fsl_sai.c 23.3 KB
Newer Older
1 2 3
/*
 * Freescale ALSA SoC Digital Audio Interface (SAI) driver.
 *
4
 * Copyright 2012-2015 Freescale Semiconductor, Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software, you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation, either version 2 of the License, or(at your
 * option) any later version.
 *
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/module.h>
#include <linux/of_address.h>
18
#include <linux/regmap.h>
19
#include <linux/slab.h>
20
#include <linux/time.h>
21 22 23 24 25
#include <sound/core.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>

#include "fsl_sai.h"
26
#include "imx-pcm.h"
27

28 29 30
#define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
		       FSL_SAI_CSR_FEIE)

31
static const unsigned int fsl_sai_rates[] = {
32 33 34 35 36
	8000, 11025, 12000, 16000, 22050,
	24000, 32000, 44100, 48000, 64000,
	88200, 96000, 176400, 192000
};

37
static const struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = {
38 39 40 41
	.count = ARRAY_SIZE(fsl_sai_rates),
	.list = fsl_sai_rates,
};

42 43 44 45
static irqreturn_t fsl_sai_isr(int irq, void *devid)
{
	struct fsl_sai *sai = (struct fsl_sai *)devid;
	struct device *dev = &sai->pdev->dev;
46 47 48 49 50 51 52 53
	u32 flags, xcsr, mask;
	bool irq_none = true;

	/*
	 * Both IRQ status bits and IRQ mask bits are in the xCSR but
	 * different shifts. And we here create a mask only for those
	 * IRQs that we activated.
	 */
54 55 56 57
	mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT;

	/* Tx IRQ */
	regmap_read(sai->regmap, FSL_SAI_TCSR, &xcsr);
58 59 60 61 62 63
	flags = xcsr & mask;

	if (flags)
		irq_none = false;
	else
		goto irq_rx;
64

65
	if (flags & FSL_SAI_CSR_WSF)
66 67
		dev_dbg(dev, "isr: Start of Tx word detected\n");

68
	if (flags & FSL_SAI_CSR_SEF)
69 70
		dev_warn(dev, "isr: Tx Frame sync error detected\n");

71
	if (flags & FSL_SAI_CSR_FEF) {
72 73 74 75 76
		dev_warn(dev, "isr: Transmit underrun detected\n");
		/* FIFO reset for safety */
		xcsr |= FSL_SAI_CSR_FR;
	}

77
	if (flags & FSL_SAI_CSR_FWF)
78 79
		dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n");

80
	if (flags & FSL_SAI_CSR_FRF)
81 82
		dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n");

83 84 85 86 87
	flags &= FSL_SAI_CSR_xF_W_MASK;
	xcsr &= ~FSL_SAI_CSR_xF_MASK;

	if (flags)
		regmap_write(sai->regmap, FSL_SAI_TCSR, flags | xcsr);
88

89
irq_rx:
90 91
	/* Rx IRQ */
	regmap_read(sai->regmap, FSL_SAI_RCSR, &xcsr);
92
	flags = xcsr & mask;
93

94 95 96 97 98 99
	if (flags)
		irq_none = false;
	else
		goto out;

	if (flags & FSL_SAI_CSR_WSF)
100 101
		dev_dbg(dev, "isr: Start of Rx word detected\n");

102
	if (flags & FSL_SAI_CSR_SEF)
103 104
		dev_warn(dev, "isr: Rx Frame sync error detected\n");

105
	if (flags & FSL_SAI_CSR_FEF) {
106 107 108 109 110
		dev_warn(dev, "isr: Receive overflow detected\n");
		/* FIFO reset for safety */
		xcsr |= FSL_SAI_CSR_FR;
	}

111
	if (flags & FSL_SAI_CSR_FWF)
112 113
		dev_dbg(dev, "isr: Enabled receive FIFO is full\n");

114
	if (flags & FSL_SAI_CSR_FRF)
115 116
		dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n");

117 118
	flags &= FSL_SAI_CSR_xF_W_MASK;
	xcsr &= ~FSL_SAI_CSR_xF_MASK;
119

120
	if (flags)
121
		regmap_write(sai->regmap, FSL_SAI_RCSR, flags | xcsr);
122 123 124 125 126 127

out:
	if (irq_none)
		return IRQ_NONE;
	else
		return IRQ_HANDLED;
128 129
}

130 131 132 133 134 135 136 137 138 139 140
static int fsl_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
				u32 rx_mask, int slots, int slot_width)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);

	sai->slots = slots;
	sai->slot_width = slot_width;

	return 0;
}

141 142 143 144
static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai,
		int clk_id, unsigned int freq, int fsl_dir)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
145 146
	bool tx = fsl_dir == FSL_FMT_TRANSMITTER;
	u32 val_cr2 = 0;
X
Xiubo Li 已提交
147

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
	switch (clk_id) {
	case FSL_SAI_CLK_BUS:
		val_cr2 |= FSL_SAI_CR2_MSEL_BUS;
		break;
	case FSL_SAI_CLK_MAST1:
		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1;
		break;
	case FSL_SAI_CLK_MAST2:
		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2;
		break;
	case FSL_SAI_CLK_MAST3:
		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3;
		break;
	default:
		return -EINVAL;
	}
X
Xiubo Li 已提交
164

165 166
	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx),
			   FSL_SAI_CR2_MSEL_MASK, val_cr2);
167 168 169 170 171 172 173

	return 0;
}

static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
		int clk_id, unsigned int freq, int dir)
{
174
	int ret;
175 176 177 178 179 180 181

	if (dir == SND_SOC_CLOCK_IN)
		return 0;

	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq,
					FSL_FMT_TRANSMITTER);
	if (ret) {
182
		dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret);
183
		return ret;
184 185 186 187
	}

	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq,
					FSL_FMT_RECEIVER);
188
	if (ret)
189
		dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret);
190

191
	return ret;
192 193 194 195 196 197
}

static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai,
				unsigned int fmt, int fsl_dir)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
198 199
	bool tx = fsl_dir == FSL_FMT_TRANSMITTER;
	u32 val_cr2 = 0, val_cr4 = 0;
200

201
	if (!sai->is_lsb_first)
202
		val_cr4 |= FSL_SAI_CR4_MF;
203

204
	/* DAI mode */
205 206
	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
	case SND_SOC_DAIFMT_I2S:
207 208 209 210 211 212
		/*
		 * Frame low, 1clk before data, one word length for frame sync,
		 * frame sync starts one serial clock cycle earlier,
		 * that is, together with the last bit of the previous
		 * data word.
		 */
213
		val_cr2 |= FSL_SAI_CR2_BCP;
214 215 216
		val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP;
		break;
	case SND_SOC_DAIFMT_LEFT_J:
217 218 219 220
		/*
		 * Frame high, one word length for frame sync,
		 * frame sync asserts with the first bit of the frame.
		 */
221
		val_cr2 |= FSL_SAI_CR2_BCP;
222
		break;
223 224 225 226 227 228 229
	case SND_SOC_DAIFMT_DSP_A:
		/*
		 * Frame high, 1clk before data, one bit for frame sync,
		 * frame sync starts one serial clock cycle earlier,
		 * that is, together with the last bit of the previous
		 * data word.
		 */
230
		val_cr2 |= FSL_SAI_CR2_BCP;
231 232 233 234 235 236 237 238
		val_cr4 |= FSL_SAI_CR4_FSE;
		sai->is_dsp_mode = true;
		break;
	case SND_SOC_DAIFMT_DSP_B:
		/*
		 * Frame high, one bit for frame sync,
		 * frame sync asserts with the first bit of the frame.
		 */
239
		val_cr2 |= FSL_SAI_CR2_BCP;
240 241
		sai->is_dsp_mode = true;
		break;
242 243
	case SND_SOC_DAIFMT_RIGHT_J:
		/* To be done */
244 245 246 247
	default:
		return -EINVAL;
	}

248
	/* DAI clock inversion */
249 250
	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
	case SND_SOC_DAIFMT_IB_IF:
251 252 253
		/* Invert both clocks */
		val_cr2 ^= FSL_SAI_CR2_BCP;
		val_cr4 ^= FSL_SAI_CR4_FSP;
254 255
		break;
	case SND_SOC_DAIFMT_IB_NF:
256 257
		/* Invert bit clock */
		val_cr2 ^= FSL_SAI_CR2_BCP;
258 259
		break;
	case SND_SOC_DAIFMT_NB_IF:
260 261
		/* Invert frame clock */
		val_cr4 ^= FSL_SAI_CR4_FSP;
262 263
		break;
	case SND_SOC_DAIFMT_NB_NF:
264
		/* Nothing to do for both normal cases */
265 266 267 268 269
		break;
	default:
		return -EINVAL;
	}

270
	/* DAI clock master masks */
271 272 273 274 275 276
	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
	case SND_SOC_DAIFMT_CBS_CFS:
		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
		break;
	case SND_SOC_DAIFMT_CBM_CFM:
277
		sai->is_slave_mode = true;
278
		break;
279 280 281 282 283
	case SND_SOC_DAIFMT_CBS_CFM:
		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
		break;
	case SND_SOC_DAIFMT_CBM_CFS:
		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
284
		sai->is_slave_mode = true;
285
		break;
286 287 288 289
	default:
		return -EINVAL;
	}

290 291 292 293 294
	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx),
			   FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2);
	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx),
			   FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE |
			   FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4);
295 296 297 298 299 300

	return 0;
}

static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
{
301
	int ret;
302 303 304

	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, FSL_FMT_TRANSMITTER);
	if (ret) {
305
		dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret);
306
		return ret;
307 308 309
	}

	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, FSL_FMT_RECEIVER);
310
	if (ret)
311
		dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret);
312

313
	return ret;
314 315
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
	unsigned long clk_rate;
	u32 savediv = 0, ratio, savesub = freq;
	u32 id;
	int ret = 0;

	/* Don't apply to slave mode */
	if (sai->is_slave_mode)
		return 0;

	for (id = 0; id < FSL_SAI_MCLK_MAX; id++) {
		clk_rate = clk_get_rate(sai->mclk_clk[id]);
		if (!clk_rate)
			continue;

		ratio = clk_rate / freq;

		ret = clk_rate - ratio * freq;

		/*
		 * Drop the source that can not be
		 * divided into the required rate.
		 */
		if (ret != 0 && clk_rate / ret < 1000)
			continue;

		dev_dbg(dai->dev,
			"ratio %d for freq %dHz based on clock %ldHz\n",
			ratio, freq, clk_rate);

		if (ratio % 2 == 0 && ratio >= 2 && ratio <= 512)
			ratio /= 2;
		else
			continue;

		if (ret < savesub) {
			savediv = ratio;
			sai->mclk_id[tx] = id;
			savesub = ret;
		}

		if (ret == 0)
			break;
	}

	if (savediv == 0) {
		dev_err(dai->dev, "failed to derive required %cx rate: %d\n",
				tx ? 'T' : 'R', freq);
		return -EINVAL;
	}

369 370 371 372 373 374 375 376 377 378 379 380
	/*
	 * 1) For Asynchronous mode, we must set RCR2 register for capture, and
	 *    set TCR2 register for playback.
	 * 2) For Tx sync with Rx clock, we must set RCR2 register for playback
	 *    and capture.
	 * 3) For Rx sync with Tx clock, we must set TCR2 register for playback
	 *    and capture.
	 * 4) For Tx and Rx are both Synchronous with another SAI, we just
	 *    ignore it.
	 */
	if ((sai->synchronous[TX] && !sai->synchronous[RX]) ||
	    (!tx && !sai->synchronous[RX])) {
381 382 383 384 385
		regmap_update_bits(sai->regmap, FSL_SAI_RCR2,
				   FSL_SAI_CR2_MSEL_MASK,
				   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
		regmap_update_bits(sai->regmap, FSL_SAI_RCR2,
				   FSL_SAI_CR2_DIV_MASK, savediv - 1);
386 387
	} else if ((sai->synchronous[RX] && !sai->synchronous[TX]) ||
		   (tx && !sai->synchronous[TX])) {
388 389 390 391 392 393 394 395 396 397 398 399 400
		regmap_update_bits(sai->regmap, FSL_SAI_TCR2,
				   FSL_SAI_CR2_MSEL_MASK,
				   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
		regmap_update_bits(sai->regmap, FSL_SAI_TCR2,
				   FSL_SAI_CR2_DIV_MASK, savediv - 1);
	}

	dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n",
			sai->mclk_id[tx], savediv, savesub);

	return 0;
}

401 402 403 404
static int fsl_sai_hw_params(struct snd_pcm_substream *substream,
		struct snd_pcm_hw_params *params,
		struct snd_soc_dai *cpu_dai)
{
405
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
406
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
407
	unsigned int channels = params_channels(params);
408
	u32 word_width = snd_pcm_format_width(params_format(params));
409
	u32 val_cr4 = 0, val_cr5 = 0;
410 411
	u32 slots = (channels == 1) ? 2 : channels;
	u32 slot_width = word_width;
412 413
	int ret;

414 415 416 417 418 419
	if (sai->slots)
		slots = sai->slots;

	if (sai->slot_width)
		slot_width = sai->slot_width;

420 421
	if (!sai->is_slave_mode) {
		ret = fsl_sai_set_bclk(cpu_dai, tx,
422
				slots * slot_width * params_rate(params));
423 424 425 426 427 428 429 430 431 432 433 434
		if (ret)
			return ret;

		/* Do not enable the clock if it is already enabled */
		if (!(sai->mclk_streams & BIT(substream->stream))) {
			ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]);
			if (ret)
				return ret;

			sai->mclk_streams |= BIT(substream->stream);
		}
	}
435

436
	if (!sai->is_dsp_mode)
437
		val_cr4 |= FSL_SAI_CR4_SYWD(slot_width);
438

439 440
	val_cr5 |= FSL_SAI_CR5_WNW(slot_width);
	val_cr5 |= FSL_SAI_CR5_W0W(slot_width);
441

442
	if (sai->is_lsb_first)
443
		val_cr5 |= FSL_SAI_CR5_FBT(0);
444 445
	else
		val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1);
446

447
	val_cr4 |= FSL_SAI_CR4_FRSZ(slots);
448

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
	/*
	 * For SAI master mode, when Tx(Rx) sync with Rx(Tx) clock, Rx(Tx) will
	 * generate bclk and frame clock for Tx(Rx), we should set RCR4(TCR4),
	 * RCR5(TCR5) and RMR(TMR) for playback(capture), or there will be sync
	 * error.
	 */

	if (!sai->is_slave_mode) {
		if (!sai->synchronous[TX] && sai->synchronous[RX] && !tx) {
			regmap_update_bits(sai->regmap, FSL_SAI_TCR4,
				FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK,
				val_cr4);
			regmap_update_bits(sai->regmap, FSL_SAI_TCR5,
				FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
				FSL_SAI_CR5_FBT_MASK, val_cr5);
			regmap_write(sai->regmap, FSL_SAI_TMR,
				~0UL - ((1 << channels) - 1));
		} else if (!sai->synchronous[RX] && sai->synchronous[TX] && tx) {
			regmap_update_bits(sai->regmap, FSL_SAI_RCR4,
				FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK,
				val_cr4);
			regmap_update_bits(sai->regmap, FSL_SAI_RCR5,
				FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
				FSL_SAI_CR5_FBT_MASK, val_cr5);
			regmap_write(sai->regmap, FSL_SAI_RMR,
				~0UL - ((1 << channels) - 1));
		}
	}

478 479 480 481 482 483 484
	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx),
			   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK,
			   val_cr4);
	regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx),
			   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
			   FSL_SAI_CR5_FBT_MASK, val_cr5);
	regmap_write(sai->regmap, FSL_SAI_xMR(tx), ~0UL - ((1 << channels) - 1));
485 486 487 488

	return 0;
}

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
static int fsl_sai_hw_free(struct snd_pcm_substream *substream,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;

	if (!sai->is_slave_mode &&
			sai->mclk_streams & BIT(substream->stream)) {
		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]);
		sai->mclk_streams &= ~BIT(substream->stream);
	}

	return 0;
}


505 506 507 508
static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
509
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
510
	u32 xcsr, count = 100;
511

512
	/*
513 514 515
	 * Asynchronous mode: Clear SYNC for both Tx and Rx.
	 * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx.
	 * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx.
516
	 */
517
	regmap_update_bits(sai->regmap, FSL_SAI_TCR2, FSL_SAI_CR2_SYNC, 0);
518
	regmap_update_bits(sai->regmap, FSL_SAI_RCR2, FSL_SAI_CR2_SYNC,
519
			   sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0);
520

521 522 523 524
	/*
	 * It is recommended that the transmitter is the last enabled
	 * and the first disabled.
	 */
525 526 527 528
	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_RESUME:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
529 530 531
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx),
				   FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE);

532 533 534 535
		regmap_update_bits(sai->regmap, FSL_SAI_RCSR,
				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
		regmap_update_bits(sai->regmap, FSL_SAI_TCSR,
				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
536

537 538
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx),
				   FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS);
539 540 541 542
		break;
	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_SUSPEND:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
543 544
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx),
				   FSL_SAI_CSR_FRDE, 0);
545 546
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx),
				   FSL_SAI_CSR_xIE_MASK, 0);
547

548
		/* Check if the opposite FRDE is also disabled */
549 550
		regmap_read(sai->regmap, FSL_SAI_xCSR(!tx), &xcsr);
		if (!(xcsr & FSL_SAI_CSR_FRDE)) {
551
			/* Disable both directions and reset their FIFOs */
552
			regmap_update_bits(sai->regmap, FSL_SAI_TCSR,
553
					   FSL_SAI_CSR_TERE, 0);
554
			regmap_update_bits(sai->regmap, FSL_SAI_RCSR,
555 556 557 558 559 560 561 562 563 564 565 566
					   FSL_SAI_CSR_TERE, 0);

			/* TERE will remain set till the end of current frame */
			do {
				udelay(10);
				regmap_read(sai->regmap, FSL_SAI_xCSR(tx), &xcsr);
			} while (--count && xcsr & FSL_SAI_CSR_TERE);

			regmap_update_bits(sai->regmap, FSL_SAI_TCSR,
					   FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
			regmap_update_bits(sai->regmap, FSL_SAI_RCSR,
					   FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
567 568 569 570 571 572 573 574 575 576 577 578 579
		}
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int fsl_sai_startup(struct snd_pcm_substream *substream,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
580
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
581 582 583 584 585 586 587 588
	struct device *dev = &sai->pdev->dev;
	int ret;

	ret = clk_prepare_enable(sai->bus_clk);
	if (ret) {
		dev_err(dev, "failed to enable bus clock: %d\n", ret);
		return ret;
	}
589

590
	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx), FSL_SAI_CR3_TRCE,
591 592
			   FSL_SAI_CR3_TRCE);

593 594 595 596
	ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
			SNDRV_PCM_HW_PARAM_RATE, &fsl_sai_rate_constraints);

	return ret;
597 598 599 600 601 602
}

static void fsl_sai_shutdown(struct snd_pcm_substream *substream,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
603
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
604

605
	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx), FSL_SAI_CR3_TRCE, 0);
606 607

	clk_disable_unprepare(sai->bus_clk);
608 609 610 611 612
}

static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
	.set_sysclk	= fsl_sai_set_dai_sysclk,
	.set_fmt	= fsl_sai_set_dai_fmt,
613
	.set_tdm_slot	= fsl_sai_set_dai_tdm_slot,
614
	.hw_params	= fsl_sai_hw_params,
615
	.hw_free	= fsl_sai_hw_free,
616 617 618 619 620 621 622 623
	.trigger	= fsl_sai_trigger,
	.startup	= fsl_sai_startup,
	.shutdown	= fsl_sai_shutdown,
};

static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);
624

625 626 627 628 629 630 631
	/* Software Reset for both Tx and Rx */
	regmap_write(sai->regmap, FSL_SAI_TCSR, FSL_SAI_CSR_SR);
	regmap_write(sai->regmap, FSL_SAI_RCSR, FSL_SAI_CSR_SR);
	/* Clear SR bit to finish the reset */
	regmap_write(sai->regmap, FSL_SAI_TCSR, 0);
	regmap_write(sai->regmap, FSL_SAI_RCSR, 0);

632 633 634 635
	regmap_update_bits(sai->regmap, FSL_SAI_TCR1, FSL_SAI_CR1_RFW_MASK,
			   FSL_SAI_MAXBURST_TX * 2);
	regmap_update_bits(sai->regmap, FSL_SAI_RCR1, FSL_SAI_CR1_RFW_MASK,
			   FSL_SAI_MAXBURST_RX - 1);
636

637 638
	snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx,
				&sai->dma_params_rx);
639 640 641 642 643 644 645 646 647

	snd_soc_dai_set_drvdata(cpu_dai, sai);

	return 0;
}

static struct snd_soc_dai_driver fsl_sai_dai = {
	.probe = fsl_sai_dai_probe,
	.playback = {
648
		.stream_name = "CPU-Playback",
649 650
		.channels_min = 1,
		.channels_max = 2,
651 652 653
		.rate_min = 8000,
		.rate_max = 192000,
		.rates = SNDRV_PCM_RATE_KNOT,
654 655 656
		.formats = FSL_SAI_FORMATS,
	},
	.capture = {
657
		.stream_name = "CPU-Capture",
658 659
		.channels_min = 1,
		.channels_max = 2,
660 661 662
		.rate_min = 8000,
		.rate_max = 192000,
		.rates = SNDRV_PCM_RATE_KNOT,
663 664 665 666 667 668 669 670 671
		.formats = FSL_SAI_FORMATS,
	},
	.ops = &fsl_sai_pcm_dai_ops,
};

static const struct snd_soc_component_driver fsl_component = {
	.name           = "fsl-sai",
};

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case FSL_SAI_TCSR:
	case FSL_SAI_TCR1:
	case FSL_SAI_TCR2:
	case FSL_SAI_TCR3:
	case FSL_SAI_TCR4:
	case FSL_SAI_TCR5:
	case FSL_SAI_TFR:
	case FSL_SAI_TMR:
	case FSL_SAI_RCSR:
	case FSL_SAI_RCR1:
	case FSL_SAI_RCR2:
	case FSL_SAI_RCR3:
	case FSL_SAI_RCR4:
	case FSL_SAI_RCR5:
	case FSL_SAI_RDR:
	case FSL_SAI_RFR:
	case FSL_SAI_RMR:
		return true;
	default:
		return false;
	}
}

static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
701 702
	case FSL_SAI_TCSR:
	case FSL_SAI_RCSR:
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
	case FSL_SAI_TFR:
	case FSL_SAI_RFR:
	case FSL_SAI_TDR:
	case FSL_SAI_RDR:
		return true;
	default:
		return false;
	}

}

static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case FSL_SAI_TCSR:
	case FSL_SAI_TCR1:
	case FSL_SAI_TCR2:
	case FSL_SAI_TCR3:
	case FSL_SAI_TCR4:
	case FSL_SAI_TCR5:
	case FSL_SAI_TDR:
	case FSL_SAI_TMR:
	case FSL_SAI_RCSR:
	case FSL_SAI_RCR1:
	case FSL_SAI_RCR2:
	case FSL_SAI_RCR3:
	case FSL_SAI_RCR4:
	case FSL_SAI_RCR5:
	case FSL_SAI_RMR:
		return true;
	default:
		return false;
	}
}

738
static const struct regmap_config fsl_sai_regmap_config = {
739 740 741 742 743 744 745 746
	.reg_bits = 32,
	.reg_stride = 4,
	.val_bits = 32,

	.max_register = FSL_SAI_RMR,
	.readable_reg = fsl_sai_readable_reg,
	.volatile_reg = fsl_sai_volatile_reg,
	.writeable_reg = fsl_sai_writeable_reg,
747
	.cache_type = REGCACHE_FLAT,
748 749
};

750 751
static int fsl_sai_probe(struct platform_device *pdev)
{
752
	struct device_node *np = pdev->dev.of_node;
753 754
	struct fsl_sai *sai;
	struct resource *res;
755
	void __iomem *base;
756 757
	char tmp[8];
	int irq, ret, i;
758 759 760 761 762

	sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
	if (!sai)
		return -ENOMEM;

763 764
	sai->pdev = pdev;

765 766 767
	if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx6sx-sai"))
		sai->sai_on_imx = true;

768
	sai->is_lsb_first = of_property_read_bool(np, "lsb-first");
769

770
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
771 772 773 774 775
	base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(base))
		return PTR_ERR(base);

	sai->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
776 777 778 779 780 781
			"bus", base, &fsl_sai_regmap_config);

	/* Compatible with old DTB cases */
	if (IS_ERR(sai->regmap))
		sai->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
				"sai", base, &fsl_sai_regmap_config);
782 783 784
	if (IS_ERR(sai->regmap)) {
		dev_err(&pdev->dev, "regmap init failed\n");
		return PTR_ERR(sai->regmap);
785 786
	}

787 788 789 790 791 792 793 794
	/* No error out for old DTB cases but only mark the clock NULL */
	sai->bus_clk = devm_clk_get(&pdev->dev, "bus");
	if (IS_ERR(sai->bus_clk)) {
		dev_err(&pdev->dev, "failed to get bus clock: %ld\n",
				PTR_ERR(sai->bus_clk));
		sai->bus_clk = NULL;
	}

795 796 797
	sai->mclk_clk[0] = sai->bus_clk;
	for (i = 1; i < FSL_SAI_MCLK_MAX; i++) {
		sprintf(tmp, "mclk%d", i);
798 799 800 801 802 803 804 805
		sai->mclk_clk[i] = devm_clk_get(&pdev->dev, tmp);
		if (IS_ERR(sai->mclk_clk[i])) {
			dev_err(&pdev->dev, "failed to get mclk%d clock: %ld\n",
					i + 1, PTR_ERR(sai->mclk_clk[i]));
			sai->mclk_clk[i] = NULL;
		}
	}

806 807
	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
808
		dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
809 810 811 812 813 814 815 816 817
		return irq;
	}

	ret = devm_request_irq(&pdev->dev, irq, fsl_sai_isr, 0, np->name, sai);
	if (ret) {
		dev_err(&pdev->dev, "failed to claim irq %u\n", irq);
		return ret;
	}

818 819 820 821 822 823 824
	/* Sync Tx with Rx as default by following old DT binding */
	sai->synchronous[RX] = true;
	sai->synchronous[TX] = false;
	fsl_sai_dai.symmetric_rates = 1;
	fsl_sai_dai.symmetric_channels = 1;
	fsl_sai_dai.symmetric_samplebits = 1;

825 826 827 828 829 830 831
	if (of_find_property(np, "fsl,sai-synchronous-rx", NULL) &&
	    of_find_property(np, "fsl,sai-asynchronous", NULL)) {
		/* error out if both synchronous and asynchronous are present */
		dev_err(&pdev->dev, "invalid binding for synchronous mode\n");
		return -EINVAL;
	}

832 833 834 835 836 837 838 839 840 841 842 843 844
	if (of_find_property(np, "fsl,sai-synchronous-rx", NULL)) {
		/* Sync Rx with Tx */
		sai->synchronous[RX] = false;
		sai->synchronous[TX] = true;
	} else if (of_find_property(np, "fsl,sai-asynchronous", NULL)) {
		/* Discard all settings for asynchronous mode */
		sai->synchronous[RX] = false;
		sai->synchronous[TX] = false;
		fsl_sai_dai.symmetric_rates = 0;
		fsl_sai_dai.symmetric_channels = 0;
		fsl_sai_dai.symmetric_samplebits = 0;
	}

845 846 847 848 849 850 851 852 853 854 855 856
	sai->dma_params_rx.addr = res->start + FSL_SAI_RDR;
	sai->dma_params_tx.addr = res->start + FSL_SAI_TDR;
	sai->dma_params_rx.maxburst = FSL_SAI_MAXBURST_RX;
	sai->dma_params_tx.maxburst = FSL_SAI_MAXBURST_TX;

	platform_set_drvdata(pdev, sai);

	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_component,
			&fsl_sai_dai, 1);
	if (ret)
		return ret;

857
	if (sai->sai_on_imx)
858
		return imx_pcm_dma_init(pdev, IMX_SAI_DMABUF_SIZE);
859
	else
860
		return devm_snd_dmaengine_pcm_register(&pdev->dev, NULL, 0);
861 862 863 864
}

static const struct of_device_id fsl_sai_ids[] = {
	{ .compatible = "fsl,vf610-sai", },
865
	{ .compatible = "fsl,imx6sx-sai", },
866 867
	{ /* sentinel */ }
};
868
MODULE_DEVICE_TABLE(of, fsl_sai_ids);
869

870
#ifdef CONFIG_PM_SLEEP
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
static int fsl_sai_suspend(struct device *dev)
{
	struct fsl_sai *sai = dev_get_drvdata(dev);

	regcache_cache_only(sai->regmap, true);
	regcache_mark_dirty(sai->regmap);

	return 0;
}

static int fsl_sai_resume(struct device *dev)
{
	struct fsl_sai *sai = dev_get_drvdata(dev);

	regcache_cache_only(sai->regmap, false);
	regmap_write(sai->regmap, FSL_SAI_TCSR, FSL_SAI_CSR_SR);
	regmap_write(sai->regmap, FSL_SAI_RCSR, FSL_SAI_CSR_SR);
888
	usleep_range(1000, 2000);
889 890 891 892 893 894 895 896 897 898
	regmap_write(sai->regmap, FSL_SAI_TCSR, 0);
	regmap_write(sai->regmap, FSL_SAI_RCSR, 0);
	return regcache_sync(sai->regmap);
}
#endif /* CONFIG_PM_SLEEP */

static const struct dev_pm_ops fsl_sai_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(fsl_sai_suspend, fsl_sai_resume)
};

899 900 901 902
static struct platform_driver fsl_sai_driver = {
	.probe = fsl_sai_probe,
	.driver = {
		.name = "fsl-sai",
903
		.pm = &fsl_sai_pm_ops,
904 905 906 907 908 909 910 911 912
		.of_match_table = fsl_sai_ids,
	},
};
module_platform_driver(fsl_sai_driver);

MODULE_DESCRIPTION("Freescale Soc SAI Interface");
MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>");
MODULE_ALIAS("platform:fsl-sai");
MODULE_LICENSE("GPL");