deadline.c 47.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Deadline Scheduling Class (SCHED_DEADLINE)
 *
 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
 *
 * Tasks that periodically executes their instances for less than their
 * runtime won't miss any of their deadlines.
 * Tasks that are not periodic or sporadic or that tries to execute more
 * than their reserved bandwidth will be slowed down (and may potentially
 * miss some of their deadlines), and won't affect any other task.
 *
 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13
 *                    Juri Lelli <juri.lelli@gmail.com>,
14 15 16 17 18
 *                    Michael Trimarchi <michael@amarulasolutions.com>,
 *                    Fabio Checconi <fchecconi@gmail.com>
 */
#include "sched.h"

19 20
#include <linux/slab.h>

21 22
struct dl_bandwidth def_dl_bandwidth;

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
{
	return container_of(dl_se, struct task_struct, dl);
}

static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
{
	return container_of(dl_rq, struct rq, dl);
}

static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
{
	struct task_struct *p = dl_task_of(dl_se);
	struct rq *rq = task_rq(p);

	return &rq->dl;
}

static inline int on_dl_rq(struct sched_dl_entity *dl_se)
{
	return !RB_EMPTY_NODE(&dl_se->rb_node);
}

static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
{
	struct sched_dl_entity *dl_se = &p->dl;

	return dl_rq->rb_leftmost == &dl_se->rb_node;
}

53 54 55 56 57 58 59 60 61 62 63
void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
{
	raw_spin_lock_init(&dl_b->dl_runtime_lock);
	dl_b->dl_period = period;
	dl_b->dl_runtime = runtime;
}

void init_dl_bw(struct dl_bw *dl_b)
{
	raw_spin_lock_init(&dl_b->lock);
	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
64
	if (global_rt_runtime() == RUNTIME_INF)
65 66
		dl_b->bw = -1;
	else
67
		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
68 69 70 71
	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
	dl_b->total_bw = 0;
}

72
void init_dl_rq(struct dl_rq *dl_rq)
73 74
{
	dl_rq->rb_root = RB_ROOT;
75 76 77 78 79 80 81 82

#ifdef CONFIG_SMP
	/* zero means no -deadline tasks */
	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;

	dl_rq->dl_nr_migratory = 0;
	dl_rq->overloaded = 0;
	dl_rq->pushable_dl_tasks_root = RB_ROOT;
83 84
#else
	init_dl_bw(&dl_rq->dl_bw);
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
#endif
}

#ifdef CONFIG_SMP

static inline int dl_overloaded(struct rq *rq)
{
	return atomic_read(&rq->rd->dlo_count);
}

static inline void dl_set_overload(struct rq *rq)
{
	if (!rq->online)
		return;

	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
	/*
	 * Must be visible before the overload count is
	 * set (as in sched_rt.c).
	 *
	 * Matched by the barrier in pull_dl_task().
	 */
	smp_wmb();
	atomic_inc(&rq->rd->dlo_count);
}

static inline void dl_clear_overload(struct rq *rq)
{
	if (!rq->online)
		return;

	atomic_dec(&rq->rd->dlo_count);
	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
}

static void update_dl_migration(struct dl_rq *dl_rq)
{
122
	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
		if (!dl_rq->overloaded) {
			dl_set_overload(rq_of_dl_rq(dl_rq));
			dl_rq->overloaded = 1;
		}
	} else if (dl_rq->overloaded) {
		dl_clear_overload(rq_of_dl_rq(dl_rq));
		dl_rq->overloaded = 0;
	}
}

static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
	struct task_struct *p = dl_task_of(dl_se);

	if (p->nr_cpus_allowed > 1)
		dl_rq->dl_nr_migratory++;

	update_dl_migration(dl_rq);
}

static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
	struct task_struct *p = dl_task_of(dl_se);

	if (p->nr_cpus_allowed > 1)
		dl_rq->dl_nr_migratory--;

	update_dl_migration(dl_rq);
}

/*
 * The list of pushable -deadline task is not a plist, like in
 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
 */
static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
{
	struct dl_rq *dl_rq = &rq->dl;
	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
	struct rb_node *parent = NULL;
	struct task_struct *entry;
	int leftmost = 1;

	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));

	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct task_struct,
				 pushable_dl_tasks);
		if (dl_entity_preempt(&p->dl, &entry->dl))
			link = &parent->rb_left;
		else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	if (leftmost)
		dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;

	rb_link_node(&p->pushable_dl_tasks, parent, link);
	rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
184 185
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
{
	struct dl_rq *dl_rq = &rq->dl;

	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
		return;

	if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
		struct rb_node *next_node;

		next_node = rb_next(&p->pushable_dl_tasks);
		dl_rq->pushable_dl_tasks_leftmost = next_node;
	}

	rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
}

static inline int has_pushable_dl_tasks(struct rq *rq)
{
	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
}

static int push_dl_task(struct rq *rq);

P
Peter Zijlstra 已提交
211 212 213 214 215
static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
{
	return dl_task(prev);
}

216 217
static DEFINE_PER_CPU(struct callback_head, dl_push_head);
static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
218 219

static void push_dl_tasks(struct rq *);
220
static void pull_dl_task(struct rq *);
221 222

static inline void queue_push_tasks(struct rq *rq)
P
Peter Zijlstra 已提交
223
{
224 225 226
	if (!has_pushable_dl_tasks(rq))
		return;

227 228 229 230 231 232
	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
}

static inline void queue_pull_task(struct rq *rq)
{
	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
P
Peter Zijlstra 已提交
233 234
}

235 236
static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);

237
static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
{
	struct rq *later_rq = NULL;
	bool fallback = false;

	later_rq = find_lock_later_rq(p, rq);

	if (!later_rq) {
		int cpu;

		/*
		 * If we cannot preempt any rq, fall back to pick any
		 * online cpu.
		 */
		fallback = true;
		cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
		if (cpu >= nr_cpu_ids) {
			/*
			 * Fail to find any suitable cpu.
			 * The task will never come back!
			 */
			BUG_ON(dl_bandwidth_enabled());

			/*
			 * If admission control is disabled we
			 * try a little harder to let the task
			 * run.
			 */
			cpu = cpumask_any(cpu_active_mask);
		}
		later_rq = cpu_rq(cpu);
		double_lock_balance(rq, later_rq);
	}

271 272 273
	/*
	 * By now the task is replenished and enqueued; migrate it.
	 */
274 275
	deactivate_task(rq, p, 0);
	set_task_cpu(p, later_rq->cpu);
276
	activate_task(later_rq, p, 0);
277 278 279 280

	if (!fallback)
		resched_curr(later_rq);

281 282 283
	double_unlock_balance(later_rq, rq);

	return later_rq;
284 285
}

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
#else

static inline
void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
{
}

static inline
void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
{
}

static inline
void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
}

static inline
void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
}

P
Peter Zijlstra 已提交
308 309 310 311 312
static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
{
	return false;
}

313
static inline void pull_dl_task(struct rq *rq)
P
Peter Zijlstra 已提交
314 315 316
{
}

317
static inline void queue_push_tasks(struct rq *rq)
P
Peter Zijlstra 已提交
318 319 320
{
}

321
static inline void queue_pull_task(struct rq *rq)
P
Peter Zijlstra 已提交
322 323
{
}
324 325
#endif /* CONFIG_SMP */

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
				  int flags);

/*
 * We are being explicitly informed that a new instance is starting,
 * and this means that:
 *  - the absolute deadline of the entity has to be placed at
 *    current time + relative deadline;
 *  - the runtime of the entity has to be set to the maximum value.
 *
 * The capability of specifying such event is useful whenever a -deadline
 * entity wants to (try to!) synchronize its behaviour with the scheduler's
 * one, and to (try to!) reconcile itself with its own scheduling
 * parameters.
 */
343 344
static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
				       struct sched_dl_entity *pi_se)
345 346 347 348 349 350 351 352 353 354 355
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
	struct rq *rq = rq_of_dl_rq(dl_rq);

	WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);

	/*
	 * We use the regular wall clock time to set deadlines in the
	 * future; in fact, we must consider execution overheads (time
	 * spent on hardirq context, etc.).
	 */
356 357
	dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
	dl_se->runtime = pi_se->dl_runtime;
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
	dl_se->dl_new = 0;
}

/*
 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
 * possibility of a entity lasting more than what it declared, and thus
 * exhausting its runtime.
 *
 * Here we are interested in making runtime overrun possible, but we do
 * not want a entity which is misbehaving to affect the scheduling of all
 * other entities.
 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
 * is used, in order to confine each entity within its own bandwidth.
 *
 * This function deals exactly with that, and ensures that when the runtime
 * of a entity is replenished, its deadline is also postponed. That ensures
 * the overrunning entity can't interfere with other entity in the system and
 * can't make them miss their deadlines. Reasons why this kind of overruns
 * could happen are, typically, a entity voluntarily trying to overcome its
377
 * runtime, or it just underestimated it during sched_setattr().
378
 */
379 380
static void replenish_dl_entity(struct sched_dl_entity *dl_se,
				struct sched_dl_entity *pi_se)
381 382 383 384
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
	struct rq *rq = rq_of_dl_rq(dl_rq);

385 386 387 388 389 390 391 392 393 394 395
	BUG_ON(pi_se->dl_runtime <= 0);

	/*
	 * This could be the case for a !-dl task that is boosted.
	 * Just go with full inherited parameters.
	 */
	if (dl_se->dl_deadline == 0) {
		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
		dl_se->runtime = pi_se->dl_runtime;
	}

396 397 398 399 400 401 402
	/*
	 * We keep moving the deadline away until we get some
	 * available runtime for the entity. This ensures correct
	 * handling of situations where the runtime overrun is
	 * arbitrary large.
	 */
	while (dl_se->runtime <= 0) {
403 404
		dl_se->deadline += pi_se->dl_period;
		dl_se->runtime += pi_se->dl_runtime;
405 406 407 408 409 410 411 412 413 414 415 416
	}

	/*
	 * At this point, the deadline really should be "in
	 * the future" with respect to rq->clock. If it's
	 * not, we are, for some reason, lagging too much!
	 * Anyway, after having warn userspace abut that,
	 * we still try to keep the things running by
	 * resetting the deadline and the budget of the
	 * entity.
	 */
	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
J
John Stultz 已提交
417
		printk_deferred_once("sched: DL replenish lagged to much\n");
418 419
		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
		dl_se->runtime = pi_se->dl_runtime;
420
	}
421 422 423 424 425

	if (dl_se->dl_yielded)
		dl_se->dl_yielded = 0;
	if (dl_se->dl_throttled)
		dl_se->dl_throttled = 0;
426 427 428 429 430 431 432 433 434 435 436 437 438
}

/*
 * Here we check if --at time t-- an entity (which is probably being
 * [re]activated or, in general, enqueued) can use its remaining runtime
 * and its current deadline _without_ exceeding the bandwidth it is
 * assigned (function returns true if it can't). We are in fact applying
 * one of the CBS rules: when a task wakes up, if the residual runtime
 * over residual deadline fits within the allocated bandwidth, then we
 * can keep the current (absolute) deadline and residual budget without
 * disrupting the schedulability of the system. Otherwise, we should
 * refill the runtime and set the deadline a period in the future,
 * because keeping the current (absolute) deadline of the task would
439 440
 * result in breaking guarantees promised to other tasks (refer to
 * Documentation/scheduler/sched-deadline.txt for more informations).
441 442 443
 *
 * This function returns true if:
 *
444
 *   runtime / (deadline - t) > dl_runtime / dl_period ,
445 446
 *
 * IOW we can't recycle current parameters.
447 448 449 450
 *
 * Notice that the bandwidth check is done against the period. For
 * task with deadline equal to period this is the same of using
 * dl_deadline instead of dl_period in the equation above.
451
 */
452 453
static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
			       struct sched_dl_entity *pi_se, u64 t)
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
{
	u64 left, right;

	/*
	 * left and right are the two sides of the equation above,
	 * after a bit of shuffling to use multiplications instead
	 * of divisions.
	 *
	 * Note that none of the time values involved in the two
	 * multiplications are absolute: dl_deadline and dl_runtime
	 * are the relative deadline and the maximum runtime of each
	 * instance, runtime is the runtime left for the last instance
	 * and (deadline - t), since t is rq->clock, is the time left
	 * to the (absolute) deadline. Even if overflowing the u64 type
	 * is very unlikely to occur in both cases, here we scale down
	 * as we want to avoid that risk at all. Scaling down by 10
	 * means that we reduce granularity to 1us. We are fine with it,
	 * since this is only a true/false check and, anyway, thinking
	 * of anything below microseconds resolution is actually fiction
	 * (but still we want to give the user that illusion >;).
	 */
475 476 477
	left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
	right = ((dl_se->deadline - t) >> DL_SCALE) *
		(pi_se->dl_runtime >> DL_SCALE);
478 479 480 481 482 483 484 485 486 487 488 489 490

	return dl_time_before(right, left);
}

/*
 * When a -deadline entity is queued back on the runqueue, its runtime and
 * deadline might need updating.
 *
 * The policy here is that we update the deadline of the entity only if:
 *  - the current deadline is in the past,
 *  - using the remaining runtime with the current deadline would make
 *    the entity exceed its bandwidth.
 */
491 492
static void update_dl_entity(struct sched_dl_entity *dl_se,
			     struct sched_dl_entity *pi_se)
493 494 495 496 497 498 499 500 501
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
	struct rq *rq = rq_of_dl_rq(dl_rq);

	/*
	 * The arrival of a new instance needs special treatment, i.e.,
	 * the actual scheduling parameters have to be "renewed".
	 */
	if (dl_se->dl_new) {
502
		setup_new_dl_entity(dl_se, pi_se);
503 504 505 506
		return;
	}

	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
507 508 509
	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
		dl_se->runtime = pi_se->dl_runtime;
510 511 512 513 514 515 516 517 518 519 520 521 522
	}
}

/*
 * If the entity depleted all its runtime, and if we want it to sleep
 * while waiting for some new execution time to become available, we
 * set the bandwidth enforcement timer to the replenishment instant
 * and try to activate it.
 *
 * Notice that it is important for the caller to know if the timer
 * actually started or not (i.e., the replenishment instant is in
 * the future or in the past).
 */
523
static int start_dl_timer(struct task_struct *p)
524
{
525 526 527
	struct sched_dl_entity *dl_se = &p->dl;
	struct hrtimer *timer = &dl_se->dl_timer;
	struct rq *rq = task_rq(p);
528 529 530
	ktime_t now, act;
	s64 delta;

531 532
	lockdep_assert_held(&rq->lock);

533 534 535 536 537 538
	/*
	 * We want the timer to fire at the deadline, but considering
	 * that it is actually coming from rq->clock and not from
	 * hrtimer's time base reading.
	 */
	act = ns_to_ktime(dl_se->deadline);
539
	now = hrtimer_cb_get_time(timer);
540 541 542 543 544 545 546 547 548 549 550
	delta = ktime_to_ns(now) - rq_clock(rq);
	act = ktime_add_ns(act, delta);

	/*
	 * If the expiry time already passed, e.g., because the value
	 * chosen as the deadline is too small, don't even try to
	 * start the timer in the past!
	 */
	if (ktime_us_delta(act, now) < 0)
		return 0;

551 552 553 554 555 556 557 558 559 560 561 562 563
	/*
	 * !enqueued will guarantee another callback; even if one is already in
	 * progress. This ensures a balanced {get,put}_task_struct().
	 *
	 * The race against __run_timer() clearing the enqueued state is
	 * harmless because we're holding task_rq()->lock, therefore the timer
	 * expiring after we've done the check will wait on its task_rq_lock()
	 * and observe our state.
	 */
	if (!hrtimer_is_queued(timer)) {
		get_task_struct(p);
		hrtimer_start(timer, act, HRTIMER_MODE_ABS);
	}
564

565
	return 1;
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
}

/*
 * This is the bandwidth enforcement timer callback. If here, we know
 * a task is not on its dl_rq, since the fact that the timer was running
 * means the task is throttled and needs a runtime replenishment.
 *
 * However, what we actually do depends on the fact the task is active,
 * (it is on its rq) or has been removed from there by a call to
 * dequeue_task_dl(). In the former case we must issue the runtime
 * replenishment and add the task back to the dl_rq; in the latter, we just
 * do nothing but clearing dl_throttled, so that runtime and deadline
 * updating (and the queueing back to dl_rq) will be done by the
 * next call to enqueue_task_dl().
 */
static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
{
	struct sched_dl_entity *dl_se = container_of(timer,
						     struct sched_dl_entity,
						     dl_timer);
	struct task_struct *p = dl_task_of(dl_se);
587
	unsigned long flags;
588
	struct rq *rq;
589

590
	rq = task_rq_lock(p, &flags);
591

592
	/*
593 594 595 596 597 598 599 600 601 602 603 604
	 * The task might have changed its scheduling policy to something
	 * different than SCHED_DEADLINE (through switched_fromd_dl()).
	 */
	if (!dl_task(p)) {
		__dl_clear_params(p);
		goto unlock;
	}

	/*
	 * This is possible if switched_from_dl() raced against a running
	 * callback that took the above !dl_task() path and we've since then
	 * switched back into SCHED_DEADLINE.
605
	 *
606
	 * There's nothing to do except drop our task reference.
607
	 */
608
	if (dl_se->dl_new)
609 610
		goto unlock;

611 612 613 614 615 616
	/*
	 * The task might have been boosted by someone else and might be in the
	 * boosting/deboosting path, its not throttled.
	 */
	if (dl_se->dl_boosted)
		goto unlock;
617

618
	/*
619 620
	 * Spurious timer due to start_dl_timer() race; or we already received
	 * a replenishment from rt_mutex_setprio().
621
	 */
622
	if (!dl_se->dl_throttled)
623
		goto unlock;
624 625 626

	sched_clock_tick();
	update_rq_clock(rq);
627

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
	/*
	 * If the throttle happened during sched-out; like:
	 *
	 *   schedule()
	 *     deactivate_task()
	 *       dequeue_task_dl()
	 *         update_curr_dl()
	 *           start_dl_timer()
	 *         __dequeue_task_dl()
	 *     prev->on_rq = 0;
	 *
	 * We can be both throttled and !queued. Replenish the counter
	 * but do not enqueue -- wait for our wakeup to do that.
	 */
	if (!task_on_rq_queued(p)) {
		replenish_dl_entity(dl_se, dl_se);
		goto unlock;
	}

647 648 649 650 651
	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
	if (dl_task(rq->curr))
		check_preempt_curr_dl(rq, p, 0);
	else
		resched_curr(rq);
652

653
#ifdef CONFIG_SMP
654
	/*
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
	 * Perform balancing operations here; after the replenishments.  We
	 * cannot drop rq->lock before this, otherwise the assertion in
	 * start_dl_timer() about not missing updates is not true.
	 *
	 * If we find that the rq the task was on is no longer available, we
	 * need to select a new rq.
	 *
	 * XXX figure out if select_task_rq_dl() deals with offline cpus.
	 */
	if (unlikely(!rq->online))
		rq = dl_task_offline_migration(rq, p);

	/*
	 * Queueing this task back might have overloaded rq, check if we need
	 * to kick someone away.
670 671 672
	 */
	if (has_pushable_dl_tasks(rq))
		push_dl_task(rq);
673
#endif
674

675
unlock:
676
	task_rq_unlock(rq, p, &flags);
677

678 679 680 681 682 683
	/*
	 * This can free the task_struct, including this hrtimer, do not touch
	 * anything related to that after this.
	 */
	put_task_struct(p);

684 685 686 687 688 689 690 691 692 693 694 695
	return HRTIMER_NORESTART;
}

void init_dl_task_timer(struct sched_dl_entity *dl_se)
{
	struct hrtimer *timer = &dl_se->dl_timer;

	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	timer->function = dl_task_timer;
}

static
696
int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
697
{
698
	return (dl_se->runtime <= 0);
699 700
}

701 702
extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
/*
 * Update the current task's runtime statistics (provided it is still
 * a -deadline task and has not been removed from the dl_rq).
 */
static void update_curr_dl(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct sched_dl_entity *dl_se = &curr->dl;
	u64 delta_exec;

	if (!dl_task(curr) || !on_dl_rq(dl_se))
		return;

	/*
	 * Consumed budget is computed considering the time as
	 * observed by schedulable tasks (excluding time spent
	 * in hardirq context, etc.). Deadlines are instead
	 * computed using hard walltime. This seems to be the more
	 * natural solution, but the full ramifications of this
	 * approach need further study.
	 */
	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
725 726
	if (unlikely((s64)delta_exec <= 0))
		return;
727 728 729 730 731 732 733 734 735 736

	schedstat_set(curr->se.statistics.exec_max,
		      max(curr->se.statistics.exec_max, delta_exec));

	curr->se.sum_exec_runtime += delta_exec;
	account_group_exec_runtime(curr, delta_exec);

	curr->se.exec_start = rq_clock_task(rq);
	cpuacct_charge(curr, delta_exec);

737 738
	sched_rt_avg_update(rq, delta_exec);

739
	dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec;
740
	if (dl_runtime_exceeded(dl_se)) {
741
		dl_se->dl_throttled = 1;
742
		__dequeue_task_dl(rq, curr, 0);
743
		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
744 745 746
			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);

		if (!is_leftmost(curr, &rq->dl))
747
			resched_curr(rq);
748
	}
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766

	/*
	 * Because -- for now -- we share the rt bandwidth, we need to
	 * account our runtime there too, otherwise actual rt tasks
	 * would be able to exceed the shared quota.
	 *
	 * Account to the root rt group for now.
	 *
	 * The solution we're working towards is having the RT groups scheduled
	 * using deadline servers -- however there's a few nasties to figure
	 * out before that can happen.
	 */
	if (rt_bandwidth_enabled()) {
		struct rt_rq *rt_rq = &rq->rt;

		raw_spin_lock(&rt_rq->rt_runtime_lock);
		/*
		 * We'll let actual RT tasks worry about the overflow here, we
767 768
		 * have our own CBS to keep us inline; only account when RT
		 * bandwidth is relevant.
769
		 */
770 771
		if (sched_rt_bandwidth_account(rt_rq))
			rt_rq->rt_time += delta_exec;
772 773
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
	}
774 775
}

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
#ifdef CONFIG_SMP

static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);

static inline u64 next_deadline(struct rq *rq)
{
	struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);

	if (next && dl_prio(next->prio))
		return next->dl.deadline;
	else
		return 0;
}

static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
{
	struct rq *rq = rq_of_dl_rq(dl_rq);

	if (dl_rq->earliest_dl.curr == 0 ||
	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
		/*
		 * If the dl_rq had no -deadline tasks, or if the new task
		 * has shorter deadline than the current one on dl_rq, we
		 * know that the previous earliest becomes our next earliest,
		 * as the new task becomes the earliest itself.
		 */
		dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
		dl_rq->earliest_dl.curr = deadline;
804
		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
	} else if (dl_rq->earliest_dl.next == 0 ||
		   dl_time_before(deadline, dl_rq->earliest_dl.next)) {
		/*
		 * On the other hand, if the new -deadline task has a
		 * a later deadline than the earliest one on dl_rq, but
		 * it is earlier than the next (if any), we must
		 * recompute the next-earliest.
		 */
		dl_rq->earliest_dl.next = next_deadline(rq);
	}
}

static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
{
	struct rq *rq = rq_of_dl_rq(dl_rq);

	/*
	 * Since we may have removed our earliest (and/or next earliest)
	 * task we must recompute them.
	 */
	if (!dl_rq->dl_nr_running) {
		dl_rq->earliest_dl.curr = 0;
		dl_rq->earliest_dl.next = 0;
828
		cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
829 830 831 832 833 834 835
	} else {
		struct rb_node *leftmost = dl_rq->rb_leftmost;
		struct sched_dl_entity *entry;

		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
		dl_rq->earliest_dl.curr = entry->deadline;
		dl_rq->earliest_dl.next = next_deadline(rq);
836
		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
	}
}

#else

static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}

#endif /* CONFIG_SMP */

static inline
void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
	int prio = dl_task_of(dl_se)->prio;
	u64 deadline = dl_se->deadline;

	WARN_ON(!dl_prio(prio));
	dl_rq->dl_nr_running++;
855
	add_nr_running(rq_of_dl_rq(dl_rq), 1);
856 857 858 859 860 861 862 863 864 865 866 867 868

	inc_dl_deadline(dl_rq, deadline);
	inc_dl_migration(dl_se, dl_rq);
}

static inline
void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
	int prio = dl_task_of(dl_se)->prio;

	WARN_ON(!dl_prio(prio));
	WARN_ON(!dl_rq->dl_nr_running);
	dl_rq->dl_nr_running--;
869
	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
870 871 872 873 874

	dec_dl_deadline(dl_rq, dl_se->deadline);
	dec_dl_migration(dl_se, dl_rq);
}

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
	struct rb_node **link = &dl_rq->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct sched_dl_entity *entry;
	int leftmost = 1;

	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));

	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
		if (dl_time_before(dl_se->deadline, entry->deadline))
			link = &parent->rb_left;
		else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	if (leftmost)
		dl_rq->rb_leftmost = &dl_se->rb_node;

	rb_link_node(&dl_se->rb_node, parent, link);
	rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);

902
	inc_dl_tasks(dl_se, dl_rq);
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
}

static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);

	if (RB_EMPTY_NODE(&dl_se->rb_node))
		return;

	if (dl_rq->rb_leftmost == &dl_se->rb_node) {
		struct rb_node *next_node;

		next_node = rb_next(&dl_se->rb_node);
		dl_rq->rb_leftmost = next_node;
	}

	rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
	RB_CLEAR_NODE(&dl_se->rb_node);

922
	dec_dl_tasks(dl_se, dl_rq);
923 924 925
}

static void
926 927
enqueue_dl_entity(struct sched_dl_entity *dl_se,
		  struct sched_dl_entity *pi_se, int flags)
928 929 930 931 932 933 934 935
{
	BUG_ON(on_dl_rq(dl_se));

	/*
	 * If this is a wakeup or a new instance, the scheduling
	 * parameters of the task might need updating. Otherwise,
	 * we want a replenishment of its runtime.
	 */
936
	if (dl_se->dl_new || flags & ENQUEUE_WAKEUP)
937
		update_dl_entity(dl_se, pi_se);
938 939
	else if (flags & ENQUEUE_REPLENISH)
		replenish_dl_entity(dl_se, pi_se);
940 941 942 943 944 945 946 947 948 949 950

	__enqueue_dl_entity(dl_se);
}

static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
{
	__dequeue_dl_entity(dl_se);
}

static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
{
951 952 953 954 955 956 957 958 959
	struct task_struct *pi_task = rt_mutex_get_top_task(p);
	struct sched_dl_entity *pi_se = &p->dl;

	/*
	 * Use the scheduling parameters of the top pi-waiter
	 * task if we have one and its (relative) deadline is
	 * smaller than our one... OTW we keep our runtime and
	 * deadline.
	 */
960
	if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
961
		pi_se = &pi_task->dl;
962 963 964 965 966 967 968 969 970 971 972
	} else if (!dl_prio(p->normal_prio)) {
		/*
		 * Special case in which we have a !SCHED_DEADLINE task
		 * that is going to be deboosted, but exceedes its
		 * runtime while doing so. No point in replenishing
		 * it, as it's going to return back to its original
		 * scheduling class after this.
		 */
		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
		return;
	}
973

974 975 976 977 978 979
	/*
	 * If p is throttled, we do nothing. In fact, if it exhausted
	 * its budget it needs a replenishment and, since it now is on
	 * its rq, the bandwidth timer callback (which clearly has not
	 * run yet) will take care of this.
	 */
980
	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
981 982
		return;

983
	enqueue_dl_entity(&p->dl, pi_se, flags);
984 985 986

	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
		enqueue_pushable_dl_task(rq, p);
987 988 989 990 991
}

static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
{
	dequeue_dl_entity(&p->dl);
992
	dequeue_pushable_dl_task(rq, p);
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
}

static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
{
	update_curr_dl(rq);
	__dequeue_task_dl(rq, p, flags);
}

/*
 * Yield task semantic for -deadline tasks is:
 *
 *   get off from the CPU until our next instance, with
 *   a new runtime. This is of little use now, since we
 *   don't have a bandwidth reclaiming mechanism. Anyway,
 *   bandwidth reclaiming is planned for the future, and
 *   yield_task_dl will indicate that some spare budget
 *   is available for other task instances to use it.
 */
static void yield_task_dl(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	/*
	 * We make the task go to sleep until its current deadline by
	 * forcing its runtime to zero. This way, update_curr_dl() stops
	 * it and the bandwidth timer will wake it up and will give it
1019
	 * new scheduling parameters (thanks to dl_yielded=1).
1020 1021
	 */
	if (p->dl.runtime > 0) {
1022
		rq->curr->dl.dl_yielded = 1;
1023 1024
		p->dl.runtime = 0;
	}
1025
	update_rq_clock(rq);
1026
	update_curr_dl(rq);
1027 1028 1029 1030 1031 1032
	/*
	 * Tell update_rq_clock() that we've just updated,
	 * so we don't do microscopic update in schedule()
	 * and double the fastpath cost.
	 */
	rq_clock_skip_update(rq, true);
1033 1034
}

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
#ifdef CONFIG_SMP

static int find_later_rq(struct task_struct *task);

static int
select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
{
	struct task_struct *curr;
	struct rq *rq;

1045
	if (sd_flag != SD_BALANCE_WAKE)
1046 1047 1048 1049 1050
		goto out;

	rq = cpu_rq(cpu);

	rcu_read_lock();
1051
	curr = READ_ONCE(rq->curr); /* unlocked access */
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

	/*
	 * If we are dealing with a -deadline task, we must
	 * decide where to wake it up.
	 * If it has a later deadline and the current task
	 * on this rq can't move (provided the waking task
	 * can!) we prefer to send it somewhere else. On the
	 * other hand, if it has a shorter deadline, we
	 * try to make it stay here, it might be important.
	 */
	if (unlikely(dl_task(curr)) &&
	    (curr->nr_cpus_allowed < 2 ||
	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
	    (p->nr_cpus_allowed > 1)) {
		int target = find_later_rq(p);

1068 1069 1070
		if (target != -1 &&
				dl_time_before(p->dl.deadline,
					cpu_rq(target)->dl.earliest_dl.curr))
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
			cpu = target;
	}
	rcu_read_unlock();

out:
	return cpu;
}

static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
{
	/*
	 * Current can't be migrated, useless to reschedule,
	 * let's hope p can move out.
	 */
	if (rq->curr->nr_cpus_allowed == 1 ||
1086
	    cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1087 1088 1089 1090 1091 1092 1093
		return;

	/*
	 * p is migratable, so let's not schedule it and
	 * see if it is pushed or pulled somewhere else.
	 */
	if (p->nr_cpus_allowed != 1 &&
1094
	    cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1095 1096
		return;

1097
	resched_curr(rq);
1098 1099 1100 1101
}

#endif /* CONFIG_SMP */

1102 1103 1104 1105 1106 1107 1108
/*
 * Only called when both the current and waking task are -deadline
 * tasks.
 */
static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
				  int flags)
{
1109
	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1110
		resched_curr(rq);
1111 1112 1113 1114 1115 1116 1117 1118
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * In the unlikely case current and p have the same deadline
	 * let us try to decide what's the best thing to do...
	 */
1119 1120
	if ((p->dl.deadline == rq->curr->dl.deadline) &&
	    !test_tsk_need_resched(rq->curr))
1121 1122
		check_preempt_equal_dl(rq, p);
#endif /* CONFIG_SMP */
1123 1124 1125 1126 1127
}

#ifdef CONFIG_SCHED_HRTICK
static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
{
1128
	hrtick_start(rq, p->dl.runtime);
1129
}
1130 1131 1132 1133
#else /* !CONFIG_SCHED_HRTICK */
static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
{
}
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
#endif

static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
						   struct dl_rq *dl_rq)
{
	struct rb_node *left = dl_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_dl_entity, rb_node);
}

1147
struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
1148 1149 1150 1151 1152 1153 1154
{
	struct sched_dl_entity *dl_se;
	struct task_struct *p;
	struct dl_rq *dl_rq;

	dl_rq = &rq->dl;

1155
	if (need_pull_dl_task(rq, prev)) {
1156 1157 1158 1159 1160 1161 1162
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we're
		 * being very careful to re-start the picking loop.
		 */
		lockdep_unpin_lock(&rq->lock);
1163
		pull_dl_task(rq);
1164
		lockdep_pin_lock(&rq->lock);
1165 1166 1167 1168 1169
		/*
		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
		 * means a stop task can slip in, in which case we need to
		 * re-start task selection.
		 */
1170
		if (rq->stop && task_on_rq_queued(rq->stop))
1171 1172 1173
			return RETRY_TASK;
	}

1174 1175 1176 1177 1178 1179
	/*
	 * When prev is DL, we may throttle it in put_prev_task().
	 * So, we update time before we check for dl_nr_running.
	 */
	if (prev->sched_class == &dl_sched_class)
		update_curr_dl(rq);
1180

1181 1182 1183
	if (unlikely(!dl_rq->dl_nr_running))
		return NULL;

1184
	put_prev_task(rq, prev);
1185

1186 1187 1188 1189 1190
	dl_se = pick_next_dl_entity(rq, dl_rq);
	BUG_ON(!dl_se);

	p = dl_task_of(dl_se);
	p->se.exec_start = rq_clock_task(rq);
1191 1192

	/* Running task will never be pushed. */
1193
       dequeue_pushable_dl_task(rq, p);
1194

1195 1196
	if (hrtick_enabled(rq))
		start_hrtick_dl(rq, p);
1197

1198
	queue_push_tasks(rq);
1199

1200 1201 1202 1203 1204 1205
	return p;
}

static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
{
	update_curr_dl(rq);
1206 1207 1208

	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
		enqueue_pushable_dl_task(rq, p);
1209 1210 1211 1212 1213 1214
}

static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
{
	update_curr_dl(rq);

1215 1216 1217 1218 1219 1220 1221
	/*
	 * Even when we have runtime, update_curr_dl() might have resulted in us
	 * not being the leftmost task anymore. In that case NEED_RESCHED will
	 * be set and schedule() will start a new hrtick for the next task.
	 */
	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
	    is_leftmost(p, &rq->dl))
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
		start_hrtick_dl(rq, p);
}

static void task_fork_dl(struct task_struct *p)
{
	/*
	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
	 * sched_fork()
	 */
}

static void task_dead_dl(struct task_struct *p)
{
1235 1236 1237 1238 1239 1240
	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));

	/*
	 * Since we are TASK_DEAD we won't slip out of the domain!
	 */
	raw_spin_lock_irq(&dl_b->lock);
1241
	/* XXX we should retain the bw until 0-lag */
1242 1243
	dl_b->total_bw -= p->dl.dl_bw;
	raw_spin_unlock_irq(&dl_b->lock);
1244 1245 1246 1247 1248 1249 1250
}

static void set_curr_task_dl(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq_clock_task(rq);
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

	/* You can't push away the running task */
	dequeue_pushable_dl_task(rq, p);
}

#ifdef CONFIG_SMP

/* Only try algorithms three times */
#define DL_MAX_TRIES 3

static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
K
Kirill Tkhai 已提交
1264
	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
		return 1;
	return 0;
}

/* Returns the second earliest -deadline task, NULL otherwise */
static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
{
	struct rb_node *next_node = rq->dl.rb_leftmost;
	struct sched_dl_entity *dl_se;
	struct task_struct *p = NULL;

next_node:
	next_node = rb_next(next_node);
	if (next_node) {
		dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
		p = dl_task_of(dl_se);

		if (pick_dl_task(rq, p, cpu))
			return p;

		goto next_node;
	}

	return NULL;
}

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
/*
 * Return the earliest pushable rq's task, which is suitable to be executed
 * on the CPU, NULL otherwise:
 */
static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
{
	struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
	struct task_struct *p = NULL;

	if (!has_pushable_dl_tasks(rq))
		return NULL;

next_node:
	if (next_node) {
		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);

		if (pick_dl_task(rq, p, cpu))
			return p;

		next_node = rb_next(next_node);
		goto next_node;
	}

	return NULL;
}

1317 1318 1319 1320 1321
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);

static int find_later_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1322
	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	int this_cpu = smp_processor_id();
	int best_cpu, cpu = task_cpu(task);

	/* Make sure the mask is initialized first */
	if (unlikely(!later_mask))
		return -1;

	if (task->nr_cpus_allowed == 1)
		return -1;

1333 1334 1335 1336
	/*
	 * We have to consider system topology and task affinity
	 * first, then we can look for a suitable cpu.
	 */
1337 1338
	best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
			task, later_mask);
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
	if (best_cpu == -1)
		return -1;

	/*
	 * If we are here, some target has been found,
	 * the most suitable of which is cached in best_cpu.
	 * This is, among the runqueues where the current tasks
	 * have later deadlines than the task's one, the rq
	 * with the latest possible one.
	 *
	 * Now we check how well this matches with task's
	 * affinity and system topology.
	 *
	 * The last cpu where the task run is our first
	 * guess, since it is most likely cache-hot there.
	 */
	if (cpumask_test_cpu(cpu, later_mask))
		return cpu;
	/*
	 * Check if this_cpu is to be skipped (i.e., it is
	 * not in the mask) or not.
	 */
	if (!cpumask_test_cpu(this_cpu, later_mask))
		this_cpu = -1;

	rcu_read_lock();
	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {

			/*
			 * If possible, preempting this_cpu is
			 * cheaper than migrating.
			 */
			if (this_cpu != -1 &&
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
				rcu_read_unlock();
				return this_cpu;
			}

			/*
			 * Last chance: if best_cpu is valid and is
			 * in the mask, that becomes our choice.
			 */
			if (best_cpu < nr_cpu_ids &&
			    cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
				rcu_read_unlock();
				return best_cpu;
			}
		}
	}
	rcu_read_unlock();

	/*
	 * At this point, all our guesses failed, we just return
	 * 'something', and let the caller sort the things out.
	 */
	if (this_cpu != -1)
		return this_cpu;

	cpu = cpumask_any(later_mask);
	if (cpu < nr_cpu_ids)
		return cpu;

	return -1;
}

/* Locks the rq it finds */
static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
{
	struct rq *later_rq = NULL;
	int tries;
	int cpu;

	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
		cpu = find_later_rq(task);

		if ((cpu == -1) || (cpu == rq->cpu))
			break;

		later_rq = cpu_rq(cpu);

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
		if (!dl_time_before(task->dl.deadline,
					later_rq->dl.earliest_dl.curr)) {
			/*
			 * Target rq has tasks of equal or earlier deadline,
			 * retrying does not release any lock and is unlikely
			 * to yield a different result.
			 */
			later_rq = NULL;
			break;
		}

1431 1432 1433 1434 1435
		/* Retry if something changed. */
		if (double_lock_balance(rq, later_rq)) {
			if (unlikely(task_rq(task) != rq ||
				     !cpumask_test_cpu(later_rq->cpu,
				                       &task->cpus_allowed) ||
1436 1437
				     task_running(rq, task) ||
				     !task_on_rq_queued(task))) {
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
				double_unlock_balance(rq, later_rq);
				later_rq = NULL;
				break;
			}
		}

		/*
		 * If the rq we found has no -deadline task, or
		 * its earliest one has a later deadline than our
		 * task, the rq is a good one.
		 */
		if (!later_rq->dl.dl_nr_running ||
		    dl_time_before(task->dl.deadline,
				   later_rq->dl.earliest_dl.curr))
			break;

		/* Otherwise we try again. */
		double_unlock_balance(rq, later_rq);
		later_rq = NULL;
	}

	return later_rq;
}

static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_dl_tasks(rq))
		return NULL;

	p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
		     struct task_struct, pushable_dl_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
	BUG_ON(p->nr_cpus_allowed <= 1);

1476
	BUG_ON(!task_on_rq_queued(p));
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	BUG_ON(!dl_task(p));

	return p;
}

/*
 * See if the non running -deadline tasks on this rq
 * can be sent to some other CPU where they can preempt
 * and start executing.
 */
static int push_dl_task(struct rq *rq)
{
	struct task_struct *next_task;
	struct rq *later_rq;
1491
	int ret = 0;
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

	if (!rq->dl.overloaded)
		return 0;

	next_task = pick_next_pushable_dl_task(rq);
	if (!next_task)
		return 0;

retry:
	if (unlikely(next_task == rq->curr)) {
		WARN_ON(1);
		return 0;
	}

	/*
	 * If next_task preempts rq->curr, and rq->curr
	 * can move away, it makes sense to just reschedule
	 * without going further in pushing next_task.
	 */
	if (dl_task(rq->curr) &&
	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
	    rq->curr->nr_cpus_allowed > 1) {
1514
		resched_curr(rq);
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
		return 0;
	}

	/* We might release rq lock */
	get_task_struct(next_task);

	/* Will lock the rq it'll find */
	later_rq = find_lock_later_rq(next_task, rq);
	if (!later_rq) {
		struct task_struct *task;

		/*
		 * We must check all this again, since
		 * find_lock_later_rq releases rq->lock and it is
		 * then possible that next_task has migrated.
		 */
		task = pick_next_pushable_dl_task(rq);
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
			 * The task is still there. We don't try
			 * again, some other cpu will pull it when ready.
			 */
			goto out;
		}

		if (!task)
			/* No more tasks */
			goto out;

		put_task_struct(next_task);
		next_task = task;
		goto retry;
	}

	deactivate_task(rq, next_task, 0);
	set_task_cpu(next_task, later_rq->cpu);
	activate_task(later_rq, next_task, 0);
1552
	ret = 1;
1553

1554
	resched_curr(later_rq);
1555 1556 1557 1558 1559 1560

	double_unlock_balance(rq, later_rq);

out:
	put_task_struct(next_task);

1561
	return ret;
1562 1563 1564 1565
}

static void push_dl_tasks(struct rq *rq)
{
1566
	/* push_dl_task() will return true if it moved a -deadline task */
1567 1568
	while (push_dl_task(rq))
		;
1569 1570
}

1571
static void pull_dl_task(struct rq *this_rq)
1572
{
1573
	int this_cpu = this_rq->cpu, cpu;
1574
	struct task_struct *p;
1575
	bool resched = false;
1576 1577 1578 1579
	struct rq *src_rq;
	u64 dmin = LONG_MAX;

	if (likely(!dl_overloaded(this_rq)))
1580
		return;
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612

	/*
	 * Match the barrier from dl_set_overloaded; this guarantees that if we
	 * see overloaded we must also see the dlo_mask bit.
	 */
	smp_rmb();

	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);

		/*
		 * It looks racy, abd it is! However, as in sched_rt.c,
		 * we are fine with this.
		 */
		if (this_rq->dl.dl_nr_running &&
		    dl_time_before(this_rq->dl.earliest_dl.curr,
				   src_rq->dl.earliest_dl.next))
			continue;

		/* Might drop this_rq->lock */
		double_lock_balance(this_rq, src_rq);

		/*
		 * If there are no more pullable tasks on the
		 * rq, we're done with it.
		 */
		if (src_rq->dl.dl_nr_running <= 1)
			goto skip;

1613
		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624

		/*
		 * We found a task to be pulled if:
		 *  - it preempts our current (if there's one),
		 *  - it will preempt the last one we pulled (if any).
		 */
		if (p && dl_time_before(p->dl.deadline, dmin) &&
		    (!this_rq->dl.dl_nr_running ||
		     dl_time_before(p->dl.deadline,
				    this_rq->dl.earliest_dl.curr))) {
			WARN_ON(p == src_rq->curr);
1625
			WARN_ON(!task_on_rq_queued(p));
1626 1627 1628 1629 1630 1631 1632 1633 1634

			/*
			 * Then we pull iff p has actually an earlier
			 * deadline than the current task of its runqueue.
			 */
			if (dl_time_before(p->dl.deadline,
					   src_rq->curr->dl.deadline))
				goto skip;

1635
			resched = true;
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			dmin = p->dl.deadline;

			/* Is there any other task even earlier? */
		}
skip:
		double_unlock_balance(this_rq, src_rq);
	}

1648 1649
	if (resched)
		resched_curr(this_rq);
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
}

/*
 * Since the task is not running and a reschedule is not going to happen
 * anytime soon on its runqueue, we try pushing it away now.
 */
static void task_woken_dl(struct rq *rq, struct task_struct *p)
{
	if (!task_running(rq, p) &&
	    !test_tsk_need_resched(rq->curr) &&
	    p->nr_cpus_allowed > 1 &&
	    dl_task(rq->curr) &&
	    (rq->curr->nr_cpus_allowed < 2 ||
1663
	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1664 1665 1666 1667 1668 1669 1670
		push_dl_tasks(rq);
	}
}

static void set_cpus_allowed_dl(struct task_struct *p,
				const struct cpumask *new_mask)
{
1671
	struct root_domain *src_rd;
1672
	struct rq *rq;
1673 1674 1675

	BUG_ON(!dl_task(p));

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	rq = task_rq(p);
	src_rd = rq->rd;
	/*
	 * Migrating a SCHED_DEADLINE task between exclusive
	 * cpusets (different root_domains) entails a bandwidth
	 * update. We already made space for us in the destination
	 * domain (see cpuset_can_attach()).
	 */
	if (!cpumask_intersects(src_rd->span, new_mask)) {
		struct dl_bw *src_dl_b;

		src_dl_b = dl_bw_of(cpu_of(rq));
		/*
		 * We now free resources of the root_domain we are migrating
		 * off. In the worst case, sched_setattr() may temporary fail
		 * until we complete the update.
		 */
		raw_spin_lock(&src_dl_b->lock);
		__dl_clear(src_dl_b, p->dl.dl_bw);
		raw_spin_unlock(&src_dl_b->lock);
	}

1698
	set_cpus_allowed_common(p, new_mask);
1699 1700 1701 1702 1703 1704 1705
}

/* Assumes rq->lock is held */
static void rq_online_dl(struct rq *rq)
{
	if (rq->dl.overloaded)
		dl_set_overload(rq);
1706

1707
	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
1708 1709
	if (rq->dl.dl_nr_running > 0)
		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1710 1711 1712 1713 1714 1715 1716
}

/* Assumes rq->lock is held */
static void rq_offline_dl(struct rq *rq)
{
	if (rq->dl.overloaded)
		dl_clear_overload(rq);
1717 1718

	cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1719
	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1720 1721
}

1722
void __init init_sched_dl_class(void)
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
{
	unsigned int i;

	for_each_possible_cpu(i)
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
					GFP_KERNEL, cpu_to_node(i));
}

#endif /* CONFIG_SMP */

1733 1734
static void switched_from_dl(struct rq *rq, struct task_struct *p)
{
1735 1736 1737 1738 1739 1740 1741 1742
	/*
	 * Start the deadline timer; if we switch back to dl before this we'll
	 * continue consuming our current CBS slice. If we stay outside of
	 * SCHED_DEADLINE until the deadline passes, the timer will reset the
	 * task.
	 */
	if (!start_dl_timer(p))
		__dl_clear_params(p);
1743

1744 1745 1746 1747 1748
	/*
	 * Since this might be the only -deadline task on the rq,
	 * this is the right place to try to pull some other one
	 * from an overloaded cpu, if any.
	 */
1749 1750 1751
	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
		return;

1752
	queue_pull_task(rq);
1753 1754
}

1755 1756 1757 1758
/*
 * When switching to -deadline, we may overload the rq, then
 * we try to push someone off, if possible.
 */
1759 1760
static void switched_to_dl(struct rq *rq, struct task_struct *p)
{
1761
	if (task_on_rq_queued(p) && rq->curr != p) {
1762
#ifdef CONFIG_SMP
1763 1764 1765 1766 1767 1768 1769 1770
		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
			queue_push_tasks(rq);
#else
		if (dl_task(rq->curr))
			check_preempt_curr_dl(rq, p, 0);
		else
			resched_curr(rq);
#endif
1771 1772 1773
	}
}

1774 1775 1776 1777
/*
 * If the scheduling parameters of a -deadline task changed,
 * a push or pull operation might be needed.
 */
1778 1779 1780
static void prio_changed_dl(struct rq *rq, struct task_struct *p,
			    int oldprio)
{
1781
	if (task_on_rq_queued(p) || rq->curr == p) {
1782
#ifdef CONFIG_SMP
1783 1784 1785 1786 1787 1788 1789
		/*
		 * This might be too much, but unfortunately
		 * we don't have the old deadline value, and
		 * we can't argue if the task is increasing
		 * or lowering its prio, so...
		 */
		if (!rq->dl.overloaded)
1790
			queue_pull_task(rq);
1791 1792 1793 1794 1795 1796

		/*
		 * If we now have a earlier deadline task than p,
		 * then reschedule, provided p is still on this
		 * runqueue.
		 */
1797
		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
1798
			resched_curr(rq);
1799 1800 1801 1802 1803 1804
#else
		/*
		 * Again, we don't know if p has a earlier
		 * or later deadline, so let's blindly set a
		 * (maybe not needed) rescheduling point.
		 */
1805
		resched_curr(rq);
1806 1807 1808
#endif /* CONFIG_SMP */
	} else
		switched_to_dl(rq, p);
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
}

const struct sched_class dl_sched_class = {
	.next			= &rt_sched_class,
	.enqueue_task		= enqueue_task_dl,
	.dequeue_task		= dequeue_task_dl,
	.yield_task		= yield_task_dl,

	.check_preempt_curr	= check_preempt_curr_dl,

	.pick_next_task		= pick_next_task_dl,
	.put_prev_task		= put_prev_task_dl,

#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_dl,
1824 1825 1826 1827
	.set_cpus_allowed       = set_cpus_allowed_dl,
	.rq_online              = rq_online_dl,
	.rq_offline             = rq_offline_dl,
	.task_woken		= task_woken_dl,
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
#endif

	.set_curr_task		= set_curr_task_dl,
	.task_tick		= task_tick_dl,
	.task_fork              = task_fork_dl,
	.task_dead		= task_dead_dl,

	.prio_changed           = prio_changed_dl,
	.switched_from		= switched_from_dl,
	.switched_to		= switched_to_dl,
1838 1839

	.update_curr		= update_curr_dl,
1840
};
1841 1842 1843 1844 1845 1846 1847 1848 1849

#ifdef CONFIG_SCHED_DEBUG
extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);

void print_dl_stats(struct seq_file *m, int cpu)
{
	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
}
#endif /* CONFIG_SCHED_DEBUG */