 2513
		return;

2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
	/* XXX: The 865 in particular appears to be weird in how it handles
	 * cache flushing.  We haven't figured it out, but the
	 * clflush+agp_chipset_flush doesn't appear to successfully get the
	 * data visible to the PGU, while wbinvd + agp_chipset_flush does.
	 */
	if (IS_I865G(obj->dev)) {
		wbinvd();
		return;
	}

2524
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2525 2526
}

2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
/** Flushes any GPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	uint32_t seqno;

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
		return;

	/* Queue the GPU write cache flushing we need. */
	i915_gem_flush(dev, 0, obj->write_domain);
2539
	seqno = i915_add_request(dev, NULL, obj->write_domain);
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
	obj->write_domain = 0;
	i915_gem_object_move_to_active(obj, seqno);
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
	obj->write_domain = 0;
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
	obj->write_domain = 0;
}

2572 2573 2574 2575 2576 2577
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2578
int
2579 2580 2581
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
2582
	int ret;
2583

2584 2585 2586 2587
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2588 2589 2590 2591 2592 2593 2594 2595
	i915_gem_object_flush_gpu_write_domain(obj);
	/* Wait on any GPU rendering and flushing to occur. */
	ret = i915_gem_object_wait_rendering(obj);
	if (ret != 0)
		return ret;

	/* If we're writing through the GTT domain, then CPU and GPU caches
	 * will need to be invalidated at next use.
2596
	 */
2597 2598
	if (write)
		obj->read_domains &= I915_GEM_DOMAIN_GTT;
2599

2600
	i915_gem_object_flush_cpu_write_domain(obj);
2601

2602 2603 2604 2605 2606 2607 2608 2609
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2610 2611
	}

2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
	return 0;
}

/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
	int ret;

	i915_gem_object_flush_gpu_write_domain(obj);
2627
	/* Wait on any GPU rendering and flushing to occur. */
2628 2629 2630
	ret = i915_gem_object_wait_rendering(obj);
	if (ret != 0)
		return ret;
2631

2632
	i915_gem_object_flush_gtt_write_domain(obj);
2633

2634 2635
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2636
	 */
2637
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2638

2639 2640
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2641 2642
		i915_gem_clflush_object(obj);

2643
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2644 2645 2646 2647 2648
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2649 2650 2651 2652 2653 2654 2655 2656 2657
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
		obj->read_domains &= I915_GEM_DOMAIN_CPU;
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2658 2659 2660 2661

	return 0;
}

2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
2773
static void
2774
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2775 2776 2777 2778 2779
{
	struct drm_device		*dev = obj->dev;
	struct drm_i915_gem_object	*obj_priv = obj->driver_private;
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
2780

2781 2782
	BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
	BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2783

2784 2785
	intel_mark_busy(dev, obj);

2786 2787 2788
#if WATCH_BUF
	DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
		 __func__, obj,
2789 2790
		 obj->read_domains, obj->pending_read_domains,
		 obj->write_domain, obj->pending_write_domain);
2791 2792 2793 2794 2795
#endif
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
2796 2797
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
2798 2799 2800 2801 2802 2803 2804 2805 2806
	else
		obj_priv->dirty = 1;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
2807 2808
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
2809
		flush_domains |= obj->write_domain;
2810 2811
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
2812 2813 2814 2815 2816
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
2817
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2818 2819 2820 2821 2822 2823 2824 2825
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
#if WATCH_BUF
		DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
			 __func__, flush_domains, invalidate_domains);
#endif
		i915_gem_clflush_object(obj);
	}

2826 2827 2828 2829 2830 2831 2832 2833
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
2834
	obj->read_domains = obj->pending_read_domains;
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
#if WATCH_BUF
	DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
		 __func__,
		 obj->read_domains, obj->write_domain,
		 dev->invalidate_domains, dev->flush_domains);
#endif
}

/**
2847
 * Moves the object from a partially CPU read to a full one.
2848
 *
2849 2850
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2851
 */
2852 2853
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2854 2855 2856
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
2868
			drm_clflush_pages(obj_priv->pages + i, 1);
2869 2870 2871 2872 2873 2874
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
2875
	kfree(obj_priv->page_cpu_valid);
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int i, ret;
2897

2898 2899
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
2900

2901 2902
	i915_gem_object_flush_gpu_write_domain(obj);
	/* Wait on any GPU rendering and flushing to occur. */
2903
	ret = i915_gem_object_wait_rendering(obj);
2904
	if (ret != 0)
2905
		return ret;
2906 2907 2908 2909 2910 2911
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
2912

2913 2914 2915
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
2916
	if (obj_priv->page_cpu_valid == NULL) {
2917 2918
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
2919 2920 2921 2922
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2923 2924 2925 2926

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
2927 2928
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
2929 2930 2931
		if (obj_priv->page_cpu_valid[i])
			continue;

2932
		drm_clflush_pages(obj_priv->pages + i, 1);
2933 2934 2935 2936

		obj_priv->page_cpu_valid[i] = 1;
	}

2937 2938 2939 2940 2941 2942 2943
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	obj->read_domains |= I915_GEM_DOMAIN_CPU;

2944 2945 2946 2947 2948 2949 2950 2951 2952
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
				 struct drm_file *file_priv,
2953 2954
				 struct drm_i915_gem_exec_object *entry,
				 struct drm_i915_gem_relocation_entry *relocs)
2955 2956
{
	struct drm_device *dev = obj->dev;
2957
	drm_i915_private_t *dev_priv = dev->dev_private;
2958 2959
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int i, ret;
2960
	void __iomem *reloc_page;
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972

	/* Choose the GTT offset for our buffer and put it there. */
	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
	if (ret)
		return ret;

	entry->offset = obj_priv->gtt_offset;

	/* Apply the relocations, using the GTT aperture to avoid cache
	 * flushing requirements.
	 */
	for (i = 0; i < entry->relocation_count; i++) {
2973
		struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2974 2975
		struct drm_gem_object *target_obj;
		struct drm_i915_gem_object *target_obj_priv;
2976 2977
		uint32_t reloc_val, reloc_offset;
		uint32_t __iomem *reloc_entry;
2978 2979

		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2980
						   reloc->target_handle);
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
		if (target_obj == NULL) {
			i915_gem_object_unpin(obj);
			return -EBADF;
		}
		target_obj_priv = target_obj->driver_private;

		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
		if (target_obj_priv->gtt_space == NULL) {
			DRM_ERROR("No GTT space found for object %d\n",
2992
				  reloc->target_handle);
2993 2994 2995 2996 2997
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

2998
		if (reloc->offset > obj->size - 4) {
2999 3000
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
3001 3002
				  obj, reloc->target_handle,
				  (int) reloc->offset, (int) obj->size);
3003 3004 3005 3006
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}
3007
		if (reloc->offset & 3) {
3008 3009
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
3010 3011
				  obj, reloc->target_handle,
				  (int) reloc->offset);
3012 3013 3014 3015 3016
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3017 3018
		if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3019 3020 3021
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3022 3023 3024 3025
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
3026 3027
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3028 3029 3030
			return -EINVAL;
		}

3031 3032
		if (reloc->write_domain && target_obj->pending_write_domain &&
		    reloc->write_domain != target_obj->pending_write_domain) {
3033 3034 3035
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3036 3037 3038
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->write_domain,
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
				  target_obj->pending_write_domain);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
3051 3052 3053 3054
			 (int) reloc->offset,
			 (int) reloc->target_handle,
			 (int) reloc->read_domains,
			 (int) reloc->write_domain,
3055
			 (int) target_obj_priv->gtt_offset,
3056 3057
			 (int) reloc->presumed_offset,
			 reloc->delta);
3058 3059
#endif

3060 3061
		target_obj->pending_read_domains |= reloc->read_domains;
		target_obj->pending_write_domain |= reloc->write_domain;
3062 3063 3064 3065

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3066
		if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3067 3068 3069 3070
			drm_gem_object_unreference(target_obj);
			continue;
		}

3071 3072 3073 3074 3075
		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret != 0) {
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
3076 3077 3078 3079 3080
		}

		/* Map the page containing the relocation we're going to
		 * perform.
		 */
3081
		reloc_offset = obj_priv->gtt_offset + reloc->offset;
3082 3083 3084
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      (reloc_offset &
						       ~(PAGE_SIZE - 1)));
3085
		reloc_entry = (uint32_t __iomem *)(reloc_page +
3086
						   (reloc_offset & (PAGE_SIZE - 1)));
3087
		reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3088 3089 3090

#if WATCH_BUF
		DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3091
			  obj, (unsigned int) reloc->offset,
3092 3093 3094
			  readl(reloc_entry), reloc_val);
#endif
		writel(reloc_val, reloc_entry);
3095
		io_mapping_unmap_atomic(reloc_page);
3096

3097 3098
		/* The updated presumed offset for this entry will be
		 * copied back out to the user.
3099
		 */
3100
		reloc->presumed_offset = target_obj_priv->gtt_offset;
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116

		drm_gem_object_unreference(target_obj);
	}

#if WATCH_BUF
	if (0)
		i915_gem_dump_object(obj, 128, __func__, ~0);
#endif
	return 0;
}

/** Dispatch a batchbuffer to the ring
 */
static int
i915_dispatch_gem_execbuffer(struct drm_device *dev,
			      struct drm_i915_gem_execbuffer *exec,
3117
			      struct drm_clip_rect *cliprects,
3118 3119 3120 3121 3122
			      uint64_t exec_offset)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int nbox = exec->num_cliprects;
	int i = 0, count;
3123
	uint32_t exec_start, exec_len;
3124 3125 3126 3127 3128 3129 3130 3131 3132
	RING_LOCALS;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	count = nbox ? nbox : 1;

	for (i = 0; i < count; i++) {
		if (i < nbox) {
3133
			int ret = i915_emit_box(dev, cliprects, i,
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
						exec->DR1, exec->DR4);
			if (ret)
				return ret;
		}

		if (IS_I830(dev) || IS_845G(dev)) {
			BEGIN_LP_RING(4);
			OUT_RING(MI_BATCH_BUFFER);
			OUT_RING(exec_start | MI_BATCH_NON_SECURE);
			OUT_RING(exec_start + exec_len - 4);
			OUT_RING(0);
			ADVANCE_LP_RING();
		} else {
			BEGIN_LP_RING(2);
			if (IS_I965G(dev)) {
				OUT_RING(MI_BATCH_BUFFER_START |
					 (2 << 6) |
					 MI_BATCH_NON_SECURE_I965);
				OUT_RING(exec_start);
			} else {
				OUT_RING(MI_BATCH_BUFFER_START |
					 (2 << 6));
				OUT_RING(exec_start | MI_BATCH_NON_SECURE);
			}
			ADVANCE_LP_RING();
		}
	}

	/* XXX breadcrumb */
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3169 3170 3171 3172
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3173 3174 3175 3176 3177 3178 3179 3180
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
static int
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
	int ret = 0;
3181
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3182 3183

	mutex_lock(&dev->struct_mutex);
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
	while (!list_empty(&i915_file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&i915_file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);

		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;

		ret = i915_wait_request(dev, request->seqno);
		if (ret != 0)
			break;
	}
3198
	mutex_unlock(&dev->struct_mutex);
3199

3200 3201 3202
	return ret;
}

3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
static int
i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
			      uint32_t buffer_count,
			      struct drm_i915_gem_relocation_entry **relocs)
{
	uint32_t reloc_count = 0, reloc_index = 0, i;
	int ret;

	*relocs = NULL;
	for (i = 0; i < buffer_count; i++) {
		if (reloc_count + exec_list[i].relocation_count < reloc_count)
			return -EINVAL;
		reloc_count += exec_list[i].relocation_count;
	}

3218
	*relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
	if (*relocs == NULL)
		return -ENOMEM;

	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

		ret = copy_from_user(&(*relocs)[reloc_index],
				     user_relocs,
				     exec_list[i].relocation_count *
				     sizeof(**relocs));
		if (ret != 0) {
3232
			drm_free_large(*relocs);
3233
			*relocs = NULL;
3234
			return -EFAULT;
3235 3236 3237 3238 3239
		}

		reloc_index += exec_list[i].relocation_count;
	}

3240
	return 0;
3241 3242 3243 3244 3245 3246 3247 3248
}

static int
i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
			    uint32_t buffer_count,
			    struct drm_i915_gem_relocation_entry *relocs)
{
	uint32_t reloc_count = 0, i;
3249
	int ret = 0;
3250 3251 3252

	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;
3253
		int unwritten;
3254 3255 3256

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

3257 3258 3259 3260 3261 3262 3263 3264
		unwritten = copy_to_user(user_relocs,
					 &relocs[reloc_count],
					 exec_list[i].relocation_count *
					 sizeof(*relocs));

		if (unwritten) {
			ret = -EFAULT;
			goto err;
3265 3266 3267 3268 3269
		}

		reloc_count += exec_list[i].relocation_count;
	}

3270
err:
3271
	drm_free_large(relocs);
3272 3273 3274 3275

	return ret;
}

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
static int
i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
			   uint64_t exec_offset)
{
	uint32_t exec_start, exec_len;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;

	if (!exec_start)
		return -EINVAL;

	return 0;
}

3294 3295 3296 3297 3298 3299 3300 3301 3302
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3303
	struct drm_i915_gem_object *obj_priv;
3304
	struct drm_clip_rect *cliprects = NULL;
3305 3306
	struct drm_i915_gem_relocation_entry *relocs;
	int ret, ret2, i, pinned = 0;
3307
	uint64_t exec_offset;
3308
	uint32_t seqno, flush_domains, reloc_index;
3309
	int pin_tries;
3310 3311 3312 3313 3314 3315

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

3316 3317 3318 3319
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3320
	/* Copy in the exec list from userland */
3321 3322
	exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
	object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
	if (exec_list == NULL || object_list == NULL) {
		DRM_ERROR("Failed to allocate exec or object list "
			  "for %d buffers\n",
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		goto pre_mutex_err;
	}

3340
	if (args->num_cliprects != 0) {
3341 3342
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
		if (cliprects == NULL)
			goto pre_mutex_err;

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
			goto pre_mutex_err;
		}
	}

3357 3358 3359 3360 3361
	ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
					    &relocs);
	if (ret != 0)
		goto pre_mutex_err;

3362 3363 3364 3365 3366 3367 3368
	mutex_lock(&dev->struct_mutex);

	i915_verify_inactive(dev, __FILE__, __LINE__);

	if (dev_priv->mm.wedged) {
		DRM_ERROR("Execbuf while wedged\n");
		mutex_unlock(&dev->struct_mutex);
3369 3370
		ret = -EIO;
		goto pre_mutex_err;
3371 3372 3373 3374 3375
	}

	if (dev_priv->mm.suspended) {
		DRM_ERROR("Execbuf while VT-switched.\n");
		mutex_unlock(&dev->struct_mutex);
3376 3377
		ret = -EBUSY;
		goto pre_mutex_err;
3378 3379
	}

3380
	/* Look up object handles */
3381 3382 3383 3384 3385 3386 3387 3388 3389
	for (i = 0; i < args->buffer_count; i++) {
		object_list[i] = drm_gem_object_lookup(dev, file_priv,
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
			ret = -EBADF;
			goto err;
		}
3390 3391 3392 3393 3394 3395 3396 3397 3398

		obj_priv = object_list[i]->driver_private;
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
			ret = -EBADF;
			goto err;
		}
		obj_priv->in_execbuffer = true;
3399
	}
3400

3401 3402 3403
	/* Pin and relocate */
	for (pin_tries = 0; ; pin_tries++) {
		ret = 0;
3404 3405
		reloc_index = 0;

3406 3407 3408 3409 3410
		for (i = 0; i < args->buffer_count; i++) {
			object_list[i]->pending_read_domains = 0;
			object_list[i]->pending_write_domain = 0;
			ret = i915_gem_object_pin_and_relocate(object_list[i],
							       file_priv,
3411 3412
							       &exec_list[i],
							       &relocs[reloc_index]);
3413 3414 3415
			if (ret)
				break;
			pinned = i + 1;
3416
			reloc_index += exec_list[i].relocation_count;
3417 3418 3419 3420 3421 3422
		}
		/* success */
		if (ret == 0)
			break;

		/* error other than GTT full, or we've already tried again */
C
Chris Wilson 已提交
3423
		if (ret != -ENOSPC || pin_tries >= 1) {
3424 3425
			if (ret != -ERESTARTSYS)
				DRM_ERROR("Failed to pin buffers %d\n", ret);
3426 3427
			goto err;
		}
3428 3429 3430 3431

		/* unpin all of our buffers */
		for (i = 0; i < pinned; i++)
			i915_gem_object_unpin(object_list[i]);
3432
		pinned = 0;
3433 3434 3435 3436 3437

		/* evict everyone we can from the aperture */
		ret = i915_gem_evict_everything(dev);
		if (ret)
			goto err;
3438 3439 3440 3441
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3442 3443 3444 3445 3446 3447
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3448

3449 3450 3451 3452 3453 3454 3455 3456
	/* Sanity check the batch buffer, prior to moving objects */
	exec_offset = exec_list[args->buffer_count - 1].offset;
	ret = i915_gem_check_execbuffer (args, exec_offset);
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3457 3458
	i915_verify_inactive(dev, __FILE__, __LINE__);

3459 3460 3461 3462 3463 3464 3465
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;

3466 3467 3468
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3469
		/* Compute new gpu domains and update invalidate/flush */
3470
		i915_gem_object_set_to_gpu_domain(obj);
3471 3472 3473 3474
	}

	i915_verify_inactive(dev, __FILE__, __LINE__);

3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
		i915_gem_flush(dev,
			       dev->invalidate_domains,
			       dev->flush_domains);
		if (dev->flush_domains)
3486 3487
			(void)i915_add_request(dev, file_priv,
					       dev->flush_domains);
3488
	}
3489

3490 3491 3492 3493 3494 3495
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

		obj->write_domain = obj->pending_write_domain;
	}

3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
	i915_verify_inactive(dev, __FILE__, __LINE__);

#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3506
	i915_gem_dump_object(batch_obj,
3507 3508 3509 3510 3511 3512
			      args->batch_len,
			      __func__,
			      ~0);
#endif

	/* Exec the batchbuffer */
3513
	ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
	flush_domains = i915_retire_commands(dev);

	i915_verify_inactive(dev, __FILE__, __LINE__);

	/*
	 * Get a seqno representing the execution of the current buffer,
	 * which we can wait on.  We would like to mitigate these interrupts,
	 * likely by only creating seqnos occasionally (so that we have
	 * *some* interrupts representing completion of buffers that we can
	 * wait on when trying to clear up gtt space).
	 */
3534
	seqno = i915_add_request(dev, file_priv, flush_domains);
3535 3536 3537 3538
	BUG_ON(seqno == 0);
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3539
		i915_gem_object_move_to_active(obj, seqno);
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
#if WATCH_LRU
		DRM_INFO("%s: move to exec list %p\n", __func__, obj);
#endif
	}
#if WATCH_LRU
	i915_dump_lru(dev, __func__);
#endif

	i915_verify_inactive(dev, __FILE__, __LINE__);

err:
3551 3552 3553
	for (i = 0; i < pinned; i++)
		i915_gem_object_unpin(object_list[i]);

3554 3555 3556 3557 3558
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]) {
			obj_priv = object_list[i]->driver_private;
			obj_priv->in_execbuffer = false;
		}
3559
		drm_gem_object_unreference(object_list[i]);
3560
	}
3561 3562 3563

	mutex_unlock(&dev->struct_mutex);

3564 3565 3566 3567 3568 3569
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
3570 3571
		if (ret) {
			ret = -EFAULT;
3572 3573 3574
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
3575
		}
3576 3577
	}

3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
	/* Copy the updated relocations out regardless of current error
	 * state.  Failure to update the relocs would mean that the next
	 * time userland calls execbuf, it would do so with presumed offset
	 * state that didn't match the actual object state.
	 */
	ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
					   relocs);
	if (ret2 != 0) {
		DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);

		if (ret == 0)
			ret = ret2;
	}

3592
pre_mutex_err:
3593 3594
	drm_free_large(object_list);
	drm_free_large(exec_list);
3595
	kfree(cliprects);
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610

	return ret;
}

int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	int ret;

	i915_verify_inactive(dev, __FILE__, __LINE__);
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
		if (ret != 0) {
3611
			if (ret != -EBUSY && ret != -ERESTARTSYS)
3612
				DRM_ERROR("Failure to bind: %d\n", ret);
3613 3614
			return ret;
		}
3615 3616 3617 3618 3619
	}
	/*
	 * Pre-965 chips need a fence register set up in order to
	 * properly handle tiled surfaces.
	 */
3620
	if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3621
		ret = i915_gem_object_get_fence_reg(obj);
3622 3623 3624 3625 3626 3627
		if (ret != 0) {
			if (ret != -EBUSY && ret != -ERESTARTSYS)
				DRM_ERROR("Failure to install fence: %d\n",
					  ret);
			return ret;
		}
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
	}
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
		atomic_inc(&dev->pin_count);
		atomic_add(obj->size, &dev->pin_memory);
		if (!obj_priv->active &&
3638
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
		    !list_empty(&obj_priv->list))
			list_del_init(&obj_priv->list);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);

	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	i915_verify_inactive(dev, __FILE__, __LINE__);
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
		if (!obj_priv->active &&
3665
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.inactive_list);
		atomic_dec(&dev->pin_count);
		atomic_sub(obj->size, &dev->pin_memory);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}
	obj_priv = obj->driver_private;

J
Jesse Barnes 已提交
3694 3695 3696
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3697
		drm_gem_object_unreference(obj);
3698
		mutex_unlock(&dev->struct_mutex);
J
Jesse Barnes 已提交
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
		return -EINVAL;
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
		if (ret != 0) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
3711 3712 3713 3714 3715
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3716
	i915_gem_object_flush_cpu_write_domain(obj);
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
	args->offset = obj_priv->gtt_offset;
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
3730
	struct drm_i915_gem_object *obj_priv;
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}

J
Jesse Barnes 已提交
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
	obj_priv = obj->driver_private;
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
			  args->handle);
		return -EBADF;
	}

3776
	mutex_lock(&dev->struct_mutex);
3777 3778 3779 3780 3781 3782 3783
	/* Update the active list for the hardware's current position.
	 * Otherwise this only updates on a delayed timer or when irqs are
	 * actually unmasked, and our working set ends up being larger than
	 * required.
	 */
	i915_gem_retire_requests(dev);

3784
	obj_priv = obj->driver_private;
3785 3786 3787 3788 3789 3790 3791 3792
	/* Don't count being on the flushing list against the object being
	 * done.  Otherwise, a buffer left on the flushing list but not getting
	 * flushed (because nobody's flushing that domain) won't ever return
	 * unbusy and get reused by libdrm's bo cache.  The other expected
	 * consumer of this interface, OpenGL's occlusion queries, also specs
	 * that the objects get unbusy "eventually" without any interference.
	 */
	args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;

3810
	obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
	if (obj_priv == NULL)
		return -ENOMEM;

	/*
	 * We've just allocated pages from the kernel,
	 * so they've just been written by the CPU with
	 * zeros. They'll need to be clflushed before we
	 * use them with the GPU.
	 */
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;

3823 3824
	obj_priv->agp_type = AGP_USER_MEMORY;

3825 3826
	obj->driver_private = obj_priv;
	obj_priv->obj = obj;
3827
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
3828
	INIT_LIST_HEAD(&obj_priv->list);
3829
	INIT_LIST_HEAD(&obj_priv->fence_list);
3830

3831 3832 3833 3834 3835
	return 0;
}

void i915_gem_free_object(struct drm_gem_object *obj)
{
3836
	struct drm_device *dev = obj->dev;
3837 3838 3839 3840 3841
	struct drm_i915_gem_object *obj_priv = obj->driver_private;

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

3842 3843 3844
	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

3845 3846
	i915_gem_object_unbind(obj);

3847
	i915_gem_free_mmap_offset(obj);
3848

3849
	kfree(obj_priv->page_cpu_valid);
3850
	kfree(obj_priv->bit_17);
3851
	kfree(obj->driver_private);
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
}

/** Unbinds all objects that are on the given buffer list. */
static int
i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
{
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	while (!list_empty(head)) {
		obj_priv = list_first_entry(head,
					    struct drm_i915_gem_object,
					    list);
		obj = obj_priv->obj;

		if (obj_priv->pin_count != 0) {
			DRM_ERROR("Pinned object in unbind list\n");
			mutex_unlock(&dev->struct_mutex);
			return -EINVAL;
		}

		ret = i915_gem_object_unbind(obj);
		if (ret != 0) {
			DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
				  ret);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}


	return 0;
}

3887
int
3888 3889 3890 3891 3892 3893
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno, cur_seqno, last_seqno;
	int stuck, ret;

3894 3895 3896 3897
	mutex_lock(&dev->struct_mutex);

	if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
		mutex_unlock(&dev->struct_mutex);
3898
		return 0;
3899
	}
3900 3901 3902 3903 3904 3905

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 */
	dev_priv->mm.suspended = 1;

3906 3907 3908 3909 3910 3911
	/* Cancel the retire work handler, wait for it to finish if running
	 */
	mutex_unlock(&dev->struct_mutex);
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
	mutex_lock(&dev->struct_mutex);

3912 3913 3914 3915
	i915_kernel_lost_context(dev);

	/* Flush the GPU along with all non-CPU write domains
	 */
3916 3917
	i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945

	if (seqno == 0) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOMEM;
	}

	dev_priv->mm.waiting_gem_seqno = seqno;
	last_seqno = 0;
	stuck = 0;
	for (;;) {
		cur_seqno = i915_get_gem_seqno(dev);
		if (i915_seqno_passed(cur_seqno, seqno))
			break;
		if (last_seqno == cur_seqno) {
			if (stuck++ > 100) {
				DRM_ERROR("hardware wedged\n");
				dev_priv->mm.wedged = 1;
				DRM_WAKEUP(&dev_priv->irq_queue);
				break;
			}
		}
		msleep(10);
		last_seqno = cur_seqno;
	}
	dev_priv->mm.waiting_gem_seqno = 0;

	i915_gem_retire_requests(dev);

3946
	spin_lock(&dev_priv->mm.active_list_lock);
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
	if (!dev_priv->mm.wedged) {
		/* Active and flushing should now be empty as we've
		 * waited for a sequence higher than any pending execbuffer
		 */
		WARN_ON(!list_empty(&dev_priv->mm.active_list));
		WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
		/* Request should now be empty as we've also waited
		 * for the last request in the list
		 */
		WARN_ON(!list_empty(&dev_priv->mm.request_list));
	}
3958

3959 3960 3961 3962
	/* Empty the active and flushing lists to inactive.  If there's
	 * anything left at this point, it means that we're wedged and
	 * nothing good's going to happen by leaving them there.  So strip
	 * the GPU domains and just stuff them onto inactive.
3963
	 */
3964 3965
	while (!list_empty(&dev_priv->mm.active_list)) {
		struct drm_i915_gem_object *obj_priv;
3966

3967 3968 3969 3970 3971 3972
		obj_priv = list_first_entry(&dev_priv->mm.active_list,
					    struct drm_i915_gem_object,
					    list);
		obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
		i915_gem_object_move_to_inactive(obj_priv->obj);
	}
3973
	spin_unlock(&dev_priv->mm.active_list_lock);
3974 3975 3976 3977

	while (!list_empty(&dev_priv->mm.flushing_list)) {
		struct drm_i915_gem_object *obj_priv;

3978
		obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3979 3980 3981 3982 3983 3984 3985 3986
					    struct drm_i915_gem_object,
					    list);
		obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
		i915_gem_object_move_to_inactive(obj_priv->obj);
	}


	/* Move all inactive buffers out of the GTT. */
3987
	ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3988
	WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3989 3990
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3991
		return ret;
3992
	}
3993

3994 3995 3996
	i915_gem_cleanup_ringbuffer(dev);
	mutex_unlock(&dev->struct_mutex);

3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
	return 0;
}

static int
i915_gem_init_hws(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	/* If we need a physical address for the status page, it's already
	 * initialized at driver load time.
	 */
	if (!I915_NEED_GFX_HWS(dev))
		return 0;

	obj = drm_gem_object_alloc(dev, 4096);
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate status page\n");
		return -ENOMEM;
	}
	obj_priv = obj->driver_private;
4020
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4021 4022 4023 4024 4025 4026 4027 4028 4029

	ret = i915_gem_object_pin(obj, 4096);
	if (ret != 0) {
		drm_gem_object_unreference(obj);
		return ret;
	}

	dev_priv->status_gfx_addr = obj_priv->gtt_offset;

4030
	dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4031
	if (dev_priv->hw_status_page == NULL) {
4032 4033
		DRM_ERROR("Failed to map status page.\n");
		memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4034
		i915_gem_object_unpin(obj);
4035 4036 4037 4038 4039 4040
		drm_gem_object_unreference(obj);
		return -EINVAL;
	}
	dev_priv->hws_obj = obj;
	memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
	I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4041
	I915_READ(HWS_PGA); /* posting read */
4042 4043 4044 4045 4046
	DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);

	return 0;
}

4047 4048 4049 4050
static void
i915_gem_cleanup_hws(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
4051 4052
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4053 4054 4055 4056

	if (dev_priv->hws_obj == NULL)
		return;

4057 4058 4059
	obj = dev_priv->hws_obj;
	obj_priv = obj->driver_private;

4060
	kunmap(obj_priv->pages[0]);
4061 4062 4063
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->hws_obj = NULL;
4064

4065 4066 4067 4068 4069 4070 4071
	memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
	dev_priv->hw_status_page = NULL;

	/* Write high address into HWS_PGA when disabling. */
	I915_WRITE(HWS_PGA, 0x1ffff000);
}

J
Jesse Barnes 已提交
4072
int
4073 4074 4075 4076 4077
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
J
Jesse Barnes 已提交
4078
	drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4079
	int ret;
4080
	u32 head;
4081 4082 4083 4084 4085 4086 4087 4088

	ret = i915_gem_init_hws(dev);
	if (ret != 0)
		return ret;

	obj = drm_gem_object_alloc(dev, 128 * 1024);
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate ringbuffer\n");
4089
		i915_gem_cleanup_hws(dev);
4090 4091 4092 4093 4094 4095 4096
		return -ENOMEM;
	}
	obj_priv = obj->driver_private;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret != 0) {
		drm_gem_object_unreference(obj);
4097
		i915_gem_cleanup_hws(dev);
4098 4099 4100 4101
		return ret;
	}

	/* Set up the kernel mapping for the ring. */
J
Jesse Barnes 已提交
4102
	ring->Size = obj->size;
4103

J
Jesse Barnes 已提交
4104 4105 4106 4107 4108
	ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
	ring->map.size = obj->size;
	ring->map.type = 0;
	ring->map.flags = 0;
	ring->map.mtrr = 0;
4109

J
Jesse Barnes 已提交
4110 4111
	drm_core_ioremap_wc(&ring->map, dev);
	if (ring->map.handle == NULL) {
4112 4113
		DRM_ERROR("Failed to map ringbuffer.\n");
		memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4114
		i915_gem_object_unpin(obj);
4115
		drm_gem_object_unreference(obj);
4116
		i915_gem_cleanup_hws(dev);
4117 4118
		return -EINVAL;
	}
J
Jesse Barnes 已提交
4119 4120
	ring->ring_obj = obj;
	ring->virtual_start = ring->map.handle;
4121 4122 4123 4124

	/* Stop the ring if it's running. */
	I915_WRITE(PRB0_CTL, 0);
	I915_WRITE(PRB0_TAIL, 0);
4125
	I915_WRITE(PRB0_HEAD, 0);
4126 4127 4128

	/* Initialize the ring. */
	I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
	head = I915_READ(PRB0_HEAD) & HEAD_ADDR;

	/* G45 ring initialization fails to reset head to zero */
	if (head != 0) {
		DRM_ERROR("Ring head not reset to zero "
			  "ctl %08x head %08x tail %08x start %08x\n",
			  I915_READ(PRB0_CTL),
			  I915_READ(PRB0_HEAD),
			  I915_READ(PRB0_TAIL),
			  I915_READ(PRB0_START));
		I915_WRITE(PRB0_HEAD, 0);

		DRM_ERROR("Ring head forced to zero "
			  "ctl %08x head %08x tail %08x start %08x\n",
			  I915_READ(PRB0_CTL),
			  I915_READ(PRB0_HEAD),
			  I915_READ(PRB0_TAIL),
			  I915_READ(PRB0_START));
	}

4149 4150 4151 4152 4153
	I915_WRITE(PRB0_CTL,
		   ((obj->size - 4096) & RING_NR_PAGES) |
		   RING_NO_REPORT |
		   RING_VALID);

4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
	head = I915_READ(PRB0_HEAD) & HEAD_ADDR;

	/* If the head is still not zero, the ring is dead */
	if (head != 0) {
		DRM_ERROR("Ring initialization failed "
			  "ctl %08x head %08x tail %08x start %08x\n",
			  I915_READ(PRB0_CTL),
			  I915_READ(PRB0_HEAD),
			  I915_READ(PRB0_TAIL),
			  I915_READ(PRB0_START));
		return -EIO;
	}

4167
	/* Update our cache of the ring state */
J
Jesse Barnes 已提交
4168 4169 4170 4171 4172 4173 4174 4175 4176
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		i915_kernel_lost_context(dev);
	else {
		ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
		ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
		ring->space = ring->head - (ring->tail + 8);
		if (ring->space < 0)
			ring->space += ring->Size;
	}
4177 4178 4179 4180

	return 0;
}

J
Jesse Barnes 已提交
4181
void
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	if (dev_priv->ring.ring_obj == NULL)
		return;

	drm_core_ioremapfree(&dev_priv->ring.map, dev);

	i915_gem_object_unpin(dev_priv->ring.ring_obj);
	drm_gem_object_unreference(dev_priv->ring.ring_obj);
	dev_priv->ring.ring_obj = NULL;
	memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));

4196
	i915_gem_cleanup_hws(dev);
4197 4198 4199 4200 4201 4202 4203 4204 4205
}

int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4206 4207 4208
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4209 4210 4211 4212 4213 4214
	if (dev_priv->mm.wedged) {
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
		dev_priv->mm.wedged = 0;
	}

	mutex_lock(&dev->struct_mutex);
4215 4216 4217
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4218 4219
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4220
		return ret;
4221
	}
4222

4223
	spin_lock(&dev_priv->mm.active_list_lock);
4224
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4225 4226
	spin_unlock(&dev_priv->mm.active_list_lock);

4227 4228 4229 4230
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
	BUG_ON(!list_empty(&dev_priv->mm.request_list));
	mutex_unlock(&dev->struct_mutex);
4231 4232 4233

	drm_irq_install(dev);

4234 4235 4236 4237 4238 4239 4240 4241 4242
	return 0;
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	int ret;

J
Jesse Barnes 已提交
4243 4244 4245
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4246
	ret = i915_gem_idle(dev);
4247 4248
	drm_irq_uninstall(dev);

4249
	return ret;
4250 4251 4252 4253 4254 4255 4256
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4257 4258 4259
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4260 4261 4262
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4263 4264 4265 4266 4267
}

void
i915_gem_load(struct drm_device *dev)
{
4268
	int i;
4269 4270
	drm_i915_private_t *dev_priv = dev->dev_private;

4271
	spin_lock_init(&dev_priv->mm.active_list_lock);
4272 4273 4274 4275
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
	INIT_LIST_HEAD(&dev_priv->mm.request_list);
4276
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4277 4278 4279 4280
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
	dev_priv->mm.next_gem_seqno = 1;

4281 4282 4283
	/* Old X drivers will take 0-2 for front, back, depth buffers */
	dev_priv->fence_reg_start = 3;

4284
	if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4285 4286 4287 4288
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
	/* Initialize fence registers to zero */
	if (IS_I965G(dev)) {
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
	} else {
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
	}

4301 4302
	i915_gem_detect_bit_6_swizzle(dev);
}
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
int i915_gem_init_phys_object(struct drm_device *dev,
			      int id, int size)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4318
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

	phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4337
	kfree(phys_obj);
4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
	return ret;
}

void i915_gem_free_phys_object(struct drm_device *dev, int id)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4366
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

	obj_priv = obj->driver_private;
	if (!obj_priv->phys_obj)
		return;

4382
	ret = i915_gem_object_get_pages(obj);
4383 4384 4385 4386 4387 4388
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4389
		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4390 4391 4392 4393 4394
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
	}
4395
	drm_clflush_pages(obj_priv->pages, page_count);
4396
	drm_agp_chipset_flush(dev);
4397 4398

	i915_gem_object_put_pages(obj);
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
			    struct drm_gem_object *obj, int id)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

	obj_priv = obj->driver_private;

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}


	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
						obj->size);
		if (ret) {
4431
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4432 4433 4434 4435 4436 4437 4438 4439
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4440
	ret = i915_gem_object_get_pages(obj);
4441 4442 4443 4444 4445 4446 4447 4448
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4449
		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4450 4451 4452 4453 4454 4455
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(src, KM_USER0);
	}

4456 4457
	i915_gem_object_put_pages(obj);

4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_object *obj_priv = obj->driver_private;
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4476
	DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4477 4478 4479 4480 4481 4482 4483
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497

void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
	mutex_lock(&dev->struct_mutex);
	while (!list_empty(&i915_file_priv->mm.request_list))
		list_del_init(i915_file_priv->mm.request_list.next);
	mutex_unlock(&dev->struct_mutex);
}