kexec.c 42.5 KB
Newer Older
1 2 3 4 5 6 7 8
/*
 * kexec.c - kexec system call
 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
 *
 * This source code is licensed under the GNU General Public License,
 * Version 2.  See the file COPYING for more details.
 */

9
#include <linux/capability.h>
10 11 12 13 14
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/kexec.h>
15
#include <linux/mutex.h>
16 17 18 19 20
#include <linux/list.h>
#include <linux/highmem.h>
#include <linux/syscalls.h>
#include <linux/reboot.h>
#include <linux/ioport.h>
21
#include <linux/hardirq.h>
22 23
#include <linux/elf.h>
#include <linux/elfcore.h>
K
Ken'ichi Ohmichi 已提交
24 25
#include <linux/utsname.h>
#include <linux/numa.h>
H
Huang Ying 已提交
26 27
#include <linux/suspend.h>
#include <linux/device.h>
28 29 30 31
#include <linux/freezer.h>
#include <linux/pm.h>
#include <linux/cpu.h>
#include <linux/console.h>
32
#include <linux/vmalloc.h>
33
#include <linux/swap.h>
34
#include <linux/syscore_ops.h>
35
#include <linux/compiler.h>
36

37 38 39
#include <asm/page.h>
#include <asm/uaccess.h>
#include <asm/io.h>
K
Ken'ichi Ohmichi 已提交
40
#include <asm/sections.h>
41

42
/* Per cpu memory for storing cpu states in case of system crash. */
43
note_buf_t __percpu *crash_notes;
44

K
Ken'ichi Ohmichi 已提交
45
/* vmcoreinfo stuff */
46
static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
K
Ken'ichi Ohmichi 已提交
47
u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
48 49
size_t vmcoreinfo_size;
size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
K
Ken'ichi Ohmichi 已提交
50

51 52 53
/* Flag to indicate we are going to kexec a new kernel */
bool kexec_in_progress = false;

54 55 56 57 58 59 60
/* Location of the reserved area for the crash kernel */
struct resource crashk_res = {
	.name  = "Crash kernel",
	.start = 0,
	.end   = 0,
	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
61
struct resource crashk_low_res = {
62
	.name  = "Crash kernel",
63 64 65 66
	.start = 0,
	.end   = 0,
	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
67

68 69
int kexec_should_crash(struct task_struct *p)
{
70
	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
71 72 73 74
		return 1;
	return 0;
}

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
/*
 * When kexec transitions to the new kernel there is a one-to-one
 * mapping between physical and virtual addresses.  On processors
 * where you can disable the MMU this is trivial, and easy.  For
 * others it is still a simple predictable page table to setup.
 *
 * In that environment kexec copies the new kernel to its final
 * resting place.  This means I can only support memory whose
 * physical address can fit in an unsigned long.  In particular
 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
 * If the assembly stub has more restrictive requirements
 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
 * defined more restrictively in <asm/kexec.h>.
 *
 * The code for the transition from the current kernel to the
 * the new kernel is placed in the control_code_buffer, whose size
91
 * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
 * page of memory is necessary, but some architectures require more.
 * Because this memory must be identity mapped in the transition from
 * virtual to physical addresses it must live in the range
 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
 * modifiable.
 *
 * The assembly stub in the control code buffer is passed a linked list
 * of descriptor pages detailing the source pages of the new kernel,
 * and the destination addresses of those source pages.  As this data
 * structure is not used in the context of the current OS, it must
 * be self-contained.
 *
 * The code has been made to work with highmem pages and will use a
 * destination page in its final resting place (if it happens
 * to allocate it).  The end product of this is that most of the
 * physical address space, and most of RAM can be used.
 *
 * Future directions include:
 *  - allocating a page table with the control code buffer identity
 *    mapped, to simplify machine_kexec and make kexec_on_panic more
 *    reliable.
 */

/*
 * KIMAGE_NO_DEST is an impossible destination address..., for
 * allocating pages whose destination address we do not care about.
 */
#define KIMAGE_NO_DEST (-1UL)

M
Maneesh Soni 已提交
121 122 123
static int kimage_is_destination_range(struct kimage *image,
				       unsigned long start, unsigned long end);
static struct page *kimage_alloc_page(struct kimage *image,
A
Al Viro 已提交
124
				       gfp_t gfp_mask,
M
Maneesh Soni 已提交
125
				       unsigned long dest);
126 127

static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
M
Maneesh Soni 已提交
128 129
	                    unsigned long nr_segments,
                            struct kexec_segment __user *segments)
130 131 132 133 134 135 136 137
{
	size_t segment_bytes;
	struct kimage *image;
	unsigned long i;
	int result;

	/* Allocate a controlling structure */
	result = -ENOMEM;
138
	image = kzalloc(sizeof(*image), GFP_KERNEL);
M
Maneesh Soni 已提交
139
	if (!image)
140
		goto out;
M
Maneesh Soni 已提交
141

142 143 144 145 146 147 148 149 150 151 152 153 154
	image->head = 0;
	image->entry = &image->head;
	image->last_entry = &image->head;
	image->control_page = ~0; /* By default this does not apply */
	image->start = entry;
	image->type = KEXEC_TYPE_DEFAULT;

	/* Initialize the list of control pages */
	INIT_LIST_HEAD(&image->control_pages);

	/* Initialize the list of destination pages */
	INIT_LIST_HEAD(&image->dest_pages);

L
Lucas De Marchi 已提交
155
	/* Initialize the list of unusable pages */
156 157 158 159 160 161
	INIT_LIST_HEAD(&image->unuseable_pages);

	/* Read in the segments */
	image->nr_segments = nr_segments;
	segment_bytes = nr_segments * sizeof(*segments);
	result = copy_from_user(image->segment, segments, segment_bytes);
162 163
	if (result) {
		result = -EFAULT;
164
		goto out;
165
	}
166 167 168 169 170 171 172 173

	/*
	 * Verify we have good destination addresses.  The caller is
	 * responsible for making certain we don't attempt to load
	 * the new image into invalid or reserved areas of RAM.  This
	 * just verifies it is an address we can use.
	 *
	 * Since the kernel does everything in page size chunks ensure
174
	 * the destination addresses are page aligned.  Too many
175 176 177 178 179 180 181 182
	 * special cases crop of when we don't do this.  The most
	 * insidious is getting overlapping destination addresses
	 * simply because addresses are changed to page size
	 * granularity.
	 */
	result = -EADDRNOTAVAIL;
	for (i = 0; i < nr_segments; i++) {
		unsigned long mstart, mend;
M
Maneesh Soni 已提交
183

184 185 186 187 188 189 190 191 192 193 194 195 196 197
		mstart = image->segment[i].mem;
		mend   = mstart + image->segment[i].memsz;
		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
			goto out;
		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
			goto out;
	}

	/* Verify our destination addresses do not overlap.
	 * If we alloed overlapping destination addresses
	 * through very weird things can happen with no
	 * easy explanation as one segment stops on another.
	 */
	result = -EINVAL;
M
Maneesh Soni 已提交
198
	for (i = 0; i < nr_segments; i++) {
199 200
		unsigned long mstart, mend;
		unsigned long j;
M
Maneesh Soni 已提交
201

202 203
		mstart = image->segment[i].mem;
		mend   = mstart + image->segment[i].memsz;
M
Maneesh Soni 已提交
204
		for (j = 0; j < i; j++) {
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
			unsigned long pstart, pend;
			pstart = image->segment[j].mem;
			pend   = pstart + image->segment[j].memsz;
			/* Do the segments overlap ? */
			if ((mend > pstart) && (mstart < pend))
				goto out;
		}
	}

	/* Ensure our buffer sizes are strictly less than
	 * our memory sizes.  This should always be the case,
	 * and it is easier to check up front than to be surprised
	 * later on.
	 */
	result = -EINVAL;
M
Maneesh Soni 已提交
220
	for (i = 0; i < nr_segments; i++) {
221 222 223 224 225
		if (image->segment[i].bufsz > image->segment[i].memsz)
			goto out;
	}

	result = 0;
M
Maneesh Soni 已提交
226 227
out:
	if (result == 0)
228
		*rimage = image;
M
Maneesh Soni 已提交
229
	else
230
		kfree(image);
M
Maneesh Soni 已提交
231

232 233 234 235
	return result;

}

236 237
static void kimage_free_page_list(struct list_head *list);

238
static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
M
Maneesh Soni 已提交
239 240
				unsigned long nr_segments,
				struct kexec_segment __user *segments)
241 242 243 244 245 246 247
{
	int result;
	struct kimage *image;

	/* Allocate and initialize a controlling structure */
	image = NULL;
	result = do_kimage_alloc(&image, entry, nr_segments, segments);
M
Maneesh Soni 已提交
248
	if (result)
249
		goto out;
M
Maneesh Soni 已提交
250

251 252 253 254 255 256 257
	/*
	 * Find a location for the control code buffer, and add it
	 * the vector of segments so that it's pages will also be
	 * counted as destination pages.
	 */
	result = -ENOMEM;
	image->control_code_page = kimage_alloc_control_pages(image,
258
					   get_order(KEXEC_CONTROL_PAGE_SIZE));
259 260
	if (!image->control_code_page) {
		printk(KERN_ERR "Could not allocate control_code_buffer\n");
261
		goto out_free;
262 263
	}

H
Huang Ying 已提交
264 265 266
	image->swap_page = kimage_alloc_control_pages(image, 0);
	if (!image->swap_page) {
		printk(KERN_ERR "Could not allocate swap buffer\n");
267
		goto out_free;
H
Huang Ying 已提交
268 269
	}

270 271
	*rimage = image;
	return 0;
M
Maneesh Soni 已提交
272

273 274 275 276
out_free:
	kimage_free_page_list(&image->control_pages);
	kfree(image);
out:
277 278 279 280
	return result;
}

static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
M
Maneesh Soni 已提交
281
				unsigned long nr_segments,
282
				struct kexec_segment __user *segments)
283 284 285 286 287 288 289 290 291 292 293 294 295 296
{
	int result;
	struct kimage *image;
	unsigned long i;

	image = NULL;
	/* Verify we have a valid entry point */
	if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
		result = -EADDRNOTAVAIL;
		goto out;
	}

	/* Allocate and initialize a controlling structure */
	result = do_kimage_alloc(&image, entry, nr_segments, segments);
M
Maneesh Soni 已提交
297
	if (result)
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
		goto out;

	/* Enable the special crash kernel control page
	 * allocation policy.
	 */
	image->control_page = crashk_res.start;
	image->type = KEXEC_TYPE_CRASH;

	/*
	 * Verify we have good destination addresses.  Normally
	 * the caller is responsible for making certain we don't
	 * attempt to load the new image into invalid or reserved
	 * areas of RAM.  But crash kernels are preloaded into a
	 * reserved area of ram.  We must ensure the addresses
	 * are in the reserved area otherwise preloading the
	 * kernel could corrupt things.
	 */
	result = -EADDRNOTAVAIL;
	for (i = 0; i < nr_segments; i++) {
		unsigned long mstart, mend;
M
Maneesh Soni 已提交
318

319
		mstart = image->segment[i].mem;
320
		mend = mstart + image->segment[i].memsz - 1;
321 322
		/* Ensure we are within the crash kernel limits */
		if ((mstart < crashk_res.start) || (mend > crashk_res.end))
323
			goto out_free;
324 325 326 327 328 329 330 331 332
	}

	/*
	 * Find a location for the control code buffer, and add
	 * the vector of segments so that it's pages will also be
	 * counted as destination pages.
	 */
	result = -ENOMEM;
	image->control_code_page = kimage_alloc_control_pages(image,
333
					   get_order(KEXEC_CONTROL_PAGE_SIZE));
334 335
	if (!image->control_code_page) {
		printk(KERN_ERR "Could not allocate control_code_buffer\n");
336
		goto out_free;
337 338
	}

339 340
	*rimage = image;
	return 0;
M
Maneesh Soni 已提交
341

342 343 344
out_free:
	kfree(image);
out:
345 346 347
	return result;
}

M
Maneesh Soni 已提交
348 349 350
static int kimage_is_destination_range(struct kimage *image,
					unsigned long start,
					unsigned long end)
351 352 353 354 355
{
	unsigned long i;

	for (i = 0; i < image->nr_segments; i++) {
		unsigned long mstart, mend;
M
Maneesh Soni 已提交
356

357
		mstart = image->segment[i].mem;
M
Maneesh Soni 已提交
358 359
		mend = mstart + image->segment[i].memsz;
		if ((end > mstart) && (start < mend))
360 361
			return 1;
	}
M
Maneesh Soni 已提交
362

363 364 365
	return 0;
}

A
Al Viro 已提交
366
static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
367 368
{
	struct page *pages;
M
Maneesh Soni 已提交
369

370 371 372 373
	pages = alloc_pages(gfp_mask, order);
	if (pages) {
		unsigned int count, i;
		pages->mapping = NULL;
H
Hugh Dickins 已提交
374
		set_page_private(pages, order);
375
		count = 1 << order;
M
Maneesh Soni 已提交
376
		for (i = 0; i < count; i++)
377 378
			SetPageReserved(pages + i);
	}
M
Maneesh Soni 已提交
379

380 381 382 383 384 385
	return pages;
}

static void kimage_free_pages(struct page *page)
{
	unsigned int order, count, i;
M
Maneesh Soni 已提交
386

H
Hugh Dickins 已提交
387
	order = page_private(page);
388
	count = 1 << order;
M
Maneesh Soni 已提交
389
	for (i = 0; i < count; i++)
390 391 392 393 394 395 396
		ClearPageReserved(page + i);
	__free_pages(page, order);
}

static void kimage_free_page_list(struct list_head *list)
{
	struct list_head *pos, *next;
M
Maneesh Soni 已提交
397

398 399 400 401 402 403 404 405 406
	list_for_each_safe(pos, next, list) {
		struct page *page;

		page = list_entry(pos, struct page, lru);
		list_del(&page->lru);
		kimage_free_pages(page);
	}
}

M
Maneesh Soni 已提交
407 408
static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
							unsigned int order)
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
{
	/* Control pages are special, they are the intermediaries
	 * that are needed while we copy the rest of the pages
	 * to their final resting place.  As such they must
	 * not conflict with either the destination addresses
	 * or memory the kernel is already using.
	 *
	 * The only case where we really need more than one of
	 * these are for architectures where we cannot disable
	 * the MMU and must instead generate an identity mapped
	 * page table for all of the memory.
	 *
	 * At worst this runs in O(N) of the image size.
	 */
	struct list_head extra_pages;
	struct page *pages;
	unsigned int count;

	count = 1 << order;
	INIT_LIST_HEAD(&extra_pages);

	/* Loop while I can allocate a page and the page allocated
	 * is a destination page.
	 */
	do {
		unsigned long pfn, epfn, addr, eaddr;
M
Maneesh Soni 已提交
435

436 437 438 439 440 441 442 443
		pages = kimage_alloc_pages(GFP_KERNEL, order);
		if (!pages)
			break;
		pfn   = page_to_pfn(pages);
		epfn  = pfn + count;
		addr  = pfn << PAGE_SHIFT;
		eaddr = epfn << PAGE_SHIFT;
		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
M
Maneesh Soni 已提交
444
			      kimage_is_destination_range(image, addr, eaddr)) {
445 446 447
			list_add(&pages->lru, &extra_pages);
			pages = NULL;
		}
M
Maneesh Soni 已提交
448 449
	} while (!pages);

450 451 452 453 454 455 456 457 458 459 460 461 462 463
	if (pages) {
		/* Remember the allocated page... */
		list_add(&pages->lru, &image->control_pages);

		/* Because the page is already in it's destination
		 * location we will never allocate another page at
		 * that address.  Therefore kimage_alloc_pages
		 * will not return it (again) and we don't need
		 * to give it an entry in image->segment[].
		 */
	}
	/* Deal with the destination pages I have inadvertently allocated.
	 *
	 * Ideally I would convert multi-page allocations into single
L
Lucas De Marchi 已提交
464
	 * page allocations, and add everything to image->dest_pages.
465 466 467 468 469
	 *
	 * For now it is simpler to just free the pages.
	 */
	kimage_free_page_list(&extra_pages);

M
Maneesh Soni 已提交
470
	return pages;
471 472
}

M
Maneesh Soni 已提交
473 474
static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
						      unsigned int order)
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
{
	/* Control pages are special, they are the intermediaries
	 * that are needed while we copy the rest of the pages
	 * to their final resting place.  As such they must
	 * not conflict with either the destination addresses
	 * or memory the kernel is already using.
	 *
	 * Control pages are also the only pags we must allocate
	 * when loading a crash kernel.  All of the other pages
	 * are specified by the segments and we just memcpy
	 * into them directly.
	 *
	 * The only case where we really need more than one of
	 * these are for architectures where we cannot disable
	 * the MMU and must instead generate an identity mapped
	 * page table for all of the memory.
	 *
	 * Given the low demand this implements a very simple
	 * allocator that finds the first hole of the appropriate
	 * size in the reserved memory region, and allocates all
	 * of the memory up to and including the hole.
	 */
	unsigned long hole_start, hole_end, size;
	struct page *pages;
M
Maneesh Soni 已提交
499

500 501 502 503
	pages = NULL;
	size = (1 << order) << PAGE_SHIFT;
	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
	hole_end   = hole_start + size - 1;
M
Maneesh Soni 已提交
504
	while (hole_end <= crashk_res.end) {
505
		unsigned long i;
M
Maneesh Soni 已提交
506

507
		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
508 509
			break;
		/* See if I overlap any of the segments */
M
Maneesh Soni 已提交
510
		for (i = 0; i < image->nr_segments; i++) {
511
			unsigned long mstart, mend;
M
Maneesh Soni 已提交
512

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
			mstart = image->segment[i].mem;
			mend   = mstart + image->segment[i].memsz - 1;
			if ((hole_end >= mstart) && (hole_start <= mend)) {
				/* Advance the hole to the end of the segment */
				hole_start = (mend + (size - 1)) & ~(size - 1);
				hole_end   = hole_start + size - 1;
				break;
			}
		}
		/* If I don't overlap any segments I have found my hole! */
		if (i == image->nr_segments) {
			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
			break;
		}
	}
M
Maneesh Soni 已提交
528
	if (pages)
529
		image->control_page = hole_end;
M
Maneesh Soni 已提交
530

531 532 533 534
	return pages;
}


M
Maneesh Soni 已提交
535 536
struct page *kimage_alloc_control_pages(struct kimage *image,
					 unsigned int order)
537 538
{
	struct page *pages = NULL;
M
Maneesh Soni 已提交
539 540

	switch (image->type) {
541 542 543 544 545 546 547
	case KEXEC_TYPE_DEFAULT:
		pages = kimage_alloc_normal_control_pages(image, order);
		break;
	case KEXEC_TYPE_CRASH:
		pages = kimage_alloc_crash_control_pages(image, order);
		break;
	}
M
Maneesh Soni 已提交
548

549 550 551 552 553
	return pages;
}

static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
{
M
Maneesh Soni 已提交
554
	if (*image->entry != 0)
555
		image->entry++;
M
Maneesh Soni 已提交
556

557 558 559
	if (image->entry == image->last_entry) {
		kimage_entry_t *ind_page;
		struct page *page;
M
Maneesh Soni 已提交
560

561
		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
M
Maneesh Soni 已提交
562
		if (!page)
563
			return -ENOMEM;
M
Maneesh Soni 已提交
564

565 566 567
		ind_page = page_address(page);
		*image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
		image->entry = ind_page;
M
Maneesh Soni 已提交
568 569
		image->last_entry = ind_page +
				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
570 571 572 573
	}
	*image->entry = entry;
	image->entry++;
	*image->entry = 0;
M
Maneesh Soni 已提交
574

575 576 577
	return 0;
}

M
Maneesh Soni 已提交
578 579
static int kimage_set_destination(struct kimage *image,
				   unsigned long destination)
580 581 582 583 584
{
	int result;

	destination &= PAGE_MASK;
	result = kimage_add_entry(image, destination | IND_DESTINATION);
M
Maneesh Soni 已提交
585
	if (result == 0)
586
		image->destination = destination;
M
Maneesh Soni 已提交
587

588 589 590 591 592 593 594 595 596 597
	return result;
}


static int kimage_add_page(struct kimage *image, unsigned long page)
{
	int result;

	page &= PAGE_MASK;
	result = kimage_add_entry(image, page | IND_SOURCE);
M
Maneesh Soni 已提交
598
	if (result == 0)
599
		image->destination += PAGE_SIZE;
M
Maneesh Soni 已提交
600

601 602 603 604 605 606 607 608 609
	return result;
}


static void kimage_free_extra_pages(struct kimage *image)
{
	/* Walk through and free any extra destination pages I may have */
	kimage_free_page_list(&image->dest_pages);

L
Lucas De Marchi 已提交
610
	/* Walk through and free any unusable pages I have cached */
611 612 613
	kimage_free_page_list(&image->unuseable_pages);

}
614
static void kimage_terminate(struct kimage *image)
615
{
M
Maneesh Soni 已提交
616
	if (*image->entry != 0)
617
		image->entry++;
M
Maneesh Soni 已提交
618

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
	*image->entry = IND_DONE;
}

#define for_each_kimage_entry(image, ptr, entry) \
	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
		ptr = (entry & IND_INDIRECTION)? \
			phys_to_virt((entry & PAGE_MASK)): ptr +1)

static void kimage_free_entry(kimage_entry_t entry)
{
	struct page *page;

	page = pfn_to_page(entry >> PAGE_SHIFT);
	kimage_free_pages(page);
}

static void kimage_free(struct kimage *image)
{
	kimage_entry_t *ptr, entry;
	kimage_entry_t ind = 0;

	if (!image)
		return;
M
Maneesh Soni 已提交
642

643 644 645 646
	kimage_free_extra_pages(image);
	for_each_kimage_entry(image, ptr, entry) {
		if (entry & IND_INDIRECTION) {
			/* Free the previous indirection page */
M
Maneesh Soni 已提交
647
			if (ind & IND_INDIRECTION)
648 649 650 651 652 653
				kimage_free_entry(ind);
			/* Save this indirection page until we are
			 * done with it.
			 */
			ind = entry;
		}
M
Maneesh Soni 已提交
654
		else if (entry & IND_SOURCE)
655 656 657
			kimage_free_entry(entry);
	}
	/* Free the final indirection page */
M
Maneesh Soni 已提交
658
	if (ind & IND_INDIRECTION)
659 660 661 662 663 664 665 666 667 668
		kimage_free_entry(ind);

	/* Handle any machine specific cleanup */
	machine_kexec_cleanup(image);

	/* Free the kexec control pages... */
	kimage_free_page_list(&image->control_pages);
	kfree(image);
}

M
Maneesh Soni 已提交
669 670
static kimage_entry_t *kimage_dst_used(struct kimage *image,
					unsigned long page)
671 672 673 674 675
{
	kimage_entry_t *ptr, entry;
	unsigned long destination = 0;

	for_each_kimage_entry(image, ptr, entry) {
M
Maneesh Soni 已提交
676
		if (entry & IND_DESTINATION)
677 678
			destination = entry & PAGE_MASK;
		else if (entry & IND_SOURCE) {
M
Maneesh Soni 已提交
679
			if (page == destination)
680 681 682 683
				return ptr;
			destination += PAGE_SIZE;
		}
	}
M
Maneesh Soni 已提交
684

685
	return NULL;
686 687
}

M
Maneesh Soni 已提交
688
static struct page *kimage_alloc_page(struct kimage *image,
A
Al Viro 已提交
689
					gfp_t gfp_mask,
M
Maneesh Soni 已提交
690
					unsigned long destination)
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
{
	/*
	 * Here we implement safeguards to ensure that a source page
	 * is not copied to its destination page before the data on
	 * the destination page is no longer useful.
	 *
	 * To do this we maintain the invariant that a source page is
	 * either its own destination page, or it is not a
	 * destination page at all.
	 *
	 * That is slightly stronger than required, but the proof
	 * that no problems will not occur is trivial, and the
	 * implementation is simply to verify.
	 *
	 * When allocating all pages normally this algorithm will run
	 * in O(N) time, but in the worst case it will run in O(N^2)
	 * time.   If the runtime is a problem the data structures can
	 * be fixed.
	 */
	struct page *page;
	unsigned long addr;

	/*
	 * Walk through the list of destination pages, and see if I
	 * have a match.
	 */
	list_for_each_entry(page, &image->dest_pages, lru) {
		addr = page_to_pfn(page) << PAGE_SHIFT;
		if (addr == destination) {
			list_del(&page->lru);
			return page;
		}
	}
	page = NULL;
	while (1) {
		kimage_entry_t *old;

		/* Allocate a page, if we run out of memory give up */
		page = kimage_alloc_pages(gfp_mask, 0);
M
Maneesh Soni 已提交
730
		if (!page)
731
			return NULL;
732
		/* If the page cannot be used file it away */
M
Maneesh Soni 已提交
733 734
		if (page_to_pfn(page) >
				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
735 736 737 738 739 740 741 742 743 744
			list_add(&page->lru, &image->unuseable_pages);
			continue;
		}
		addr = page_to_pfn(page) << PAGE_SHIFT;

		/* If it is the destination page we want use it */
		if (addr == destination)
			break;

		/* If the page is not a destination page use it */
M
Maneesh Soni 已提交
745 746
		if (!kimage_is_destination_range(image, addr,
						  addr + PAGE_SIZE))
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
			break;

		/*
		 * I know that the page is someones destination page.
		 * See if there is already a source page for this
		 * destination page.  And if so swap the source pages.
		 */
		old = kimage_dst_used(image, addr);
		if (old) {
			/* If so move it */
			unsigned long old_addr;
			struct page *old_page;

			old_addr = *old & PAGE_MASK;
			old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
			copy_highpage(page, old_page);
			*old = addr | (*old & ~PAGE_MASK);

			/* The old page I have found cannot be a
766 767
			 * destination page, so return it if it's
			 * gfp_flags honor the ones passed in.
768
			 */
769 770 771 772 773
			if (!(gfp_mask & __GFP_HIGHMEM) &&
			    PageHighMem(old_page)) {
				kimage_free_pages(old_page);
				continue;
			}
774 775 776 777 778 779 780 781 782 783 784
			addr = old_addr;
			page = old_page;
			break;
		}
		else {
			/* Place the page on the destination list I
			 * will use it later.
			 */
			list_add(&page->lru, &image->dest_pages);
		}
	}
M
Maneesh Soni 已提交
785

786 787 788 789
	return page;
}

static int kimage_load_normal_segment(struct kimage *image,
M
Maneesh Soni 已提交
790
					 struct kexec_segment *segment)
791 792
{
	unsigned long maddr;
793
	size_t ubytes, mbytes;
794
	int result;
795
	unsigned char __user *buf;
796 797 798 799 800 801 802 803

	result = 0;
	buf = segment->buf;
	ubytes = segment->bufsz;
	mbytes = segment->memsz;
	maddr = segment->mem;

	result = kimage_set_destination(image, maddr);
M
Maneesh Soni 已提交
804
	if (result < 0)
805
		goto out;
M
Maneesh Soni 已提交
806 807

	while (mbytes) {
808 809 810
		struct page *page;
		char *ptr;
		size_t uchunk, mchunk;
M
Maneesh Soni 已提交
811

812
		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
813
		if (!page) {
814 815 816
			result  = -ENOMEM;
			goto out;
		}
M
Maneesh Soni 已提交
817 818 819
		result = kimage_add_page(image, page_to_pfn(page)
								<< PAGE_SHIFT);
		if (result < 0)
820
			goto out;
M
Maneesh Soni 已提交
821

822 823
		ptr = kmap(page);
		/* Start with a clear page */
824
		clear_page(ptr);
825
		ptr += maddr & ~PAGE_MASK;
826 827 828
		mchunk = min_t(size_t, mbytes,
				PAGE_SIZE - (maddr & ~PAGE_MASK));
		uchunk = min(ubytes, mchunk);
M
Maneesh Soni 已提交
829

830 831 832
		result = copy_from_user(ptr, buf, uchunk);
		kunmap(page);
		if (result) {
833
			result = -EFAULT;
834 835 836 837 838 839 840
			goto out;
		}
		ubytes -= uchunk;
		maddr  += mchunk;
		buf    += mchunk;
		mbytes -= mchunk;
	}
M
Maneesh Soni 已提交
841
out:
842 843 844 845
	return result;
}

static int kimage_load_crash_segment(struct kimage *image,
M
Maneesh Soni 已提交
846
					struct kexec_segment *segment)
847 848 849 850 851 852
{
	/* For crash dumps kernels we simply copy the data from
	 * user space to it's destination.
	 * We do things a page at a time for the sake of kmap.
	 */
	unsigned long maddr;
853
	size_t ubytes, mbytes;
854
	int result;
855
	unsigned char __user *buf;
856 857 858 859 860 861

	result = 0;
	buf = segment->buf;
	ubytes = segment->bufsz;
	mbytes = segment->memsz;
	maddr = segment->mem;
M
Maneesh Soni 已提交
862
	while (mbytes) {
863 864 865
		struct page *page;
		char *ptr;
		size_t uchunk, mchunk;
M
Maneesh Soni 已提交
866

867
		page = pfn_to_page(maddr >> PAGE_SHIFT);
868
		if (!page) {
869 870 871 872 873
			result  = -ENOMEM;
			goto out;
		}
		ptr = kmap(page);
		ptr += maddr & ~PAGE_MASK;
874 875 876 877
		mchunk = min_t(size_t, mbytes,
				PAGE_SIZE - (maddr & ~PAGE_MASK));
		uchunk = min(ubytes, mchunk);
		if (mchunk > uchunk) {
878 879 880 881
			/* Zero the trailing part of the page */
			memset(ptr + uchunk, 0, mchunk - uchunk);
		}
		result = copy_from_user(ptr, buf, uchunk);
Z
Zou Nan hai 已提交
882
		kexec_flush_icache_page(page);
883 884
		kunmap(page);
		if (result) {
885
			result = -EFAULT;
886 887 888 889 890 891 892
			goto out;
		}
		ubytes -= uchunk;
		maddr  += mchunk;
		buf    += mchunk;
		mbytes -= mchunk;
	}
M
Maneesh Soni 已提交
893
out:
894 895 896 897
	return result;
}

static int kimage_load_segment(struct kimage *image,
M
Maneesh Soni 已提交
898
				struct kexec_segment *segment)
899 900
{
	int result = -ENOMEM;
M
Maneesh Soni 已提交
901 902

	switch (image->type) {
903 904 905 906 907 908 909
	case KEXEC_TYPE_DEFAULT:
		result = kimage_load_normal_segment(image, segment);
		break;
	case KEXEC_TYPE_CRASH:
		result = kimage_load_crash_segment(image, segment);
		break;
	}
M
Maneesh Soni 已提交
910

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
	return result;
}

/*
 * Exec Kernel system call: for obvious reasons only root may call it.
 *
 * This call breaks up into three pieces.
 * - A generic part which loads the new kernel from the current
 *   address space, and very carefully places the data in the
 *   allocated pages.
 *
 * - A generic part that interacts with the kernel and tells all of
 *   the devices to shut down.  Preventing on-going dmas, and placing
 *   the devices in a consistent state so a later kernel can
 *   reinitialize them.
 *
 * - A machine specific part that includes the syscall number
G
Geert Uytterhoeven 已提交
928
 *   and then copies the image to it's final destination.  And
929 930 931 932 933
 *   jumps into the image at entry.
 *
 * kexec does not sync, or unmount filesystems so if you need
 * that to happen you need to do that yourself.
 */
934 935
struct kimage *kexec_image;
struct kimage *kexec_crash_image;
936
int kexec_load_disabled;
937 938

static DEFINE_MUTEX(kexec_mutex);
939

940 941
SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
		struct kexec_segment __user *, segments, unsigned long, flags)
942 943 944 945 946
{
	struct kimage **dest_image, *image;
	int result;

	/* We only trust the superuser with rebooting the system. */
947
	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
		return -EPERM;

	/*
	 * Verify we have a legal set of flags
	 * This leaves us room for future extensions.
	 */
	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
		return -EINVAL;

	/* Verify we are on the appropriate architecture */
	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
		return -EINVAL;

	/* Put an artificial cap on the number
	 * of segments passed to kexec_load.
	 */
	if (nr_segments > KEXEC_SEGMENT_MAX)
		return -EINVAL;

	image = NULL;
	result = 0;

	/* Because we write directly to the reserved memory
	 * region when loading crash kernels we need a mutex here to
	 * prevent multiple crash  kernels from attempting to load
	 * simultaneously, and to prevent a crash kernel from loading
	 * over the top of a in use crash kernel.
	 *
	 * KISS: always take the mutex.
	 */
979
	if (!mutex_trylock(&kexec_mutex))
980
		return -EBUSY;
M
Maneesh Soni 已提交
981

982
	dest_image = &kexec_image;
M
Maneesh Soni 已提交
983
	if (flags & KEXEC_ON_CRASH)
984 985 986
		dest_image = &kexec_crash_image;
	if (nr_segments > 0) {
		unsigned long i;
M
Maneesh Soni 已提交
987

988
		/* Loading another kernel to reboot into */
M
Maneesh Soni 已提交
989 990 991
		if ((flags & KEXEC_ON_CRASH) == 0)
			result = kimage_normal_alloc(&image, entry,
							nr_segments, segments);
992 993 994 995 996 997
		/* Loading another kernel to switch to if this one crashes */
		else if (flags & KEXEC_ON_CRASH) {
			/* Free any current crash dump kernel before
			 * we corrupt it.
			 */
			kimage_free(xchg(&kexec_crash_image, NULL));
M
Maneesh Soni 已提交
998 999
			result = kimage_crash_alloc(&image, entry,
						     nr_segments, segments);
1000
			crash_map_reserved_pages();
1001
		}
M
Maneesh Soni 已提交
1002
		if (result)
1003
			goto out;
M
Maneesh Soni 已提交
1004

H
Huang Ying 已提交
1005 1006
		if (flags & KEXEC_PRESERVE_CONTEXT)
			image->preserve_context = 1;
1007
		result = machine_kexec_prepare(image);
M
Maneesh Soni 已提交
1008
		if (result)
1009
			goto out;
M
Maneesh Soni 已提交
1010 1011

		for (i = 0; i < nr_segments; i++) {
1012
			result = kimage_load_segment(image, &image->segment[i]);
M
Maneesh Soni 已提交
1013
			if (result)
1014 1015
				goto out;
		}
1016
		kimage_terminate(image);
1017 1018
		if (flags & KEXEC_ON_CRASH)
			crash_unmap_reserved_pages();
1019 1020 1021 1022
	}
	/* Install the new kernel, and  Uninstall the old */
	image = xchg(dest_image, image);

M
Maneesh Soni 已提交
1023
out:
1024
	mutex_unlock(&kexec_mutex);
1025
	kimage_free(image);
M
Maneesh Soni 已提交
1026

1027 1028 1029
	return result;
}

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
/*
 * Add and remove page tables for crashkernel memory
 *
 * Provide an empty default implementation here -- architecture
 * code may override this
 */
void __weak crash_map_reserved_pages(void)
{}

void __weak crash_unmap_reserved_pages(void)
{}

1042
#ifdef CONFIG_COMPAT
1043 1044 1045 1046
COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
		       compat_ulong_t, nr_segments,
		       struct compat_kexec_segment __user *, segments,
		       compat_ulong_t, flags)
1047 1048 1049 1050 1051 1052 1053 1054
{
	struct compat_kexec_segment in;
	struct kexec_segment out, __user *ksegments;
	unsigned long i, result;

	/* Don't allow clients that don't understand the native
	 * architecture to do anything.
	 */
M
Maneesh Soni 已提交
1055
	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1056 1057
		return -EINVAL;

M
Maneesh Soni 已提交
1058
	if (nr_segments > KEXEC_SEGMENT_MAX)
1059 1060 1061 1062 1063
		return -EINVAL;

	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
	for (i=0; i < nr_segments; i++) {
		result = copy_from_user(&in, &segments[i], sizeof(in));
M
Maneesh Soni 已提交
1064
		if (result)
1065 1066 1067 1068 1069 1070 1071 1072
			return -EFAULT;

		out.buf   = compat_ptr(in.buf);
		out.bufsz = in.bufsz;
		out.mem   = in.mem;
		out.memsz = in.memsz;

		result = copy_to_user(&ksegments[i], &out, sizeof(out));
M
Maneesh Soni 已提交
1073
		if (result)
1074 1075 1076 1077 1078 1079 1080
			return -EFAULT;
	}

	return sys_kexec_load(entry, nr_segments, ksegments, flags);
}
#endif

1081
void crash_kexec(struct pt_regs *regs)
1082
{
1083
	/* Take the kexec_mutex here to prevent sys_kexec_load
1084 1085 1086 1087 1088 1089 1090
	 * running on one cpu from replacing the crash kernel
	 * we are using after a panic on a different cpu.
	 *
	 * If the crash kernel was not located in a fixed area
	 * of memory the xchg(&kexec_crash_image) would be
	 * sufficient.  But since I reuse the memory...
	 */
1091
	if (mutex_trylock(&kexec_mutex)) {
1092
		if (kexec_crash_image) {
1093
			struct pt_regs fixed_regs;
1094

1095
			crash_setup_regs(&fixed_regs, regs);
K
Ken'ichi Ohmichi 已提交
1096
			crash_save_vmcoreinfo();
1097
			machine_crash_shutdown(&fixed_regs);
1098
			machine_kexec(kexec_crash_image);
1099
		}
1100
		mutex_unlock(&kexec_mutex);
1101 1102
	}
}
1103

1104 1105
size_t crash_get_memory_size(void)
{
1106
	size_t size = 0;
1107
	mutex_lock(&kexec_mutex);
1108
	if (crashk_res.end != crashk_res.start)
1109
		size = resource_size(&crashk_res);
1110 1111 1112 1113
	mutex_unlock(&kexec_mutex);
	return size;
}

1114 1115
void __weak crash_free_reserved_phys_range(unsigned long begin,
					   unsigned long end)
1116 1117 1118
{
	unsigned long addr;

1119 1120
	for (addr = begin; addr < end; addr += PAGE_SIZE)
		free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
1121 1122 1123 1124 1125 1126
}

int crash_shrink_memory(unsigned long new_size)
{
	int ret = 0;
	unsigned long start, end;
1127
	unsigned long old_size;
1128
	struct resource *ram_res;
1129 1130 1131 1132 1133 1134 1135 1136 1137

	mutex_lock(&kexec_mutex);

	if (kexec_crash_image) {
		ret = -ENOENT;
		goto unlock;
	}
	start = crashk_res.start;
	end = crashk_res.end;
1138 1139 1140
	old_size = (end == 0) ? 0 : end - start + 1;
	if (new_size >= old_size) {
		ret = (new_size == old_size) ? 0 : -EINVAL;
1141 1142 1143
		goto unlock;
	}

1144 1145 1146 1147 1148 1149
	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
	if (!ram_res) {
		ret = -ENOMEM;
		goto unlock;
	}

1150 1151
	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1152

1153
	crash_map_reserved_pages();
1154
	crash_free_reserved_phys_range(end, crashk_res.end);
1155

1156
	if ((start == end) && (crashk_res.parent != NULL))
1157
		release_resource(&crashk_res);
1158 1159 1160 1161 1162 1163

	ram_res->start = end;
	ram_res->end = crashk_res.end;
	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
	ram_res->name = "System RAM";

1164
	crashk_res.end = end - 1;
1165 1166

	insert_resource(&iomem_resource, ram_res);
1167
	crash_unmap_reserved_pages();
1168 1169 1170 1171 1172 1173

unlock:
	mutex_unlock(&kexec_mutex);
	return ret;
}

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
			    size_t data_len)
{
	struct elf_note note;

	note.n_namesz = strlen(name) + 1;
	note.n_descsz = data_len;
	note.n_type   = type;
	memcpy(buf, &note, sizeof(note));
	buf += (sizeof(note) + 3)/4;
	memcpy(buf, name, note.n_namesz);
	buf += (note.n_namesz + 3)/4;
	memcpy(buf, data, note.n_descsz);
	buf += (note.n_descsz + 3)/4;

	return buf;
}

static void final_note(u32 *buf)
{
	struct elf_note note;

	note.n_namesz = 0;
	note.n_descsz = 0;
	note.n_type   = 0;
	memcpy(buf, &note, sizeof(note));
}

void crash_save_cpu(struct pt_regs *regs, int cpu)
{
	struct elf_prstatus prstatus;
	u32 *buf;

1207
	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
		return;

	/* Using ELF notes here is opportunistic.
	 * I need a well defined structure format
	 * for the data I pass, and I need tags
	 * on the data to indicate what information I have
	 * squirrelled away.  ELF notes happen to provide
	 * all of that, so there is no need to invent something new.
	 */
	buf = (u32*)per_cpu_ptr(crash_notes, cpu);
	if (!buf)
		return;
	memset(&prstatus, 0, sizeof(prstatus));
	prstatus.pr_pid = current->pid;
T
Tejun Heo 已提交
1222
	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1223 1224
	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
		      	      &prstatus, sizeof(prstatus));
1225 1226 1227
	final_note(buf);
}

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
static int __init crash_notes_memory_init(void)
{
	/* Allocate memory for saving cpu registers. */
	crash_notes = alloc_percpu(note_buf_t);
	if (!crash_notes) {
		printk("Kexec: Memory allocation for saving cpu register"
		" states failed\n");
		return -ENOMEM;
	}
	return 0;
}
1239
subsys_initcall(crash_notes_memory_init);
K
Ken'ichi Ohmichi 已提交
1240

B
Bernhard Walle 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312

/*
 * parsing the "crashkernel" commandline
 *
 * this code is intended to be called from architecture specific code
 */


/*
 * This function parses command lines in the format
 *
 *   crashkernel=ramsize-range:size[,...][@offset]
 *
 * The function returns 0 on success and -EINVAL on failure.
 */
static int __init parse_crashkernel_mem(char 			*cmdline,
					unsigned long long	system_ram,
					unsigned long long	*crash_size,
					unsigned long long	*crash_base)
{
	char *cur = cmdline, *tmp;

	/* for each entry of the comma-separated list */
	do {
		unsigned long long start, end = ULLONG_MAX, size;

		/* get the start of the range */
		start = memparse(cur, &tmp);
		if (cur == tmp) {
			pr_warning("crashkernel: Memory value expected\n");
			return -EINVAL;
		}
		cur = tmp;
		if (*cur != '-') {
			pr_warning("crashkernel: '-' expected\n");
			return -EINVAL;
		}
		cur++;

		/* if no ':' is here, than we read the end */
		if (*cur != ':') {
			end = memparse(cur, &tmp);
			if (cur == tmp) {
				pr_warning("crashkernel: Memory "
						"value expected\n");
				return -EINVAL;
			}
			cur = tmp;
			if (end <= start) {
				pr_warning("crashkernel: end <= start\n");
				return -EINVAL;
			}
		}

		if (*cur != ':') {
			pr_warning("crashkernel: ':' expected\n");
			return -EINVAL;
		}
		cur++;

		size = memparse(cur, &tmp);
		if (cur == tmp) {
			pr_warning("Memory value expected\n");
			return -EINVAL;
		}
		cur = tmp;
		if (size >= system_ram) {
			pr_warning("crashkernel: invalid size\n");
			return -EINVAL;
		}

		/* match ? */
1313
		if (system_ram >= start && system_ram < end) {
B
Bernhard Walle 已提交
1314 1315 1316 1317 1318 1319
			*crash_size = size;
			break;
		}
	} while (*cur++ == ',');

	if (*crash_size > 0) {
1320
		while (*cur && *cur != ' ' && *cur != '@')
B
Bernhard Walle 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
			cur++;
		if (*cur == '@') {
			cur++;
			*crash_base = memparse(cur, &tmp);
			if (cur == tmp) {
				pr_warning("Memory value expected "
						"after '@'\n");
				return -EINVAL;
			}
		}
	}

	return 0;
}

/*
 * That function parses "simple" (old) crashkernel command lines like
 *
 * 	crashkernel=size[@offset]
 *
 * It returns 0 on success and -EINVAL on failure.
 */
static int __init parse_crashkernel_simple(char 		*cmdline,
					   unsigned long long 	*crash_size,
					   unsigned long long 	*crash_base)
{
	char *cur = cmdline;

	*crash_size = memparse(cmdline, &cur);
	if (cmdline == cur) {
		pr_warning("crashkernel: memory value expected\n");
		return -EINVAL;
	}

	if (*cur == '@')
		*crash_base = memparse(cur+1, &cur);
1357 1358 1359 1360
	else if (*cur != ' ' && *cur != '\0') {
		pr_warning("crashkernel: unrecognized char\n");
		return -EINVAL;
	}
B
Bernhard Walle 已提交
1361 1362 1363 1364

	return 0;
}

1365 1366 1367 1368 1369 1370 1371 1372 1373
#define SUFFIX_HIGH 0
#define SUFFIX_LOW  1
#define SUFFIX_NULL 2
static __initdata char *suffix_tbl[] = {
	[SUFFIX_HIGH] = ",high",
	[SUFFIX_LOW]  = ",low",
	[SUFFIX_NULL] = NULL,
};

B
Bernhard Walle 已提交
1374
/*
1375 1376 1377 1378 1379
 * That function parses "suffix"  crashkernel command lines like
 *
 *	crashkernel=size,[high|low]
 *
 * It returns 0 on success and -EINVAL on failure.
B
Bernhard Walle 已提交
1380
 */
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
static int __init parse_crashkernel_suffix(char *cmdline,
					   unsigned long long	*crash_size,
					   unsigned long long	*crash_base,
					   const char *suffix)
{
	char *cur = cmdline;

	*crash_size = memparse(cmdline, &cur);
	if (cmdline == cur) {
		pr_warn("crashkernel: memory value expected\n");
		return -EINVAL;
	}

	/* check with suffix */
	if (strncmp(cur, suffix, strlen(suffix))) {
		pr_warn("crashkernel: unrecognized char\n");
		return -EINVAL;
	}
	cur += strlen(suffix);
	if (*cur != ' ' && *cur != '\0') {
		pr_warn("crashkernel: unrecognized char\n");
		return -EINVAL;
	}

	return 0;
}

static __init char *get_last_crashkernel(char *cmdline,
			     const char *name,
			     const char *suffix)
{
	char *p = cmdline, *ck_cmdline = NULL;

	/* find crashkernel and use the last one if there are more */
	p = strstr(p, name);
	while (p) {
		char *end_p = strchr(p, ' ');
		char *q;

		if (!end_p)
			end_p = p + strlen(p);

		if (!suffix) {
			int i;

			/* skip the one with any known suffix */
			for (i = 0; suffix_tbl[i]; i++) {
				q = end_p - strlen(suffix_tbl[i]);
				if (!strncmp(q, suffix_tbl[i],
					     strlen(suffix_tbl[i])))
					goto next;
			}
			ck_cmdline = p;
		} else {
			q = end_p - strlen(suffix);
			if (!strncmp(q, suffix, strlen(suffix)))
				ck_cmdline = p;
		}
next:
		p = strstr(p+1, name);
	}

	if (!ck_cmdline)
		return NULL;

	return ck_cmdline;
}

1449
static int __init __parse_crashkernel(char *cmdline,
B
Bernhard Walle 已提交
1450 1451
			     unsigned long long system_ram,
			     unsigned long long *crash_size,
1452
			     unsigned long long *crash_base,
1453 1454
			     const char *name,
			     const char *suffix)
B
Bernhard Walle 已提交
1455 1456
{
	char	*first_colon, *first_space;
1457
	char	*ck_cmdline;
B
Bernhard Walle 已提交
1458 1459 1460 1461 1462

	BUG_ON(!crash_size || !crash_base);
	*crash_size = 0;
	*crash_base = 0;

1463
	ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
B
Bernhard Walle 已提交
1464 1465 1466 1467

	if (!ck_cmdline)
		return -EINVAL;

1468
	ck_cmdline += strlen(name);
B
Bernhard Walle 已提交
1469

1470 1471 1472
	if (suffix)
		return parse_crashkernel_suffix(ck_cmdline, crash_size,
				crash_base, suffix);
B
Bernhard Walle 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
	/*
	 * if the commandline contains a ':', then that's the extended
	 * syntax -- if not, it must be the classic syntax
	 */
	first_colon = strchr(ck_cmdline, ':');
	first_space = strchr(ck_cmdline, ' ');
	if (first_colon && (!first_space || first_colon < first_space))
		return parse_crashkernel_mem(ck_cmdline, system_ram,
				crash_size, crash_base);

X
Xishi Qiu 已提交
1483
	return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
B
Bernhard Walle 已提交
1484 1485
}

1486 1487 1488 1489
/*
 * That function is the entry point for command line parsing and should be
 * called from the arch-specific code.
 */
1490 1491 1492 1493 1494 1495
int __init parse_crashkernel(char *cmdline,
			     unsigned long long system_ram,
			     unsigned long long *crash_size,
			     unsigned long long *crash_base)
{
	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1496
					"crashkernel=", NULL);
1497
}
1498 1499 1500 1501 1502 1503 1504

int __init parse_crashkernel_high(char *cmdline,
			     unsigned long long system_ram,
			     unsigned long long *crash_size,
			     unsigned long long *crash_base)
{
	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1505
				"crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1506
}
1507 1508 1509 1510 1511 1512 1513

int __init parse_crashkernel_low(char *cmdline,
			     unsigned long long system_ram,
			     unsigned long long *crash_size,
			     unsigned long long *crash_base)
{
	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1514
				"crashkernel=", suffix_tbl[SUFFIX_LOW]);
1515
}
B
Bernhard Walle 已提交
1516

1517
static void update_vmcoreinfo_note(void)
K
Ken'ichi Ohmichi 已提交
1518
{
1519
	u32 *buf = vmcoreinfo_note;
K
Ken'ichi Ohmichi 已提交
1520 1521 1522 1523 1524 1525 1526 1527

	if (!vmcoreinfo_size)
		return;
	buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
			      vmcoreinfo_size);
	final_note(buf);
}

1528 1529
void crash_save_vmcoreinfo(void)
{
1530
	vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1531 1532 1533
	update_vmcoreinfo_note();
}

K
Ken'ichi Ohmichi 已提交
1534 1535 1536 1537
void vmcoreinfo_append_str(const char *fmt, ...)
{
	va_list args;
	char buf[0x50];
1538
	size_t r;
K
Ken'ichi Ohmichi 已提交
1539 1540

	va_start(args, fmt);
1541
	r = vscnprintf(buf, sizeof(buf), fmt, args);
K
Ken'ichi Ohmichi 已提交
1542 1543
	va_end(args);

1544
	r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
K
Ken'ichi Ohmichi 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554

	memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);

	vmcoreinfo_size += r;
}

/*
 * provide an empty default implementation here -- architecture
 * code may override this
 */
1555
void __weak arch_crash_save_vmcoreinfo(void)
K
Ken'ichi Ohmichi 已提交
1556 1557
{}

1558
unsigned long __weak paddr_vmcoreinfo_note(void)
K
Ken'ichi Ohmichi 已提交
1559 1560 1561 1562 1563 1564
{
	return __pa((unsigned long)(char *)&vmcoreinfo_note);
}

static int __init crash_save_vmcoreinfo_init(void)
{
1565 1566
	VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
	VMCOREINFO_PAGESIZE(PAGE_SIZE);
K
Ken'ichi Ohmichi 已提交
1567

1568 1569
	VMCOREINFO_SYMBOL(init_uts_ns);
	VMCOREINFO_SYMBOL(node_online_map);
1570
#ifdef CONFIG_MMU
1571
	VMCOREINFO_SYMBOL(swapper_pg_dir);
1572
#endif
1573
	VMCOREINFO_SYMBOL(_stext);
1574
	VMCOREINFO_SYMBOL(vmap_area_list);
K
Ken'ichi Ohmichi 已提交
1575 1576

#ifndef CONFIG_NEED_MULTIPLE_NODES
1577 1578
	VMCOREINFO_SYMBOL(mem_map);
	VMCOREINFO_SYMBOL(contig_page_data);
K
Ken'ichi Ohmichi 已提交
1579 1580
#endif
#ifdef CONFIG_SPARSEMEM
1581 1582
	VMCOREINFO_SYMBOL(mem_section);
	VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1583
	VMCOREINFO_STRUCT_SIZE(mem_section);
1584
	VMCOREINFO_OFFSET(mem_section, section_mem_map);
K
Ken'ichi Ohmichi 已提交
1585
#endif
1586 1587 1588 1589 1590 1591
	VMCOREINFO_STRUCT_SIZE(page);
	VMCOREINFO_STRUCT_SIZE(pglist_data);
	VMCOREINFO_STRUCT_SIZE(zone);
	VMCOREINFO_STRUCT_SIZE(free_area);
	VMCOREINFO_STRUCT_SIZE(list_head);
	VMCOREINFO_SIZE(nodemask_t);
1592 1593 1594 1595
	VMCOREINFO_OFFSET(page, flags);
	VMCOREINFO_OFFSET(page, _count);
	VMCOREINFO_OFFSET(page, mapping);
	VMCOREINFO_OFFSET(page, lru);
1596 1597
	VMCOREINFO_OFFSET(page, _mapcount);
	VMCOREINFO_OFFSET(page, private);
1598 1599
	VMCOREINFO_OFFSET(pglist_data, node_zones);
	VMCOREINFO_OFFSET(pglist_data, nr_zones);
K
Ken'ichi Ohmichi 已提交
1600
#ifdef CONFIG_FLAT_NODE_MEM_MAP
1601
	VMCOREINFO_OFFSET(pglist_data, node_mem_map);
K
Ken'ichi Ohmichi 已提交
1602
#endif
1603 1604 1605 1606 1607 1608 1609 1610 1611
	VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
	VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
	VMCOREINFO_OFFSET(pglist_data, node_id);
	VMCOREINFO_OFFSET(zone, free_area);
	VMCOREINFO_OFFSET(zone, vm_stat);
	VMCOREINFO_OFFSET(zone, spanned_pages);
	VMCOREINFO_OFFSET(free_area, free_list);
	VMCOREINFO_OFFSET(list_head, next);
	VMCOREINFO_OFFSET(list_head, prev);
1612 1613
	VMCOREINFO_OFFSET(vmap_area, va_start);
	VMCOREINFO_OFFSET(vmap_area, list);
1614
	VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1615
	log_buf_kexec_setup();
1616
	VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1617
	VMCOREINFO_NUMBER(NR_FREE_PAGES);
1618 1619 1620
	VMCOREINFO_NUMBER(PG_lru);
	VMCOREINFO_NUMBER(PG_private);
	VMCOREINFO_NUMBER(PG_swapcache);
1621
	VMCOREINFO_NUMBER(PG_slab);
1622 1623 1624
#ifdef CONFIG_MEMORY_FAILURE
	VMCOREINFO_NUMBER(PG_hwpoison);
#endif
1625
	VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
K
Ken'ichi Ohmichi 已提交
1626 1627

	arch_crash_save_vmcoreinfo();
1628
	update_vmcoreinfo_note();
K
Ken'ichi Ohmichi 已提交
1629 1630 1631 1632

	return 0;
}

1633
subsys_initcall(crash_save_vmcoreinfo_init);
H
Huang Ying 已提交
1634

1635 1636 1637
/*
 * Move into place and start executing a preloaded standalone
 * executable.  If nothing was preloaded return an error.
H
Huang Ying 已提交
1638 1639 1640 1641 1642
 */
int kernel_kexec(void)
{
	int error = 0;

1643
	if (!mutex_trylock(&kexec_mutex))
H
Huang Ying 已提交
1644 1645 1646 1647 1648 1649 1650
		return -EBUSY;
	if (!kexec_image) {
		error = -EINVAL;
		goto Unlock;
	}

#ifdef CONFIG_KEXEC_JUMP
1651
	if (kexec_image->preserve_context) {
1652
		lock_system_sleep();
1653 1654 1655 1656 1657 1658 1659
		pm_prepare_console();
		error = freeze_processes();
		if (error) {
			error = -EBUSY;
			goto Restore_console;
		}
		suspend_console();
1660
		error = dpm_suspend_start(PMSG_FREEZE);
1661 1662
		if (error)
			goto Resume_console;
1663
		/* At this point, dpm_suspend_start() has been called,
1664 1665
		 * but *not* dpm_suspend_end(). We *must* call
		 * dpm_suspend_end() now.  Otherwise, drivers for
1666 1667 1668 1669
		 * some devices (e.g. interrupt controllers) become
		 * desynchronized with the actual state of the
		 * hardware at resume time, and evil weirdness ensues.
		 */
1670
		error = dpm_suspend_end(PMSG_FREEZE);
1671
		if (error)
1672 1673 1674 1675
			goto Resume_devices;
		error = disable_nonboot_cpus();
		if (error)
			goto Enable_cpus;
1676
		local_irq_disable();
1677
		error = syscore_suspend();
1678
		if (error)
1679
			goto Enable_irqs;
1680
	} else
H
Huang Ying 已提交
1681
#endif
1682
	{
1683
		kexec_in_progress = true;
1684
		kernel_restart_prepare(NULL);
V
Vivek Goyal 已提交
1685
		migrate_to_reboot_cpu();
H
Huang Ying 已提交
1686 1687 1688 1689 1690 1691 1692
		printk(KERN_EMERG "Starting new kernel\n");
		machine_shutdown();
	}

	machine_kexec(kexec_image);

#ifdef CONFIG_KEXEC_JUMP
1693
	if (kexec_image->preserve_context) {
1694
		syscore_resume();
1695
 Enable_irqs:
H
Huang Ying 已提交
1696
		local_irq_enable();
1697
 Enable_cpus:
1698
		enable_nonboot_cpus();
1699
		dpm_resume_start(PMSG_RESTORE);
1700
 Resume_devices:
1701
		dpm_resume_end(PMSG_RESTORE);
1702 1703 1704 1705 1706
 Resume_console:
		resume_console();
		thaw_processes();
 Restore_console:
		pm_restore_console();
1707
		unlock_system_sleep();
H
Huang Ying 已提交
1708
	}
1709
#endif
H
Huang Ying 已提交
1710 1711

 Unlock:
1712
	mutex_unlock(&kexec_mutex);
H
Huang Ying 已提交
1713 1714
	return error;
}