tree-log.c 164.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/sched.h>
7
#include <linux/slab.h>
8
#include <linux/blkdev.h>
J
Josef Bacik 已提交
9
#include <linux/list_sort.h>
10
#include <linux/iversion.h>
11
#include "ctree.h"
12
#include "tree-log.h"
13 14 15
#include "disk-io.h"
#include "locking.h"
#include "print-tree.h"
M
Mark Fasheh 已提交
16
#include "backref.h"
17
#include "compression.h"
18
#include "qgroup.h"
19
#include "inode-map.h"
20 21 22 23 24 25 26 27 28

/* magic values for the inode_only field in btrfs_log_inode:
 *
 * LOG_INODE_ALL means to log everything
 * LOG_INODE_EXISTS means to log just enough to recreate the inode
 * during log replay
 */
#define LOG_INODE_ALL 0
#define LOG_INODE_EXISTS 1
29
#define LOG_OTHER_INODE 2
30

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
/*
 * directory trouble cases
 *
 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
 * log, we must force a full commit before doing an fsync of the directory
 * where the unlink was done.
 * ---> record transid of last unlink/rename per directory
 *
 * mkdir foo/some_dir
 * normal commit
 * rename foo/some_dir foo2/some_dir
 * mkdir foo/some_dir
 * fsync foo/some_dir/some_file
 *
 * The fsync above will unlink the original some_dir without recording
 * it in its new location (foo2).  After a crash, some_dir will be gone
 * unless the fsync of some_file forces a full commit
 *
 * 2) we must log any new names for any file or dir that is in the fsync
 * log. ---> check inode while renaming/linking.
 *
 * 2a) we must log any new names for any file or dir during rename
 * when the directory they are being removed from was logged.
 * ---> check inode and old parent dir during rename
 *
 *  2a is actually the more important variant.  With the extra logging
 *  a crash might unlink the old name without recreating the new one
 *
 * 3) after a crash, we must go through any directories with a link count
 * of zero and redo the rm -rf
 *
 * mkdir f1/foo
 * normal commit
 * rm -rf f1/foo
 * fsync(f1)
 *
 * The directory f1 was fully removed from the FS, but fsync was never
 * called on f1, only its parent dir.  After a crash the rm -rf must
 * be replayed.  This must be able to recurse down the entire
 * directory tree.  The inode link count fixup code takes care of the
 * ugly details.
 */

74 75 76 77 78 79 80 81 82 83 84
/*
 * stages for the tree walking.  The first
 * stage (0) is to only pin down the blocks we find
 * the second stage (1) is to make sure that all the inodes
 * we find in the log are created in the subvolume.
 *
 * The last stage is to deal with directories and links and extents
 * and all the other fun semantics
 */
#define LOG_WALK_PIN_ONLY 0
#define LOG_WALK_REPLAY_INODES 1
85 86
#define LOG_WALK_REPLAY_DIR_INDEX 2
#define LOG_WALK_REPLAY_ALL 3
87

88
static int btrfs_log_inode(struct btrfs_trans_handle *trans,
89
			   struct btrfs_root *root, struct btrfs_inode *inode,
90 91
			   int inode_only,
			   const loff_t start,
92 93
			   const loff_t end,
			   struct btrfs_log_ctx *ctx);
94 95 96
static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
			     struct btrfs_root *root,
			     struct btrfs_path *path, u64 objectid);
97 98 99 100 101
static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct btrfs_root *log,
				       struct btrfs_path *path,
				       u64 dirid, int del_all);
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

/*
 * tree logging is a special write ahead log used to make sure that
 * fsyncs and O_SYNCs can happen without doing full tree commits.
 *
 * Full tree commits are expensive because they require commonly
 * modified blocks to be recowed, creating many dirty pages in the
 * extent tree an 4x-6x higher write load than ext3.
 *
 * Instead of doing a tree commit on every fsync, we use the
 * key ranges and transaction ids to find items for a given file or directory
 * that have changed in this transaction.  Those items are copied into
 * a special tree (one per subvolume root), that tree is written to disk
 * and then the fsync is considered complete.
 *
 * After a crash, items are copied out of the log-tree back into the
 * subvolume tree.  Any file data extents found are recorded in the extent
 * allocation tree, and the log-tree freed.
 *
 * The log tree is read three times, once to pin down all the extents it is
 * using in ram and once, once to create all the inodes logged in the tree
 * and once to do all the other items.
 */

/*
 * start a sub transaction and setup the log tree
 * this increments the log tree writer count to make the people
 * syncing the tree wait for us to finish
 */
static int start_log_trans(struct btrfs_trans_handle *trans,
132 133
			   struct btrfs_root *root,
			   struct btrfs_log_ctx *ctx)
134
{
135
	struct btrfs_fs_info *fs_info = root->fs_info;
136
	int ret = 0;
Y
Yan Zheng 已提交
137 138

	mutex_lock(&root->log_mutex);
139

Y
Yan Zheng 已提交
140
	if (root->log_root) {
141
		if (btrfs_need_log_full_commit(fs_info, trans)) {
142 143 144
			ret = -EAGAIN;
			goto out;
		}
145

146
		if (!root->log_start_pid) {
147
			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
148
			root->log_start_pid = current->pid;
149
		} else if (root->log_start_pid != current->pid) {
150
			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
151
		}
152
	} else {
153 154 155 156
		mutex_lock(&fs_info->tree_log_mutex);
		if (!fs_info->log_root_tree)
			ret = btrfs_init_log_root_tree(trans, fs_info);
		mutex_unlock(&fs_info->tree_log_mutex);
157 158
		if (ret)
			goto out;
159

160
		ret = btrfs_add_log_tree(trans, root);
161
		if (ret)
162
			goto out;
163 164 165

		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
		root->log_start_pid = current->pid;
166
	}
167

M
Miao Xie 已提交
168
	atomic_inc(&root->log_batch);
Y
Yan Zheng 已提交
169
	atomic_inc(&root->log_writers);
170
	if (ctx) {
171
		int index = root->log_transid % 2;
172
		list_add_tail(&ctx->list, &root->log_ctxs[index]);
173
		ctx->log_transid = root->log_transid;
174
	}
175

176
out:
Y
Yan Zheng 已提交
177
	mutex_unlock(&root->log_mutex);
178
	return ret;
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
}

/*
 * returns 0 if there was a log transaction running and we were able
 * to join, or returns -ENOENT if there were not transactions
 * in progress
 */
static int join_running_log_trans(struct btrfs_root *root)
{
	int ret = -ENOENT;

	smp_mb();
	if (!root->log_root)
		return -ENOENT;

Y
Yan Zheng 已提交
194
	mutex_lock(&root->log_mutex);
195 196
	if (root->log_root) {
		ret = 0;
Y
Yan Zheng 已提交
197
		atomic_inc(&root->log_writers);
198
	}
Y
Yan Zheng 已提交
199
	mutex_unlock(&root->log_mutex);
200 201 202
	return ret;
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
/*
 * This either makes the current running log transaction wait
 * until you call btrfs_end_log_trans() or it makes any future
 * log transactions wait until you call btrfs_end_log_trans()
 */
int btrfs_pin_log_trans(struct btrfs_root *root)
{
	int ret = -ENOENT;

	mutex_lock(&root->log_mutex);
	atomic_inc(&root->log_writers);
	mutex_unlock(&root->log_mutex);
	return ret;
}

218 219 220 221
/*
 * indicate we're done making changes to the log tree
 * and wake up anyone waiting to do a sync
 */
222
void btrfs_end_log_trans(struct btrfs_root *root)
223
{
Y
Yan Zheng 已提交
224
	if (atomic_dec_and_test(&root->log_writers)) {
225 226
		/* atomic_dec_and_test implies a barrier */
		cond_wake_up_nomb(&root->log_writer_wait);
Y
Yan Zheng 已提交
227
	}
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
}


/*
 * the walk control struct is used to pass state down the chain when
 * processing the log tree.  The stage field tells us which part
 * of the log tree processing we are currently doing.  The others
 * are state fields used for that specific part
 */
struct walk_control {
	/* should we free the extent on disk when done?  This is used
	 * at transaction commit time while freeing a log tree
	 */
	int free;

	/* should we write out the extent buffer?  This is used
	 * while flushing the log tree to disk during a sync
	 */
	int write;

	/* should we wait for the extent buffer io to finish?  Also used
	 * while flushing the log tree to disk for a sync
	 */
	int wait;

	/* pin only walk, we record which extents on disk belong to the
	 * log trees
	 */
	int pin;

	/* what stage of the replay code we're currently in */
	int stage;

261 262 263 264 265 266 267
	/*
	 * Ignore any items from the inode currently being processed. Needs
	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
	 * the LOG_WALK_REPLAY_INODES stage.
	 */
	bool ignore_cur_inode;

268 269 270 271 272 273 274 275 276 277 278 279
	/* the root we are currently replaying */
	struct btrfs_root *replay_dest;

	/* the trans handle for the current replay */
	struct btrfs_trans_handle *trans;

	/* the function that gets used to process blocks we find in the
	 * tree.  Note the extent_buffer might not be up to date when it is
	 * passed in, and it must be checked or read if you need the data
	 * inside it
	 */
	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
280
			    struct walk_control *wc, u64 gen, int level);
281 282 283 284 285 286 287
};

/*
 * process_func used to pin down extents, write them or wait on them
 */
static int process_one_buffer(struct btrfs_root *log,
			      struct extent_buffer *eb,
288
			      struct walk_control *wc, u64 gen, int level)
289
{
290
	struct btrfs_fs_info *fs_info = log->fs_info;
291 292
	int ret = 0;

293 294 295 296
	/*
	 * If this fs is mixed then we need to be able to process the leaves to
	 * pin down any logged extents, so we have to read the block.
	 */
297
	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
298
		ret = btrfs_read_buffer(eb, gen, level, NULL);
299 300 301 302
		if (ret)
			return ret;
	}

J
Josef Bacik 已提交
303
	if (wc->pin)
304 305
		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
						      eb->len);
306

307
	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
308
		if (wc->pin && btrfs_header_level(eb) == 0)
309
			ret = btrfs_exclude_logged_extents(fs_info, eb);
310 311 312 313 314
		if (wc->write)
			btrfs_write_tree_block(eb);
		if (wc->wait)
			btrfs_wait_tree_block_writeback(eb);
	}
315
	return ret;
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
}

/*
 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 * to the src data we are copying out.
 *
 * root is the tree we are copying into, and path is a scratch
 * path for use in this function (it should be released on entry and
 * will be released on exit).
 *
 * If the key is already in the destination tree the existing item is
 * overwritten.  If the existing item isn't big enough, it is extended.
 * If it is too large, it is truncated.
 *
 * If the key isn't in the destination yet, a new item is inserted.
 */
static noinline int overwrite_item(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct btrfs_path *path,
				   struct extent_buffer *eb, int slot,
				   struct btrfs_key *key)
{
338
	struct btrfs_fs_info *fs_info = root->fs_info;
339 340 341 342 343 344 345
	int ret;
	u32 item_size;
	u64 saved_i_size = 0;
	int save_old_i_size = 0;
	unsigned long src_ptr;
	unsigned long dst_ptr;
	int overwrite_root = 0;
346
	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
347 348 349 350 351 352 353 354 355

	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
		overwrite_root = 1;

	item_size = btrfs_item_size_nr(eb, slot);
	src_ptr = btrfs_item_ptr_offset(eb, slot);

	/* look for the key in the destination tree */
	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
356 357 358
	if (ret < 0)
		return ret;

359 360 361 362 363 364 365 366 367
	if (ret == 0) {
		char *src_copy;
		char *dst_copy;
		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
						  path->slots[0]);
		if (dst_size != item_size)
			goto insert;

		if (item_size == 0) {
368
			btrfs_release_path(path);
369 370 371 372
			return 0;
		}
		dst_copy = kmalloc(item_size, GFP_NOFS);
		src_copy = kmalloc(item_size, GFP_NOFS);
373
		if (!dst_copy || !src_copy) {
374
			btrfs_release_path(path);
375 376 377 378
			kfree(dst_copy);
			kfree(src_copy);
			return -ENOMEM;
		}
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395

		read_extent_buffer(eb, src_copy, src_ptr, item_size);

		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
				   item_size);
		ret = memcmp(dst_copy, src_copy, item_size);

		kfree(dst_copy);
		kfree(src_copy);
		/*
		 * they have the same contents, just return, this saves
		 * us from cowing blocks in the destination tree and doing
		 * extra writes that may not have been done by a previous
		 * sync
		 */
		if (ret == 0) {
396
			btrfs_release_path(path);
397 398 399
			return 0;
		}

400 401 402 403 404 405 406
		/*
		 * We need to load the old nbytes into the inode so when we
		 * replay the extents we've logged we get the right nbytes.
		 */
		if (inode_item) {
			struct btrfs_inode_item *item;
			u64 nbytes;
407
			u32 mode;
408 409 410 411 412 413 414

			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
					      struct btrfs_inode_item);
			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
			item = btrfs_item_ptr(eb, slot,
					      struct btrfs_inode_item);
			btrfs_set_inode_nbytes(eb, item, nbytes);
415 416 417 418 419 420 421 422 423

			/*
			 * If this is a directory we need to reset the i_size to
			 * 0 so that we can set it up properly when replaying
			 * the rest of the items in this log.
			 */
			mode = btrfs_inode_mode(eb, item);
			if (S_ISDIR(mode))
				btrfs_set_inode_size(eb, item, 0);
424 425 426
		}
	} else if (inode_item) {
		struct btrfs_inode_item *item;
427
		u32 mode;
428 429 430 431 432 433 434

		/*
		 * New inode, set nbytes to 0 so that the nbytes comes out
		 * properly when we replay the extents.
		 */
		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
		btrfs_set_inode_nbytes(eb, item, 0);
435 436 437 438 439 440 441 442 443

		/*
		 * If this is a directory we need to reset the i_size to 0 so
		 * that we can set it up properly when replaying the rest of
		 * the items in this log.
		 */
		mode = btrfs_inode_mode(eb, item);
		if (S_ISDIR(mode))
			btrfs_set_inode_size(eb, item, 0);
444 445
	}
insert:
446
	btrfs_release_path(path);
447
	/* try to insert the key into the destination tree */
448
	path->skip_release_on_error = 1;
449 450
	ret = btrfs_insert_empty_item(trans, root, path,
				      key, item_size);
451
	path->skip_release_on_error = 0;
452 453

	/* make sure any existing item is the correct size */
454
	if (ret == -EEXIST || ret == -EOVERFLOW) {
455 456 457
		u32 found_size;
		found_size = btrfs_item_size_nr(path->nodes[0],
						path->slots[0]);
458
		if (found_size > item_size)
459
			btrfs_truncate_item(fs_info, path, item_size, 1);
460
		else if (found_size < item_size)
461
			btrfs_extend_item(fs_info, path,
462
					  item_size - found_size);
463
	} else if (ret) {
464
		return ret;
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	}
	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
					path->slots[0]);

	/* don't overwrite an existing inode if the generation number
	 * was logged as zero.  This is done when the tree logging code
	 * is just logging an inode to make sure it exists after recovery.
	 *
	 * Also, don't overwrite i_size on directories during replay.
	 * log replay inserts and removes directory items based on the
	 * state of the tree found in the subvolume, and i_size is modified
	 * as it goes
	 */
	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
		struct btrfs_inode_item *src_item;
		struct btrfs_inode_item *dst_item;

		src_item = (struct btrfs_inode_item *)src_ptr;
		dst_item = (struct btrfs_inode_item *)dst_ptr;

485 486
		if (btrfs_inode_generation(eb, src_item) == 0) {
			struct extent_buffer *dst_eb = path->nodes[0];
487
			const u64 ino_size = btrfs_inode_size(eb, src_item);
488

489 490 491 492 493 494 495
			/*
			 * For regular files an ino_size == 0 is used only when
			 * logging that an inode exists, as part of a directory
			 * fsync, and the inode wasn't fsynced before. In this
			 * case don't set the size of the inode in the fs/subvol
			 * tree, otherwise we would be throwing valid data away.
			 */
496
			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
497 498
			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
			    ino_size != 0) {
499 500 501 502 503 504
				struct btrfs_map_token token;

				btrfs_init_map_token(&token);
				btrfs_set_token_inode_size(dst_eb, dst_item,
							   ino_size, &token);
			}
505
			goto no_copy;
506
		}
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536

		if (overwrite_root &&
		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
			save_old_i_size = 1;
			saved_i_size = btrfs_inode_size(path->nodes[0],
							dst_item);
		}
	}

	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
			   src_ptr, item_size);

	if (save_old_i_size) {
		struct btrfs_inode_item *dst_item;
		dst_item = (struct btrfs_inode_item *)dst_ptr;
		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
	}

	/* make sure the generation is filled in */
	if (key->type == BTRFS_INODE_ITEM_KEY) {
		struct btrfs_inode_item *dst_item;
		dst_item = (struct btrfs_inode_item *)dst_ptr;
		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
			btrfs_set_inode_generation(path->nodes[0], dst_item,
						   trans->transid);
		}
	}
no_copy:
	btrfs_mark_buffer_dirty(path->nodes[0]);
537
	btrfs_release_path(path);
538 539 540 541 542 543 544 545 546 547
	return 0;
}

/*
 * simple helper to read an inode off the disk from a given root
 * This can only be called for subvolume roots and not for the log
 */
static noinline struct inode *read_one_inode(struct btrfs_root *root,
					     u64 objectid)
{
548
	struct btrfs_key key;
549 550
	struct inode *inode;

551 552 553
	key.objectid = objectid;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;
554
	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
555
	if (IS_ERR(inode))
556
		inode = NULL;
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
	return inode;
}

/* replays a single extent in 'eb' at 'slot' with 'key' into the
 * subvolume 'root'.  path is released on entry and should be released
 * on exit.
 *
 * extents in the log tree have not been allocated out of the extent
 * tree yet.  So, this completes the allocation, taking a reference
 * as required if the extent already exists or creating a new extent
 * if it isn't in the extent allocation tree yet.
 *
 * The extent is inserted into the file, dropping any existing extents
 * from the file that overlap the new one.
 */
static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
				      struct btrfs_root *root,
				      struct btrfs_path *path,
				      struct extent_buffer *eb, int slot,
				      struct btrfs_key *key)
{
578
	struct btrfs_fs_info *fs_info = root->fs_info;
579 580 581
	int found_type;
	u64 extent_end;
	u64 start = key->offset;
582
	u64 nbytes = 0;
583 584 585 586 587 588 589 590
	struct btrfs_file_extent_item *item;
	struct inode *inode = NULL;
	unsigned long size;
	int ret = 0;

	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
	found_type = btrfs_file_extent_type(eb, item);

Y
Yan Zheng 已提交
591
	if (found_type == BTRFS_FILE_EXTENT_REG ||
592 593 594 595 596 597 598 599 600 601 602
	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
		nbytes = btrfs_file_extent_num_bytes(eb, item);
		extent_end = start + nbytes;

		/*
		 * We don't add to the inodes nbytes if we are prealloc or a
		 * hole.
		 */
		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
			nbytes = 0;
	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
603
		size = btrfs_file_extent_ram_bytes(eb, item);
604
		nbytes = btrfs_file_extent_ram_bytes(eb, item);
605
		extent_end = ALIGN(start + size,
606
				   fs_info->sectorsize);
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
	} else {
		ret = 0;
		goto out;
	}

	inode = read_one_inode(root, key->objectid);
	if (!inode) {
		ret = -EIO;
		goto out;
	}

	/*
	 * first check to see if we already have this extent in the
	 * file.  This must be done before the btrfs_drop_extents run
	 * so we don't try to drop this extent.
	 */
623 624
	ret = btrfs_lookup_file_extent(trans, root, path,
			btrfs_ino(BTRFS_I(inode)), start, 0);
625

Y
Yan Zheng 已提交
626 627 628
	if (ret == 0 &&
	    (found_type == BTRFS_FILE_EXTENT_REG ||
	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
		struct btrfs_file_extent_item cmp1;
		struct btrfs_file_extent_item cmp2;
		struct btrfs_file_extent_item *existing;
		struct extent_buffer *leaf;

		leaf = path->nodes[0];
		existing = btrfs_item_ptr(leaf, path->slots[0],
					  struct btrfs_file_extent_item);

		read_extent_buffer(eb, &cmp1, (unsigned long)item,
				   sizeof(cmp1));
		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
				   sizeof(cmp2));

		/*
		 * we already have a pointer to this exact extent,
		 * we don't have to do anything
		 */
		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
648
			btrfs_release_path(path);
649 650 651
			goto out;
		}
	}
652
	btrfs_release_path(path);
653 654

	/* drop any overlapping extents */
655
	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
656 657
	if (ret)
		goto out;
658

Y
Yan Zheng 已提交
659 660
	if (found_type == BTRFS_FILE_EXTENT_REG ||
	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
661
		u64 offset;
Y
Yan Zheng 已提交
662 663 664
		unsigned long dest_offset;
		struct btrfs_key ins;

665 666 667 668
		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
		    btrfs_fs_incompat(fs_info, NO_HOLES))
			goto update_inode;

Y
Yan Zheng 已提交
669 670
		ret = btrfs_insert_empty_item(trans, root, path, key,
					      sizeof(*item));
671 672
		if (ret)
			goto out;
Y
Yan Zheng 已提交
673 674 675 676 677 678 679 680
		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
						    path->slots[0]);
		copy_extent_buffer(path->nodes[0], eb, dest_offset,
				(unsigned long)item,  sizeof(*item));

		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
		ins.type = BTRFS_EXTENT_ITEM_KEY;
681
		offset = key->offset - btrfs_file_extent_offset(eb, item);
Y
Yan Zheng 已提交
682

683 684 685 686 687 688 689 690
		/*
		 * Manually record dirty extent, as here we did a shallow
		 * file extent item copy and skip normal backref update,
		 * but modifying extent tree all by ourselves.
		 * So need to manually record dirty extent for qgroup,
		 * as the owner of the file extent changed from log tree
		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
		 */
691
		ret = btrfs_qgroup_trace_extent(trans,
692 693 694 695 696 697
				btrfs_file_extent_disk_bytenr(eb, item),
				btrfs_file_extent_disk_num_bytes(eb, item),
				GFP_NOFS);
		if (ret < 0)
			goto out;

Y
Yan Zheng 已提交
698 699 700 701 702 703 704 705
		if (ins.objectid > 0) {
			u64 csum_start;
			u64 csum_end;
			LIST_HEAD(ordered_sums);
			/*
			 * is this extent already allocated in the extent
			 * allocation tree?  If so, just add a reference
			 */
706
			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
Y
Yan Zheng 已提交
707 708
						ins.offset);
			if (ret == 0) {
709
				ret = btrfs_inc_extent_ref(trans, root,
Y
Yan Zheng 已提交
710
						ins.objectid, ins.offset,
711
						0, root->root_key.objectid,
712
						key->objectid, offset);
713 714
				if (ret)
					goto out;
Y
Yan Zheng 已提交
715 716 717 718 719
			} else {
				/*
				 * insert the extent pointer in the extent
				 * allocation tree
				 */
720
				ret = btrfs_alloc_logged_file_extent(trans,
721
						root->root_key.objectid,
722
						key->objectid, offset, &ins);
723 724
				if (ret)
					goto out;
Y
Yan Zheng 已提交
725
			}
726
			btrfs_release_path(path);
Y
Yan Zheng 已提交
727 728 729 730 731 732 733 734 735 736 737 738 739

			if (btrfs_file_extent_compression(eb, item)) {
				csum_start = ins.objectid;
				csum_end = csum_start + ins.offset;
			} else {
				csum_start = ins.objectid +
					btrfs_file_extent_offset(eb, item);
				csum_end = csum_start +
					btrfs_file_extent_num_bytes(eb, item);
			}

			ret = btrfs_lookup_csums_range(root->log_root,
						csum_start, csum_end - 1,
A
Arne Jansen 已提交
740
						&ordered_sums, 0);
741 742
			if (ret)
				goto out;
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
			/*
			 * Now delete all existing cums in the csum root that
			 * cover our range. We do this because we can have an
			 * extent that is completely referenced by one file
			 * extent item and partially referenced by another
			 * file extent item (like after using the clone or
			 * extent_same ioctls). In this case if we end up doing
			 * the replay of the one that partially references the
			 * extent first, and we do not do the csum deletion
			 * below, we can get 2 csum items in the csum tree that
			 * overlap each other. For example, imagine our log has
			 * the two following file extent items:
			 *
			 * key (257 EXTENT_DATA 409600)
			 *     extent data disk byte 12845056 nr 102400
			 *     extent data offset 20480 nr 20480 ram 102400
			 *
			 * key (257 EXTENT_DATA 819200)
			 *     extent data disk byte 12845056 nr 102400
			 *     extent data offset 0 nr 102400 ram 102400
			 *
			 * Where the second one fully references the 100K extent
			 * that starts at disk byte 12845056, and the log tree
			 * has a single csum item that covers the entire range
			 * of the extent:
			 *
			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
			 *
			 * After the first file extent item is replayed, the
			 * csum tree gets the following csum item:
			 *
			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
			 *
			 * Which covers the 20K sub-range starting at offset 20K
			 * of our extent. Now when we replay the second file
			 * extent item, if we do not delete existing csum items
			 * that cover any of its blocks, we end up getting two
			 * csum items in our csum tree that overlap each other:
			 *
			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
			 *
			 * Which is a problem, because after this anyone trying
			 * to lookup up for the checksum of any block of our
			 * extent starting at an offset of 40K or higher, will
			 * end up looking at the second csum item only, which
			 * does not contain the checksum for any block starting
			 * at offset 40K or higher of our extent.
			 */
Y
Yan Zheng 已提交
792 793 794 795 796
			while (!list_empty(&ordered_sums)) {
				struct btrfs_ordered_sum *sums;
				sums = list_entry(ordered_sums.next,
						struct btrfs_ordered_sum,
						list);
797
				if (!ret)
798
					ret = btrfs_del_csums(trans, fs_info,
799 800
							      sums->bytenr,
							      sums->len);
801 802
				if (!ret)
					ret = btrfs_csum_file_blocks(trans,
803
						fs_info->csum_root, sums);
Y
Yan Zheng 已提交
804 805 806
				list_del(&sums->list);
				kfree(sums);
			}
807 808
			if (ret)
				goto out;
Y
Yan Zheng 已提交
809
		} else {
810
			btrfs_release_path(path);
Y
Yan Zheng 已提交
811 812 813 814
		}
	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
		/* inline extents are easy, we just overwrite them */
		ret = overwrite_item(trans, root, path, eb, slot, key);
815 816
		if (ret)
			goto out;
Y
Yan Zheng 已提交
817
	}
818

819
	inode_add_bytes(inode, nbytes);
820
update_inode:
821
	ret = btrfs_update_inode(trans, root, inode);
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
out:
	if (inode)
		iput(inode);
	return ret;
}

/*
 * when cleaning up conflicts between the directory names in the
 * subvolume, directory names in the log and directory names in the
 * inode back references, we may have to unlink inodes from directories.
 *
 * This is a helper function to do the unlink of a specific directory
 * item
 */
static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
				      struct btrfs_root *root,
				      struct btrfs_path *path,
839
				      struct btrfs_inode *dir,
840 841 842 843 844 845 846 847 848 849 850 851 852 853
				      struct btrfs_dir_item *di)
{
	struct inode *inode;
	char *name;
	int name_len;
	struct extent_buffer *leaf;
	struct btrfs_key location;
	int ret;

	leaf = path->nodes[0];

	btrfs_dir_item_key_to_cpu(leaf, di, &location);
	name_len = btrfs_dir_name_len(leaf, di);
	name = kmalloc(name_len, GFP_NOFS);
854 855 856
	if (!name)
		return -ENOMEM;

857
	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
858
	btrfs_release_path(path);
859 860

	inode = read_one_inode(root, location.objectid);
861
	if (!inode) {
862 863
		ret = -EIO;
		goto out;
864
	}
865

866
	ret = link_to_fixup_dir(trans, root, path, location.objectid);
867 868
	if (ret)
		goto out;
869

870 871
	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
			name_len);
872 873
	if (ret)
		goto out;
874
	else
875
		ret = btrfs_run_delayed_items(trans);
876
out:
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
	kfree(name);
	iput(inode);
	return ret;
}

/*
 * helper function to see if a given name and sequence number found
 * in an inode back reference are already in a directory and correctly
 * point to this inode
 */
static noinline int inode_in_dir(struct btrfs_root *root,
				 struct btrfs_path *path,
				 u64 dirid, u64 objectid, u64 index,
				 const char *name, int name_len)
{
	struct btrfs_dir_item *di;
	struct btrfs_key location;
	int match = 0;

	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
					 index, name, name_len, 0);
	if (di && !IS_ERR(di)) {
		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
		if (location.objectid != objectid)
			goto out;
	} else
		goto out;
904
	btrfs_release_path(path);
905 906 907 908 909 910 911 912 913 914

	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
	if (di && !IS_ERR(di)) {
		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
		if (location.objectid != objectid)
			goto out;
	} else
		goto out;
	match = 1;
out:
915
	btrfs_release_path(path);
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
	return match;
}

/*
 * helper function to check a log tree for a named back reference in
 * an inode.  This is used to decide if a back reference that is
 * found in the subvolume conflicts with what we find in the log.
 *
 * inode backreferences may have multiple refs in a single item,
 * during replay we process one reference at a time, and we don't
 * want to delete valid links to a file from the subvolume if that
 * link is also in the log.
 */
static noinline int backref_in_log(struct btrfs_root *log,
				   struct btrfs_key *key,
M
Mark Fasheh 已提交
931
				   u64 ref_objectid,
932
				   const char *name, int namelen)
933 934 935 936 937 938 939 940 941 942 943 944
{
	struct btrfs_path *path;
	struct btrfs_inode_ref *ref;
	unsigned long ptr;
	unsigned long ptr_end;
	unsigned long name_ptr;
	int found_name_len;
	int item_size;
	int ret;
	int match = 0;

	path = btrfs_alloc_path();
945 946 947
	if (!path)
		return -ENOMEM;

948 949 950 951 952
	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
	if (ret != 0)
		goto out;

	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
M
Mark Fasheh 已提交
953 954

	if (key->type == BTRFS_INODE_EXTREF_KEY) {
955 956 957
		if (btrfs_find_name_in_ext_backref(path->nodes[0],
						   path->slots[0],
						   ref_objectid,
M
Mark Fasheh 已提交
958 959 960 961 962 963 964
						   name, namelen, NULL))
			match = 1;

		goto out;
	}

	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
	ptr_end = ptr + item_size;
	while (ptr < ptr_end) {
		ref = (struct btrfs_inode_ref *)ptr;
		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
		if (found_name_len == namelen) {
			name_ptr = (unsigned long)(ref + 1);
			ret = memcmp_extent_buffer(path->nodes[0], name,
						   name_ptr, namelen);
			if (ret == 0) {
				match = 1;
				goto out;
			}
		}
		ptr = (unsigned long)(ref + 1) + found_name_len;
	}
out:
	btrfs_free_path(path);
	return match;
}

985
static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
986 987
				  struct btrfs_root *root,
				  struct btrfs_path *path,
988
				  struct btrfs_root *log_root,
989 990
				  struct btrfs_inode *dir,
				  struct btrfs_inode *inode,
M
Mark Fasheh 已提交
991 992 993
				  u64 inode_objectid, u64 parent_objectid,
				  u64 ref_index, char *name, int namelen,
				  int *search_done)
994
{
L
liubo 已提交
995
	int ret;
M
Mark Fasheh 已提交
996 997 998
	char *victim_name;
	int victim_name_len;
	struct extent_buffer *leaf;
999
	struct btrfs_dir_item *di;
M
Mark Fasheh 已提交
1000 1001
	struct btrfs_key search_key;
	struct btrfs_inode_extref *extref;
1002

M
Mark Fasheh 已提交
1003 1004 1005 1006 1007 1008
again:
	/* Search old style refs */
	search_key.objectid = inode_objectid;
	search_key.type = BTRFS_INODE_REF_KEY;
	search_key.offset = parent_objectid;
	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1009 1010 1011 1012
	if (ret == 0) {
		struct btrfs_inode_ref *victim_ref;
		unsigned long ptr;
		unsigned long ptr_end;
M
Mark Fasheh 已提交
1013 1014

		leaf = path->nodes[0];
1015 1016 1017 1018

		/* are we trying to overwrite a back ref for the root directory
		 * if so, just jump out, we're done
		 */
M
Mark Fasheh 已提交
1019
		if (search_key.objectid == search_key.offset)
1020
			return 1;
1021 1022 1023 1024 1025 1026 1027

		/* check all the names in this back reference to see
		 * if they are in the log.  if so, we allow them to stay
		 * otherwise they must be unlinked as a conflict
		 */
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
C
Chris Mason 已提交
1028
		while (ptr < ptr_end) {
1029 1030 1031 1032
			victim_ref = (struct btrfs_inode_ref *)ptr;
			victim_name_len = btrfs_inode_ref_name_len(leaf,
								   victim_ref);
			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1033 1034
			if (!victim_name)
				return -ENOMEM;
1035 1036 1037 1038 1039

			read_extent_buffer(leaf, victim_name,
					   (unsigned long)(victim_ref + 1),
					   victim_name_len);

M
Mark Fasheh 已提交
1040 1041 1042
			if (!backref_in_log(log_root, &search_key,
					    parent_objectid,
					    victim_name,
1043
					    victim_name_len)) {
1044
				inc_nlink(&inode->vfs_inode);
1045
				btrfs_release_path(path);
1046

1047
				ret = btrfs_unlink_inode(trans, root, dir, inode,
1048
						victim_name, victim_name_len);
M
Mark Fasheh 已提交
1049
				kfree(victim_name);
1050 1051
				if (ret)
					return ret;
1052
				ret = btrfs_run_delayed_items(trans);
1053 1054
				if (ret)
					return ret;
M
Mark Fasheh 已提交
1055 1056
				*search_done = 1;
				goto again;
1057 1058
			}
			kfree(victim_name);
M
Mark Fasheh 已提交
1059

1060 1061 1062
			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
		}

1063 1064
		/*
		 * NOTE: we have searched root tree and checked the
1065
		 * corresponding ref, it does not need to check again.
1066
		 */
1067
		*search_done = 1;
1068
	}
1069
	btrfs_release_path(path);
1070

M
Mark Fasheh 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	/* Same search but for extended refs */
	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
					   inode_objectid, parent_objectid, 0,
					   0);
	if (!IS_ERR_OR_NULL(extref)) {
		u32 item_size;
		u32 cur_offset = 0;
		unsigned long base;
		struct inode *victim_parent;

		leaf = path->nodes[0];

		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
		base = btrfs_item_ptr_offset(leaf, path->slots[0]);

		while (cur_offset < item_size) {
1087
			extref = (struct btrfs_inode_extref *)(base + cur_offset);
M
Mark Fasheh 已提交
1088 1089 1090 1091 1092 1093 1094

			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);

			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
				goto next;

			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1095 1096
			if (!victim_name)
				return -ENOMEM;
M
Mark Fasheh 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
					   victim_name_len);

			search_key.objectid = inode_objectid;
			search_key.type = BTRFS_INODE_EXTREF_KEY;
			search_key.offset = btrfs_extref_hash(parent_objectid,
							      victim_name,
							      victim_name_len);
			ret = 0;
			if (!backref_in_log(log_root, &search_key,
					    parent_objectid, victim_name,
					    victim_name_len)) {
				ret = -ENOENT;
				victim_parent = read_one_inode(root,
1111
						parent_objectid);
M
Mark Fasheh 已提交
1112
				if (victim_parent) {
1113
					inc_nlink(&inode->vfs_inode);
M
Mark Fasheh 已提交
1114 1115 1116
					btrfs_release_path(path);

					ret = btrfs_unlink_inode(trans, root,
1117
							BTRFS_I(victim_parent),
1118
							inode,
1119 1120
							victim_name,
							victim_name_len);
1121 1122
					if (!ret)
						ret = btrfs_run_delayed_items(
1123
								  trans);
M
Mark Fasheh 已提交
1124 1125 1126
				}
				iput(victim_parent);
				kfree(victim_name);
1127 1128
				if (ret)
					return ret;
M
Mark Fasheh 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
				*search_done = 1;
				goto again;
			}
			kfree(victim_name);
next:
			cur_offset += victim_name_len + sizeof(*extref);
		}
		*search_done = 1;
	}
	btrfs_release_path(path);

L
liubo 已提交
1140
	/* look for a conflicting sequence number */
1141
	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
M
Mark Fasheh 已提交
1142
					 ref_index, name, namelen, 0);
L
liubo 已提交
1143
	if (di && !IS_ERR(di)) {
1144
		ret = drop_one_dir_item(trans, root, path, dir, di);
1145 1146
		if (ret)
			return ret;
L
liubo 已提交
1147 1148 1149 1150
	}
	btrfs_release_path(path);

	/* look for a conflicing name */
1151
	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
L
liubo 已提交
1152 1153
				   name, namelen, 0);
	if (di && !IS_ERR(di)) {
1154
		ret = drop_one_dir_item(trans, root, path, dir, di);
1155 1156
		if (ret)
			return ret;
L
liubo 已提交
1157 1158 1159
	}
	btrfs_release_path(path);

1160 1161
	return 0;
}
1162

1163 1164 1165
static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
			     u32 *namelen, char **name, u64 *index,
			     u64 *parent_objectid)
M
Mark Fasheh 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
{
	struct btrfs_inode_extref *extref;

	extref = (struct btrfs_inode_extref *)ref_ptr;

	*namelen = btrfs_inode_extref_name_len(eb, extref);
	*name = kmalloc(*namelen, GFP_NOFS);
	if (*name == NULL)
		return -ENOMEM;

	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
			   *namelen);

1179 1180
	if (index)
		*index = btrfs_inode_extref_index(eb, extref);
M
Mark Fasheh 已提交
1181 1182 1183 1184 1185 1186
	if (parent_objectid)
		*parent_objectid = btrfs_inode_extref_parent(eb, extref);

	return 0;
}

1187 1188
static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
			  u32 *namelen, char **name, u64 *index)
M
Mark Fasheh 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
{
	struct btrfs_inode_ref *ref;

	ref = (struct btrfs_inode_ref *)ref_ptr;

	*namelen = btrfs_inode_ref_name_len(eb, ref);
	*name = kmalloc(*namelen, GFP_NOFS);
	if (*name == NULL)
		return -ENOMEM;

	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);

1201 1202
	if (index)
		*index = btrfs_inode_ref_index(eb, ref);
M
Mark Fasheh 已提交
1203 1204 1205 1206

	return 0;
}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
/*
 * Take an inode reference item from the log tree and iterate all names from the
 * inode reference item in the subvolume tree with the same key (if it exists).
 * For any name that is not in the inode reference item from the log tree, do a
 * proper unlink of that name (that is, remove its entry from the inode
 * reference item and both dir index keys).
 */
static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
				 struct btrfs_root *root,
				 struct btrfs_path *path,
				 struct btrfs_inode *inode,
				 struct extent_buffer *log_eb,
				 int log_slot,
				 struct btrfs_key *key)
{
	int ret;
	unsigned long ref_ptr;
	unsigned long ref_end;
	struct extent_buffer *eb;

again:
	btrfs_release_path(path);
	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
	if (ret > 0) {
		ret = 0;
		goto out;
	}
	if (ret < 0)
		goto out;

	eb = path->nodes[0];
	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
	while (ref_ptr < ref_end) {
		char *name = NULL;
		int namelen;
		u64 parent_id;

		if (key->type == BTRFS_INODE_EXTREF_KEY) {
			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
						NULL, &parent_id);
		} else {
			parent_id = key->offset;
			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
					     NULL);
		}
		if (ret)
			goto out;

		if (key->type == BTRFS_INODE_EXTREF_KEY)
			ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
							     parent_id, name,
							     namelen, NULL);
		else
			ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
							 namelen, NULL);

		if (!ret) {
			struct inode *dir;

			btrfs_release_path(path);
			dir = read_one_inode(root, parent_id);
			if (!dir) {
				ret = -ENOENT;
				kfree(name);
				goto out;
			}
			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
						 inode, name, namelen);
			kfree(name);
			iput(dir);
			if (ret)
				goto out;
			goto again;
		}

		kfree(name);
		ref_ptr += namelen;
		if (key->type == BTRFS_INODE_EXTREF_KEY)
			ref_ptr += sizeof(struct btrfs_inode_extref);
		else
			ref_ptr += sizeof(struct btrfs_inode_ref);
	}
	ret = 0;
 out:
	btrfs_release_path(path);
	return ret;
}

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
				  const u8 ref_type, const char *name,
				  const int namelen)
{
	struct btrfs_key key;
	struct btrfs_path *path;
	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = btrfs_ino(BTRFS_I(inode));
	key.type = ref_type;
	if (key.type == BTRFS_INODE_REF_KEY)
		key.offset = parent_id;
	else
		key.offset = btrfs_extref_hash(parent_id, name, namelen);

	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	if (ret > 0) {
		ret = 0;
		goto out;
	}
	if (key.type == BTRFS_INODE_EXTREF_KEY)
		ret = btrfs_find_name_in_ext_backref(path->nodes[0],
						     path->slots[0], parent_id,
						     name, namelen, NULL);
	else
		ret = btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
						 name, namelen, NULL);

out:
	btrfs_free_path(path);
	return ret;
}

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
/*
 * replay one inode back reference item found in the log tree.
 * eb, slot and key refer to the buffer and key found in the log tree.
 * root is the destination we are replaying into, and path is for temp
 * use by this function.  (it should be released on return).
 */
static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
				  struct btrfs_root *root,
				  struct btrfs_root *log,
				  struct btrfs_path *path,
				  struct extent_buffer *eb, int slot,
				  struct btrfs_key *key)
{
1349 1350
	struct inode *dir = NULL;
	struct inode *inode = NULL;
1351 1352
	unsigned long ref_ptr;
	unsigned long ref_end;
1353
	char *name = NULL;
1354 1355 1356
	int namelen;
	int ret;
	int search_done = 0;
M
Mark Fasheh 已提交
1357 1358 1359
	int log_ref_ver = 0;
	u64 parent_objectid;
	u64 inode_objectid;
1360
	u64 ref_index = 0;
M
Mark Fasheh 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	int ref_struct_size;

	ref_ptr = btrfs_item_ptr_offset(eb, slot);
	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);

	if (key->type == BTRFS_INODE_EXTREF_KEY) {
		struct btrfs_inode_extref *r;

		ref_struct_size = sizeof(struct btrfs_inode_extref);
		log_ref_ver = 1;
		r = (struct btrfs_inode_extref *)ref_ptr;
		parent_objectid = btrfs_inode_extref_parent(eb, r);
	} else {
		ref_struct_size = sizeof(struct btrfs_inode_ref);
		parent_objectid = key->offset;
	}
	inode_objectid = key->objectid;
1378

1379 1380 1381 1382 1383 1384
	/*
	 * it is possible that we didn't log all the parent directories
	 * for a given inode.  If we don't find the dir, just don't
	 * copy the back ref in.  The link count fixup code will take
	 * care of the rest
	 */
M
Mark Fasheh 已提交
1385
	dir = read_one_inode(root, parent_objectid);
1386 1387 1388 1389
	if (!dir) {
		ret = -ENOENT;
		goto out;
	}
1390

M
Mark Fasheh 已提交
1391
	inode = read_one_inode(root, inode_objectid);
1392
	if (!inode) {
1393 1394
		ret = -EIO;
		goto out;
1395 1396 1397
	}

	while (ref_ptr < ref_end) {
M
Mark Fasheh 已提交
1398
		if (log_ref_ver) {
1399 1400
			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
						&ref_index, &parent_objectid);
M
Mark Fasheh 已提交
1401 1402 1403 1404 1405 1406
			/*
			 * parent object can change from one array
			 * item to another.
			 */
			if (!dir)
				dir = read_one_inode(root, parent_objectid);
1407 1408 1409 1410
			if (!dir) {
				ret = -ENOENT;
				goto out;
			}
M
Mark Fasheh 已提交
1411
		} else {
1412 1413
			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
					     &ref_index);
M
Mark Fasheh 已提交
1414 1415
		}
		if (ret)
1416
			goto out;
1417 1418

		/* if we already have a perfect match, we're done */
1419 1420 1421
		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
					btrfs_ino(BTRFS_I(inode)), ref_index,
					name, namelen)) {
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
			/*
			 * look for a conflicting back reference in the
			 * metadata. if we find one we have to unlink that name
			 * of the file before we add our new link.  Later on, we
			 * overwrite any existing back reference, and we don't
			 * want to create dangling pointers in the directory.
			 */

			if (!search_done) {
				ret = __add_inode_ref(trans, root, path, log,
1432
						      BTRFS_I(dir),
1433
						      BTRFS_I(inode),
M
Mark Fasheh 已提交
1434 1435 1436
						      inode_objectid,
						      parent_objectid,
						      ref_index, name, namelen,
1437
						      &search_done);
1438 1439 1440
				if (ret) {
					if (ret == 1)
						ret = 0;
1441 1442
					goto out;
				}
1443 1444
			}

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
			/*
			 * If a reference item already exists for this inode
			 * with the same parent and name, but different index,
			 * drop it and the corresponding directory index entries
			 * from the parent before adding the new reference item
			 * and dir index entries, otherwise we would fail with
			 * -EEXIST returned from btrfs_add_link() below.
			 */
			ret = btrfs_inode_ref_exists(inode, dir, key->type,
						     name, namelen);
			if (ret > 0) {
				ret = btrfs_unlink_inode(trans, root,
							 BTRFS_I(dir),
							 BTRFS_I(inode),
							 name, namelen);
				/*
				 * If we dropped the link count to 0, bump it so
				 * that later the iput() on the inode will not
				 * free it. We will fixup the link count later.
				 */
				if (!ret && inode->i_nlink == 0)
					inc_nlink(inode);
			}
			if (ret < 0)
				goto out;

1471
			/* insert our name */
1472 1473 1474
			ret = btrfs_add_link(trans, BTRFS_I(dir),
					BTRFS_I(inode),
					name, namelen, 0, ref_index);
1475 1476
			if (ret)
				goto out;
1477 1478 1479 1480

			btrfs_update_inode(trans, root, inode);
		}

M
Mark Fasheh 已提交
1481
		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1482
		kfree(name);
1483
		name = NULL;
M
Mark Fasheh 已提交
1484 1485 1486 1487
		if (log_ref_ver) {
			iput(dir);
			dir = NULL;
		}
1488
	}
1489

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	/*
	 * Before we overwrite the inode reference item in the subvolume tree
	 * with the item from the log tree, we must unlink all names from the
	 * parent directory that are in the subvolume's tree inode reference
	 * item, otherwise we end up with an inconsistent subvolume tree where
	 * dir index entries exist for a name but there is no inode reference
	 * item with the same name.
	 */
	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
				    key);
	if (ret)
		goto out;

1503 1504
	/* finally write the back reference in the inode */
	ret = overwrite_item(trans, root, path, eb, slot, key);
1505
out:
1506
	btrfs_release_path(path);
1507
	kfree(name);
1508 1509
	iput(dir);
	iput(inode);
1510
	return ret;
1511 1512
}

1513
static int insert_orphan_item(struct btrfs_trans_handle *trans,
1514
			      struct btrfs_root *root, u64 ino)
1515 1516
{
	int ret;
1517

1518 1519 1520
	ret = btrfs_insert_orphan_item(trans, root, ino);
	if (ret == -EEXIST)
		ret = 0;
1521

1522 1523 1524
	return ret;
}

M
Mark Fasheh 已提交
1525
static int count_inode_extrefs(struct btrfs_root *root,
1526
		struct btrfs_inode *inode, struct btrfs_path *path)
M
Mark Fasheh 已提交
1527 1528 1529 1530 1531 1532
{
	int ret = 0;
	int name_len;
	unsigned int nlink = 0;
	u32 item_size;
	u32 cur_offset = 0;
1533
	u64 inode_objectid = btrfs_ino(inode);
M
Mark Fasheh 已提交
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	u64 offset = 0;
	unsigned long ptr;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;

	while (1) {
		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
					    &extref, &offset);
		if (ret)
			break;
1544

M
Mark Fasheh 已提交
1545 1546 1547
		leaf = path->nodes[0];
		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1548
		cur_offset = 0;
M
Mark Fasheh 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563

		while (cur_offset < item_size) {
			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
			name_len = btrfs_inode_extref_name_len(leaf, extref);

			nlink++;

			cur_offset += name_len + sizeof(*extref);
		}

		offset++;
		btrfs_release_path(path);
	}
	btrfs_release_path(path);

1564
	if (ret < 0 && ret != -ENOENT)
M
Mark Fasheh 已提交
1565 1566 1567 1568 1569
		return ret;
	return nlink;
}

static int count_inode_refs(struct btrfs_root *root,
1570
			struct btrfs_inode *inode, struct btrfs_path *path)
1571 1572 1573
{
	int ret;
	struct btrfs_key key;
M
Mark Fasheh 已提交
1574
	unsigned int nlink = 0;
1575 1576 1577
	unsigned long ptr;
	unsigned long ptr_end;
	int name_len;
1578
	u64 ino = btrfs_ino(inode);
1579

L
Li Zefan 已提交
1580
	key.objectid = ino;
1581 1582 1583
	key.type = BTRFS_INODE_REF_KEY;
	key.offset = (u64)-1;

C
Chris Mason 已提交
1584
	while (1) {
1585 1586 1587 1588 1589 1590 1591 1592
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			break;
		if (ret > 0) {
			if (path->slots[0] == 0)
				break;
			path->slots[0]--;
		}
1593
process_slot:
1594 1595
		btrfs_item_key_to_cpu(path->nodes[0], &key,
				      path->slots[0]);
L
Li Zefan 已提交
1596
		if (key.objectid != ino ||
1597 1598 1599 1600 1601
		    key.type != BTRFS_INODE_REF_KEY)
			break;
		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
						   path->slots[0]);
C
Chris Mason 已提交
1602
		while (ptr < ptr_end) {
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
			struct btrfs_inode_ref *ref;

			ref = (struct btrfs_inode_ref *)ptr;
			name_len = btrfs_inode_ref_name_len(path->nodes[0],
							    ref);
			ptr = (unsigned long)(ref + 1) + name_len;
			nlink++;
		}

		if (key.offset == 0)
			break;
1614 1615 1616 1617
		if (path->slots[0] > 0) {
			path->slots[0]--;
			goto process_slot;
		}
1618
		key.offset--;
1619
		btrfs_release_path(path);
1620
	}
1621
	btrfs_release_path(path);
M
Mark Fasheh 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642

	return nlink;
}

/*
 * There are a few corners where the link count of the file can't
 * be properly maintained during replay.  So, instead of adding
 * lots of complexity to the log code, we just scan the backrefs
 * for any file that has been through replay.
 *
 * The scan will update the link count on the inode to reflect the
 * number of back refs found.  If it goes down to zero, the iput
 * will free the inode.
 */
static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
					   struct btrfs_root *root,
					   struct inode *inode)
{
	struct btrfs_path *path;
	int ret;
	u64 nlink = 0;
1643
	u64 ino = btrfs_ino(BTRFS_I(inode));
M
Mark Fasheh 已提交
1644 1645 1646 1647 1648

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

1649
	ret = count_inode_refs(root, BTRFS_I(inode), path);
M
Mark Fasheh 已提交
1650 1651 1652 1653 1654
	if (ret < 0)
		goto out;

	nlink = ret;

1655
	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
M
Mark Fasheh 已提交
1656 1657 1658 1659 1660 1661 1662
	if (ret < 0)
		goto out;

	nlink += ret;

	ret = 0;

1663
	if (nlink != inode->i_nlink) {
M
Miklos Szeredi 已提交
1664
		set_nlink(inode, nlink);
1665 1666
		btrfs_update_inode(trans, root, inode);
	}
1667
	BTRFS_I(inode)->index_cnt = (u64)-1;
1668

1669 1670 1671
	if (inode->i_nlink == 0) {
		if (S_ISDIR(inode->i_mode)) {
			ret = replay_dir_deletes(trans, root, NULL, path,
L
Li Zefan 已提交
1672
						 ino, 1);
1673 1674
			if (ret)
				goto out;
1675
		}
L
Li Zefan 已提交
1676
		ret = insert_orphan_item(trans, root, ino);
1677 1678
	}

M
Mark Fasheh 已提交
1679 1680 1681
out:
	btrfs_free_path(path);
	return ret;
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
}

static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
					    struct btrfs_root *root,
					    struct btrfs_path *path)
{
	int ret;
	struct btrfs_key key;
	struct inode *inode;

	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
	key.type = BTRFS_ORPHAN_ITEM_KEY;
	key.offset = (u64)-1;
C
Chris Mason 已提交
1695
	while (1) {
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
		if (ret < 0)
			break;

		if (ret == 1) {
			if (path->slots[0] == 0)
				break;
			path->slots[0]--;
		}

		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
		    key.type != BTRFS_ORPHAN_ITEM_KEY)
			break;

		ret = btrfs_del_item(trans, root, path);
1712 1713
		if (ret)
			goto out;
1714

1715
		btrfs_release_path(path);
1716
		inode = read_one_inode(root, key.offset);
1717 1718
		if (!inode)
			return -EIO;
1719 1720 1721

		ret = fixup_inode_link_count(trans, root, inode);
		iput(inode);
1722 1723
		if (ret)
			goto out;
1724

1725 1726 1727 1728 1729 1730
		/*
		 * fixup on a directory may create new entries,
		 * make sure we always look for the highset possible
		 * offset
		 */
		key.offset = (u64)-1;
1731
	}
1732 1733
	ret = 0;
out:
1734
	btrfs_release_path(path);
1735
	return ret;
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
}


/*
 * record a given inode in the fixup dir so we can check its link
 * count when replay is done.  The link count is incremented here
 * so the inode won't go away until we check it
 */
static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
				      struct btrfs_root *root,
				      struct btrfs_path *path,
				      u64 objectid)
{
	struct btrfs_key key;
	int ret = 0;
	struct inode *inode;

	inode = read_one_inode(root, objectid);
1754 1755
	if (!inode)
		return -EIO;
1756 1757

	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1758
	key.type = BTRFS_ORPHAN_ITEM_KEY;
1759 1760 1761 1762
	key.offset = objectid;

	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);

1763
	btrfs_release_path(path);
1764
	if (ret == 0) {
1765 1766 1767
		if (!inode->i_nlink)
			set_nlink(inode, 1);
		else
Z
Zach Brown 已提交
1768
			inc_nlink(inode);
1769
		ret = btrfs_update_inode(trans, root, inode);
1770 1771 1772
	} else if (ret == -EEXIST) {
		ret = 0;
	} else {
1773
		BUG(); /* Logic Error */
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
	}
	iput(inode);

	return ret;
}

/*
 * when replaying the log for a directory, we only insert names
 * for inodes that actually exist.  This means an fsync on a directory
 * does not implicitly fsync all the new files in it
 */
static noinline int insert_one_name(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    u64 dirid, u64 index,
1788
				    char *name, int name_len,
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
				    struct btrfs_key *location)
{
	struct inode *inode;
	struct inode *dir;
	int ret;

	inode = read_one_inode(root, location->objectid);
	if (!inode)
		return -ENOENT;

	dir = read_one_inode(root, dirid);
	if (!dir) {
		iput(inode);
		return -EIO;
	}
1804

1805 1806
	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
			name_len, 1, index);
1807 1808 1809 1810 1811 1812 1813 1814

	/* FIXME, put inode into FIXUP list */

	iput(inode);
	iput(dir);
	return ret;
}

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
/*
 * Return true if an inode reference exists in the log for the given name,
 * inode and parent inode.
 */
static bool name_in_log_ref(struct btrfs_root *log_root,
			    const char *name, const int name_len,
			    const u64 dirid, const u64 ino)
{
	struct btrfs_key search_key;

	search_key.objectid = ino;
	search_key.type = BTRFS_INODE_REF_KEY;
	search_key.offset = dirid;
	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
		return true;

	search_key.type = BTRFS_INODE_EXTREF_KEY;
	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
		return true;

	return false;
}

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
/*
 * take a single entry in a log directory item and replay it into
 * the subvolume.
 *
 * if a conflicting item exists in the subdirectory already,
 * the inode it points to is unlinked and put into the link count
 * fix up tree.
 *
 * If a name from the log points to a file or directory that does
 * not exist in the FS, it is skipped.  fsyncs on directories
 * do not force down inodes inside that directory, just changes to the
 * names or unlinks in a directory.
1851 1852 1853
 *
 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
 * non-existing inode) and 1 if the name was replayed.
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
 */
static noinline int replay_one_name(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *eb,
				    struct btrfs_dir_item *di,
				    struct btrfs_key *key)
{
	char *name;
	int name_len;
	struct btrfs_dir_item *dst_di;
	struct btrfs_key found_key;
	struct btrfs_key log_key;
	struct inode *dir;
	u8 log_type;
C
Chris Mason 已提交
1869
	int exists;
1870
	int ret = 0;
1871
	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1872
	bool name_added = false;
1873 1874

	dir = read_one_inode(root, key->objectid);
1875 1876
	if (!dir)
		return -EIO;
1877 1878 1879

	name_len = btrfs_dir_name_len(eb, di);
	name = kmalloc(name_len, GFP_NOFS);
1880 1881 1882 1883
	if (!name) {
		ret = -ENOMEM;
		goto out;
	}
1884

1885 1886 1887 1888 1889
	log_type = btrfs_dir_type(eb, di);
	read_extent_buffer(eb, name, (unsigned long)(di + 1),
		   name_len);

	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
C
Chris Mason 已提交
1890 1891 1892 1893 1894
	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
	if (exists == 0)
		exists = 1;
	else
		exists = 0;
1895
	btrfs_release_path(path);
C
Chris Mason 已提交
1896

1897 1898 1899
	if (key->type == BTRFS_DIR_ITEM_KEY) {
		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
				       name, name_len, 1);
C
Chris Mason 已提交
1900
	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1901 1902 1903 1904 1905
		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
						     key->objectid,
						     key->offset, name,
						     name_len, 1);
	} else {
1906 1907 1908
		/* Corruption */
		ret = -EINVAL;
		goto out;
1909
	}
1910
	if (IS_ERR_OR_NULL(dst_di)) {
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
		/* we need a sequence number to insert, so we only
		 * do inserts for the BTRFS_DIR_INDEX_KEY types
		 */
		if (key->type != BTRFS_DIR_INDEX_KEY)
			goto out;
		goto insert;
	}

	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
	/* the existing item matches the logged item */
	if (found_key.objectid == log_key.objectid &&
	    found_key.type == log_key.type &&
	    found_key.offset == log_key.offset &&
	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1925
		update_size = false;
1926 1927 1928 1929 1930 1931 1932
		goto out;
	}

	/*
	 * don't drop the conflicting directory entry if the inode
	 * for the new entry doesn't exist
	 */
C
Chris Mason 已提交
1933
	if (!exists)
1934 1935
		goto out;

1936
	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1937 1938
	if (ret)
		goto out;
1939 1940 1941 1942

	if (key->type == BTRFS_DIR_INDEX_KEY)
		goto insert;
out:
1943
	btrfs_release_path(path);
1944
	if (!ret && update_size) {
1945
		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1946 1947
		ret = btrfs_update_inode(trans, root, dir);
	}
1948 1949
	kfree(name);
	iput(dir);
1950 1951
	if (!ret && name_added)
		ret = 1;
1952
	return ret;
1953 1954

insert:
1955 1956 1957 1958 1959 1960 1961
	if (name_in_log_ref(root->log_root, name, name_len,
			    key->objectid, log_key.objectid)) {
		/* The dentry will be added later. */
		ret = 0;
		update_size = false;
		goto out;
	}
1962
	btrfs_release_path(path);
1963 1964
	ret = insert_one_name(trans, root, key->objectid, key->offset,
			      name, name_len, &log_key);
1965
	if (ret && ret != -ENOENT && ret != -EEXIST)
1966
		goto out;
1967 1968
	if (!ret)
		name_added = true;
1969
	update_size = false;
1970
	ret = 0;
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
	goto out;
}

/*
 * find all the names in a directory item and reconcile them into
 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
 * one name in a directory item, but the same code gets used for
 * both directory index types
 */
static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
					struct btrfs_root *root,
					struct btrfs_path *path,
					struct extent_buffer *eb, int slot,
					struct btrfs_key *key)
{
1986
	int ret = 0;
1987 1988 1989 1990 1991
	u32 item_size = btrfs_item_size_nr(eb, slot);
	struct btrfs_dir_item *di;
	int name_len;
	unsigned long ptr;
	unsigned long ptr_end;
1992
	struct btrfs_path *fixup_path = NULL;
1993 1994 1995

	ptr = btrfs_item_ptr_offset(eb, slot);
	ptr_end = ptr + item_size;
C
Chris Mason 已提交
1996
	while (ptr < ptr_end) {
1997 1998 1999
		di = (struct btrfs_dir_item *)ptr;
		name_len = btrfs_dir_name_len(eb, di);
		ret = replay_one_name(trans, root, path, eb, di, key);
2000 2001
		if (ret < 0)
			break;
2002 2003
		ptr = (unsigned long)(di + 1);
		ptr += name_len;
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049

		/*
		 * If this entry refers to a non-directory (directories can not
		 * have a link count > 1) and it was added in the transaction
		 * that was not committed, make sure we fixup the link count of
		 * the inode it the entry points to. Otherwise something like
		 * the following would result in a directory pointing to an
		 * inode with a wrong link that does not account for this dir
		 * entry:
		 *
		 * mkdir testdir
		 * touch testdir/foo
		 * touch testdir/bar
		 * sync
		 *
		 * ln testdir/bar testdir/bar_link
		 * ln testdir/foo testdir/foo_link
		 * xfs_io -c "fsync" testdir/bar
		 *
		 * <power failure>
		 *
		 * mount fs, log replay happens
		 *
		 * File foo would remain with a link count of 1 when it has two
		 * entries pointing to it in the directory testdir. This would
		 * make it impossible to ever delete the parent directory has
		 * it would result in stale dentries that can never be deleted.
		 */
		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
			struct btrfs_key di_key;

			if (!fixup_path) {
				fixup_path = btrfs_alloc_path();
				if (!fixup_path) {
					ret = -ENOMEM;
					break;
				}
			}

			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
			ret = link_to_fixup_dir(trans, root, fixup_path,
						di_key.objectid);
			if (ret)
				break;
		}
		ret = 0;
2050
	}
2051 2052
	btrfs_free_path(fixup_path);
	return ret;
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
}

/*
 * directory replay has two parts.  There are the standard directory
 * items in the log copied from the subvolume, and range items
 * created in the log while the subvolume was logged.
 *
 * The range items tell us which parts of the key space the log
 * is authoritative for.  During replay, if a key in the subvolume
 * directory is in a logged range item, but not actually in the log
 * that means it was deleted from the directory before the fsync
 * and should be removed.
 */
static noinline int find_dir_range(struct btrfs_root *root,
				   struct btrfs_path *path,
				   u64 dirid, int key_type,
				   u64 *start_ret, u64 *end_ret)
{
	struct btrfs_key key;
	u64 found_end;
	struct btrfs_dir_log_item *item;
	int ret;
	int nritems;

	if (*start_ret == (u64)-1)
		return 1;

	key.objectid = dirid;
	key.type = key_type;
	key.offset = *start_ret;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	if (ret > 0) {
		if (path->slots[0] == 0)
			goto out;
		path->slots[0]--;
	}
	if (ret != 0)
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);

	if (key.type != key_type || key.objectid != dirid) {
		ret = 1;
		goto next;
	}
	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
			      struct btrfs_dir_log_item);
	found_end = btrfs_dir_log_end(path->nodes[0], item);

	if (*start_ret >= key.offset && *start_ret <= found_end) {
		ret = 0;
		*start_ret = key.offset;
		*end_ret = found_end;
		goto out;
	}
	ret = 1;
next:
	/* check the next slot in the tree to see if it is a valid item */
	nritems = btrfs_header_nritems(path->nodes[0]);
2113
	path->slots[0]++;
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
	if (path->slots[0] >= nritems) {
		ret = btrfs_next_leaf(root, path);
		if (ret)
			goto out;
	}

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);

	if (key.type != key_type || key.objectid != dirid) {
		ret = 1;
		goto out;
	}
	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
			      struct btrfs_dir_log_item);
	found_end = btrfs_dir_log_end(path->nodes[0], item);
	*start_ret = key.offset;
	*end_ret = found_end;
	ret = 0;
out:
2133
	btrfs_release_path(path);
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
	return ret;
}

/*
 * this looks for a given directory item in the log.  If the directory
 * item is not in the log, the item is removed and the inode it points
 * to is unlinked
 */
static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
				      struct btrfs_root *root,
				      struct btrfs_root *log,
				      struct btrfs_path *path,
				      struct btrfs_path *log_path,
				      struct inode *dir,
				      struct btrfs_key *dir_key)
{
	int ret;
	struct extent_buffer *eb;
	int slot;
	u32 item_size;
	struct btrfs_dir_item *di;
	struct btrfs_dir_item *log_di;
	int name_len;
	unsigned long ptr;
	unsigned long ptr_end;
	char *name;
	struct inode *inode;
	struct btrfs_key location;

again:
	eb = path->nodes[0];
	slot = path->slots[0];
	item_size = btrfs_item_size_nr(eb, slot);
	ptr = btrfs_item_ptr_offset(eb, slot);
	ptr_end = ptr + item_size;
C
Chris Mason 已提交
2169
	while (ptr < ptr_end) {
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
		di = (struct btrfs_dir_item *)ptr;
		name_len = btrfs_dir_name_len(eb, di);
		name = kmalloc(name_len, GFP_NOFS);
		if (!name) {
			ret = -ENOMEM;
			goto out;
		}
		read_extent_buffer(eb, name, (unsigned long)(di + 1),
				  name_len);
		log_di = NULL;
2180
		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2181 2182 2183
			log_di = btrfs_lookup_dir_item(trans, log, log_path,
						       dir_key->objectid,
						       name, name_len, 0);
2184
		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2185 2186 2187 2188 2189 2190
			log_di = btrfs_lookup_dir_index_item(trans, log,
						     log_path,
						     dir_key->objectid,
						     dir_key->offset,
						     name, name_len, 0);
		}
A
Al Viro 已提交
2191
		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2192
			btrfs_dir_item_key_to_cpu(eb, di, &location);
2193 2194
			btrfs_release_path(path);
			btrfs_release_path(log_path);
2195
			inode = read_one_inode(root, location.objectid);
2196 2197 2198 2199
			if (!inode) {
				kfree(name);
				return -EIO;
			}
2200 2201 2202

			ret = link_to_fixup_dir(trans, root,
						path, location.objectid);
2203 2204 2205 2206 2207 2208
			if (ret) {
				kfree(name);
				iput(inode);
				goto out;
			}

Z
Zach Brown 已提交
2209
			inc_nlink(inode);
2210 2211
			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
					BTRFS_I(inode), name, name_len);
2212
			if (!ret)
2213
				ret = btrfs_run_delayed_items(trans);
2214 2215
			kfree(name);
			iput(inode);
2216 2217
			if (ret)
				goto out;
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227

			/* there might still be more names under this key
			 * check and repeat if required
			 */
			ret = btrfs_search_slot(NULL, root, dir_key, path,
						0, 0);
			if (ret == 0)
				goto again;
			ret = 0;
			goto out;
2228 2229 2230
		} else if (IS_ERR(log_di)) {
			kfree(name);
			return PTR_ERR(log_di);
2231
		}
2232
		btrfs_release_path(log_path);
2233 2234 2235 2236 2237 2238 2239
		kfree(name);

		ptr = (unsigned long)(di + 1);
		ptr += name_len;
	}
	ret = 0;
out:
2240 2241
	btrfs_release_path(path);
	btrfs_release_path(log_path);
2242 2243 2244
	return ret;
}

2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
			      struct btrfs_root *root,
			      struct btrfs_root *log,
			      struct btrfs_path *path,
			      const u64 ino)
{
	struct btrfs_key search_key;
	struct btrfs_path *log_path;
	int i;
	int nritems;
	int ret;

	log_path = btrfs_alloc_path();
	if (!log_path)
		return -ENOMEM;

	search_key.objectid = ino;
	search_key.type = BTRFS_XATTR_ITEM_KEY;
	search_key.offset = 0;
again:
	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
	if (ret < 0)
		goto out;
process_leaf:
	nritems = btrfs_header_nritems(path->nodes[0]);
	for (i = path->slots[0]; i < nritems; i++) {
		struct btrfs_key key;
		struct btrfs_dir_item *di;
		struct btrfs_dir_item *log_di;
		u32 total_size;
		u32 cur;

		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
			ret = 0;
			goto out;
		}

		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
		total_size = btrfs_item_size_nr(path->nodes[0], i);
		cur = 0;
		while (cur < total_size) {
			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
			u32 this_len = sizeof(*di) + name_len + data_len;
			char *name;

			name = kmalloc(name_len, GFP_NOFS);
			if (!name) {
				ret = -ENOMEM;
				goto out;
			}
			read_extent_buffer(path->nodes[0], name,
					   (unsigned long)(di + 1), name_len);

			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
						    name, name_len, 0);
			btrfs_release_path(log_path);
			if (!log_di) {
				/* Doesn't exist in log tree, so delete it. */
				btrfs_release_path(path);
				di = btrfs_lookup_xattr(trans, root, path, ino,
							name, name_len, -1);
				kfree(name);
				if (IS_ERR(di)) {
					ret = PTR_ERR(di);
					goto out;
				}
				ASSERT(di);
				ret = btrfs_delete_one_dir_name(trans, root,
								path, di);
				if (ret)
					goto out;
				btrfs_release_path(path);
				search_key = key;
				goto again;
			}
			kfree(name);
			if (IS_ERR(log_di)) {
				ret = PTR_ERR(log_di);
				goto out;
			}
			cur += this_len;
			di = (struct btrfs_dir_item *)((char *)di + this_len);
		}
	}
	ret = btrfs_next_leaf(root, path);
	if (ret > 0)
		ret = 0;
	else if (ret == 0)
		goto process_leaf;
out:
	btrfs_free_path(log_path);
	btrfs_release_path(path);
	return ret;
}


2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
/*
 * deletion replay happens before we copy any new directory items
 * out of the log or out of backreferences from inodes.  It
 * scans the log to find ranges of keys that log is authoritative for,
 * and then scans the directory to find items in those ranges that are
 * not present in the log.
 *
 * Anything we don't find in the log is unlinked and removed from the
 * directory.
 */
static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct btrfs_root *log,
				       struct btrfs_path *path,
2357
				       u64 dirid, int del_all)
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
{
	u64 range_start;
	u64 range_end;
	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
	int ret = 0;
	struct btrfs_key dir_key;
	struct btrfs_key found_key;
	struct btrfs_path *log_path;
	struct inode *dir;

	dir_key.objectid = dirid;
	dir_key.type = BTRFS_DIR_ITEM_KEY;
	log_path = btrfs_alloc_path();
	if (!log_path)
		return -ENOMEM;

	dir = read_one_inode(root, dirid);
	/* it isn't an error if the inode isn't there, that can happen
	 * because we replay the deletes before we copy in the inode item
	 * from the log
	 */
	if (!dir) {
		btrfs_free_path(log_path);
		return 0;
	}
again:
	range_start = 0;
	range_end = 0;
C
Chris Mason 已提交
2386
	while (1) {
2387 2388 2389 2390 2391 2392 2393 2394
		if (del_all)
			range_end = (u64)-1;
		else {
			ret = find_dir_range(log, path, dirid, key_type,
					     &range_start, &range_end);
			if (ret != 0)
				break;
		}
2395 2396

		dir_key.offset = range_start;
C
Chris Mason 已提交
2397
		while (1) {
2398 2399 2400 2401 2402 2403 2404 2405 2406
			int nritems;
			ret = btrfs_search_slot(NULL, root, &dir_key, path,
						0, 0);
			if (ret < 0)
				goto out;

			nritems = btrfs_header_nritems(path->nodes[0]);
			if (path->slots[0] >= nritems) {
				ret = btrfs_next_leaf(root, path);
2407
				if (ret == 1)
2408
					break;
2409 2410
				else if (ret < 0)
					goto out;
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
			}
			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
					      path->slots[0]);
			if (found_key.objectid != dirid ||
			    found_key.type != dir_key.type)
				goto next_type;

			if (found_key.offset > range_end)
				break;

			ret = check_item_in_log(trans, root, log, path,
2422 2423
						log_path, dir,
						&found_key);
2424 2425
			if (ret)
				goto out;
2426 2427 2428 2429
			if (found_key.offset == (u64)-1)
				break;
			dir_key.offset = found_key.offset + 1;
		}
2430
		btrfs_release_path(path);
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
		if (range_end == (u64)-1)
			break;
		range_start = range_end + 1;
	}

next_type:
	ret = 0;
	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
		key_type = BTRFS_DIR_LOG_INDEX_KEY;
		dir_key.type = BTRFS_DIR_INDEX_KEY;
2441
		btrfs_release_path(path);
2442 2443 2444
		goto again;
	}
out:
2445
	btrfs_release_path(path);
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
	btrfs_free_path(log_path);
	iput(dir);
	return ret;
}

/*
 * the process_func used to replay items from the log tree.  This
 * gets called in two different stages.  The first stage just looks
 * for inodes and makes sure they are all copied into the subvolume.
 *
 * The second stage copies all the other item types from the log into
 * the subvolume.  The two stage approach is slower, but gets rid of
 * lots of complexity around inodes referencing other inodes that exist
 * only in the log (references come from either directory items or inode
 * back refs).
 */
static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2463
			     struct walk_control *wc, u64 gen, int level)
2464 2465 2466 2467 2468 2469 2470 2471
{
	int nritems;
	struct btrfs_path *path;
	struct btrfs_root *root = wc->replay_dest;
	struct btrfs_key key;
	int i;
	int ret;

2472
	ret = btrfs_read_buffer(eb, gen, level, NULL);
2473 2474
	if (ret)
		return ret;
2475 2476 2477 2478 2479 2480 2481

	level = btrfs_header_level(eb);

	if (level != 0)
		return 0;

	path = btrfs_alloc_path();
2482 2483
	if (!path)
		return -ENOMEM;
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496

	nritems = btrfs_header_nritems(eb);
	for (i = 0; i < nritems; i++) {
		btrfs_item_key_to_cpu(eb, &key, i);

		/* inode keys are done during the first stage */
		if (key.type == BTRFS_INODE_ITEM_KEY &&
		    wc->stage == LOG_WALK_REPLAY_INODES) {
			struct btrfs_inode_item *inode_item;
			u32 mode;

			inode_item = btrfs_item_ptr(eb, i,
					    struct btrfs_inode_item);
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
			/*
			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
			 * and never got linked before the fsync, skip it, as
			 * replaying it is pointless since it would be deleted
			 * later. We skip logging tmpfiles, but it's always
			 * possible we are replaying a log created with a kernel
			 * that used to log tmpfiles.
			 */
			if (btrfs_inode_nlink(eb, inode_item) == 0) {
				wc->ignore_cur_inode = true;
				continue;
			} else {
				wc->ignore_cur_inode = false;
			}
2511 2512 2513 2514
			ret = replay_xattr_deletes(wc->trans, root, log,
						   path, key.objectid);
			if (ret)
				break;
2515 2516 2517
			mode = btrfs_inode_mode(eb, inode_item);
			if (S_ISDIR(mode)) {
				ret = replay_dir_deletes(wc->trans,
2518
					 root, log, path, key.objectid, 0);
2519 2520
				if (ret)
					break;
2521 2522 2523
			}
			ret = overwrite_item(wc->trans, root, path,
					     eb, i, &key);
2524 2525
			if (ret)
				break;
2526

2527 2528 2529 2530 2531 2532 2533
			/*
			 * Before replaying extents, truncate the inode to its
			 * size. We need to do it now and not after log replay
			 * because before an fsync we can have prealloc extents
			 * added beyond the inode's i_size. If we did it after,
			 * through orphan cleanup for example, we would drop
			 * those prealloc extents just after replaying them.
2534 2535
			 */
			if (S_ISREG(mode)) {
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
				struct inode *inode;
				u64 from;

				inode = read_one_inode(root, key.objectid);
				if (!inode) {
					ret = -EIO;
					break;
				}
				from = ALIGN(i_size_read(inode),
					     root->fs_info->sectorsize);
				ret = btrfs_drop_extents(wc->trans, root, inode,
							 from, (u64)-1, 1);
				if (!ret) {
2549
					/* Update the inode's nbytes. */
2550 2551 2552 2553
					ret = btrfs_update_inode(wc->trans,
								 root, inode);
				}
				iput(inode);
2554 2555
				if (ret)
					break;
2556
			}
2557

2558 2559
			ret = link_to_fixup_dir(wc->trans, root,
						path, key.objectid);
2560 2561
			if (ret)
				break;
2562
		}
2563

2564 2565 2566
		if (wc->ignore_cur_inode)
			continue;

2567 2568 2569 2570 2571 2572 2573 2574
		if (key.type == BTRFS_DIR_INDEX_KEY &&
		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
			ret = replay_one_dir_item(wc->trans, root, path,
						  eb, i, &key);
			if (ret)
				break;
		}

2575 2576 2577 2578 2579 2580 2581
		if (wc->stage < LOG_WALK_REPLAY_ALL)
			continue;

		/* these keys are simply copied */
		if (key.type == BTRFS_XATTR_ITEM_KEY) {
			ret = overwrite_item(wc->trans, root, path,
					     eb, i, &key);
2582 2583
			if (ret)
				break;
2584 2585
		} else if (key.type == BTRFS_INODE_REF_KEY ||
			   key.type == BTRFS_INODE_EXTREF_KEY) {
M
Mark Fasheh 已提交
2586 2587
			ret = add_inode_ref(wc->trans, root, log, path,
					    eb, i, &key);
2588 2589 2590
			if (ret && ret != -ENOENT)
				break;
			ret = 0;
2591 2592 2593
		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
			ret = replay_one_extent(wc->trans, root, path,
						eb, i, &key);
2594 2595
			if (ret)
				break;
2596
		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2597 2598
			ret = replay_one_dir_item(wc->trans, root, path,
						  eb, i, &key);
2599 2600
			if (ret)
				break;
2601 2602 2603
		}
	}
	btrfs_free_path(path);
2604
	return ret;
2605 2606
}

C
Chris Mason 已提交
2607
static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2608 2609 2610 2611
				   struct btrfs_root *root,
				   struct btrfs_path *path, int *level,
				   struct walk_control *wc)
{
2612
	struct btrfs_fs_info *fs_info = root->fs_info;
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
	u64 root_owner;
	u64 bytenr;
	u64 ptr_gen;
	struct extent_buffer *next;
	struct extent_buffer *cur;
	struct extent_buffer *parent;
	u32 blocksize;
	int ret = 0;

	WARN_ON(*level < 0);
	WARN_ON(*level >= BTRFS_MAX_LEVEL);

C
Chris Mason 已提交
2625
	while (*level > 0) {
2626 2627
		struct btrfs_key first_key;

2628 2629 2630 2631
		WARN_ON(*level < 0);
		WARN_ON(*level >= BTRFS_MAX_LEVEL);
		cur = path->nodes[*level];

2632
		WARN_ON(btrfs_header_level(cur) != *level);
2633 2634 2635 2636 2637 2638 2639

		if (path->slots[*level] >=
		    btrfs_header_nritems(cur))
			break;

		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2640
		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2641
		blocksize = fs_info->nodesize;
2642 2643 2644 2645

		parent = path->nodes[*level];
		root_owner = btrfs_header_owner(parent);

2646
		next = btrfs_find_create_tree_block(fs_info, bytenr);
2647 2648
		if (IS_ERR(next))
			return PTR_ERR(next);
2649 2650

		if (*level == 1) {
2651 2652
			ret = wc->process_func(root, next, wc, ptr_gen,
					       *level - 1);
2653 2654
			if (ret) {
				free_extent_buffer(next);
2655
				return ret;
2656
			}
2657

2658 2659
			path->slots[*level]++;
			if (wc->free) {
2660 2661
				ret = btrfs_read_buffer(next, ptr_gen,
							*level - 1, &first_key);
2662 2663 2664 2665
				if (ret) {
					free_extent_buffer(next);
					return ret;
				}
2666

2667 2668 2669
				if (trans) {
					btrfs_tree_lock(next);
					btrfs_set_lock_blocking(next);
2670
					clean_tree_block(fs_info, next);
2671 2672
					btrfs_wait_tree_block_writeback(next);
					btrfs_tree_unlock(next);
2673 2674 2675
				} else {
					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
						clear_extent_buffer_dirty(next);
2676
				}
2677 2678 2679

				WARN_ON(root_owner !=
					BTRFS_TREE_LOG_OBJECTID);
2680 2681 2682
				ret = btrfs_free_and_pin_reserved_extent(
							fs_info, bytenr,
							blocksize);
2683 2684 2685 2686
				if (ret) {
					free_extent_buffer(next);
					return ret;
				}
2687 2688 2689 2690
			}
			free_extent_buffer(next);
			continue;
		}
2691
		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2692 2693 2694 2695
		if (ret) {
			free_extent_buffer(next);
			return ret;
		}
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707

		WARN_ON(*level <= 0);
		if (path->nodes[*level-1])
			free_extent_buffer(path->nodes[*level-1]);
		path->nodes[*level-1] = next;
		*level = btrfs_header_level(next);
		path->slots[*level] = 0;
		cond_resched();
	}
	WARN_ON(*level < 0);
	WARN_ON(*level >= BTRFS_MAX_LEVEL);

2708
	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2709 2710 2711 2712 2713

	cond_resched();
	return 0;
}

C
Chris Mason 已提交
2714
static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2715 2716 2717 2718
				 struct btrfs_root *root,
				 struct btrfs_path *path, int *level,
				 struct walk_control *wc)
{
2719
	struct btrfs_fs_info *fs_info = root->fs_info;
2720 2721 2722 2723 2724
	u64 root_owner;
	int i;
	int slot;
	int ret;

C
Chris Mason 已提交
2725
	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2726
		slot = path->slots[i];
2727
		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2728 2729 2730 2731 2732
			path->slots[i]++;
			*level = i;
			WARN_ON(*level == 0);
			return 0;
		} else {
Z
Zheng Yan 已提交
2733 2734 2735 2736 2737 2738 2739
			struct extent_buffer *parent;
			if (path->nodes[*level] == root->node)
				parent = path->nodes[*level];
			else
				parent = path->nodes[*level + 1];

			root_owner = btrfs_header_owner(parent);
2740
			ret = wc->process_func(root, path->nodes[*level], wc,
2741 2742
				 btrfs_header_generation(path->nodes[*level]),
				 *level);
2743 2744 2745
			if (ret)
				return ret;

2746 2747 2748 2749 2750
			if (wc->free) {
				struct extent_buffer *next;

				next = path->nodes[*level];

2751 2752 2753
				if (trans) {
					btrfs_tree_lock(next);
					btrfs_set_lock_blocking(next);
2754
					clean_tree_block(fs_info, next);
2755 2756
					btrfs_wait_tree_block_writeback(next);
					btrfs_tree_unlock(next);
2757 2758 2759
				} else {
					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
						clear_extent_buffer_dirty(next);
2760
				}
2761 2762

				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2763 2764
				ret = btrfs_free_and_pin_reserved_extent(
						fs_info,
2765
						path->nodes[*level]->start,
2766
						path->nodes[*level]->len);
2767 2768
				if (ret)
					return ret;
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
			}
			free_extent_buffer(path->nodes[*level]);
			path->nodes[*level] = NULL;
			*level = i + 1;
		}
	}
	return 1;
}

/*
 * drop the reference count on the tree rooted at 'snap'.  This traverses
 * the tree freeing any blocks that have a ref count of zero after being
 * decremented.
 */
static int walk_log_tree(struct btrfs_trans_handle *trans,
			 struct btrfs_root *log, struct walk_control *wc)
{
2786
	struct btrfs_fs_info *fs_info = log->fs_info;
2787 2788 2789 2790 2791 2792 2793
	int ret = 0;
	int wret;
	int level;
	struct btrfs_path *path;
	int orig_level;

	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
2794 2795
	if (!path)
		return -ENOMEM;
2796 2797 2798 2799 2800 2801 2802

	level = btrfs_header_level(log->node);
	orig_level = level;
	path->nodes[level] = log->node;
	extent_buffer_get(log->node);
	path->slots[level] = 0;

C
Chris Mason 已提交
2803
	while (1) {
2804 2805 2806
		wret = walk_down_log_tree(trans, log, path, &level, wc);
		if (wret > 0)
			break;
2807
		if (wret < 0) {
2808
			ret = wret;
2809 2810
			goto out;
		}
2811 2812 2813 2814

		wret = walk_up_log_tree(trans, log, path, &level, wc);
		if (wret > 0)
			break;
2815
		if (wret < 0) {
2816
			ret = wret;
2817 2818
			goto out;
		}
2819 2820 2821 2822
	}

	/* was the root node processed? if not, catch it here */
	if (path->nodes[orig_level]) {
2823
		ret = wc->process_func(log, path->nodes[orig_level], wc,
2824 2825
			 btrfs_header_generation(path->nodes[orig_level]),
			 orig_level);
2826 2827
		if (ret)
			goto out;
2828 2829 2830 2831 2832
		if (wc->free) {
			struct extent_buffer *next;

			next = path->nodes[orig_level];

2833 2834 2835
			if (trans) {
				btrfs_tree_lock(next);
				btrfs_set_lock_blocking(next);
2836
				clean_tree_block(fs_info, next);
2837 2838
				btrfs_wait_tree_block_writeback(next);
				btrfs_tree_unlock(next);
2839 2840 2841
			} else {
				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
					clear_extent_buffer_dirty(next);
2842
			}
2843 2844 2845

			WARN_ON(log->root_key.objectid !=
				BTRFS_TREE_LOG_OBJECTID);
2846 2847
			ret = btrfs_free_and_pin_reserved_extent(fs_info,
							next->start, next->len);
2848 2849
			if (ret)
				goto out;
2850 2851 2852
		}
	}

2853
out:
2854 2855 2856 2857
	btrfs_free_path(path);
	return ret;
}

Y
Yan Zheng 已提交
2858 2859 2860 2861 2862 2863 2864
/*
 * helper function to update the item for a given subvolumes log root
 * in the tree of log roots
 */
static int update_log_root(struct btrfs_trans_handle *trans,
			   struct btrfs_root *log)
{
2865
	struct btrfs_fs_info *fs_info = log->fs_info;
Y
Yan Zheng 已提交
2866 2867 2868 2869
	int ret;

	if (log->log_transid == 1) {
		/* insert root item on the first sync */
2870
		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
Y
Yan Zheng 已提交
2871 2872
				&log->root_key, &log->root_item);
	} else {
2873
		ret = btrfs_update_root(trans, fs_info->log_root_tree,
Y
Yan Zheng 已提交
2874 2875 2876 2877 2878
				&log->root_key, &log->root_item);
	}
	return ret;
}

2879
static void wait_log_commit(struct btrfs_root *root, int transid)
2880 2881
{
	DEFINE_WAIT(wait);
Y
Yan Zheng 已提交
2882
	int index = transid % 2;
2883

Y
Yan Zheng 已提交
2884 2885 2886 2887 2888
	/*
	 * we only allow two pending log transactions at a time,
	 * so we know that if ours is more than 2 older than the
	 * current transaction, we're done
	 */
2889
	for (;;) {
Y
Yan Zheng 已提交
2890 2891
		prepare_to_wait(&root->log_commit_wait[index],
				&wait, TASK_UNINTERRUPTIBLE);
2892

2893 2894 2895
		if (!(root->log_transid_committed < transid &&
		      atomic_read(&root->log_commit[index])))
			break;
2896

2897 2898
		mutex_unlock(&root->log_mutex);
		schedule();
Y
Yan Zheng 已提交
2899
		mutex_lock(&root->log_mutex);
2900 2901
	}
	finish_wait(&root->log_commit_wait[index], &wait);
Y
Yan Zheng 已提交
2902 2903
}

2904
static void wait_for_writer(struct btrfs_root *root)
Y
Yan Zheng 已提交
2905 2906
{
	DEFINE_WAIT(wait);
2907

2908 2909 2910 2911 2912 2913
	for (;;) {
		prepare_to_wait(&root->log_writer_wait, &wait,
				TASK_UNINTERRUPTIBLE);
		if (!atomic_read(&root->log_writers))
			break;

Y
Yan Zheng 已提交
2914
		mutex_unlock(&root->log_mutex);
2915
		schedule();
2916
		mutex_lock(&root->log_mutex);
Y
Yan Zheng 已提交
2917
	}
2918
	finish_wait(&root->log_writer_wait, &wait);
2919 2920
}

2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
					struct btrfs_log_ctx *ctx)
{
	if (!ctx)
		return;

	mutex_lock(&root->log_mutex);
	list_del_init(&ctx->list);
	mutex_unlock(&root->log_mutex);
}

/* 
 * Invoked in log mutex context, or be sure there is no other task which
 * can access the list.
 */
static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
					     int index, int error)
{
	struct btrfs_log_ctx *ctx;
2940
	struct btrfs_log_ctx *safe;
2941

2942 2943
	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
		list_del_init(&ctx->list);
2944
		ctx->log_ret = error;
2945
	}
2946 2947 2948 2949

	INIT_LIST_HEAD(&root->log_ctxs[index]);
}

2950 2951 2952
/*
 * btrfs_sync_log does sends a given tree log down to the disk and
 * updates the super blocks to record it.  When this call is done,
2953 2954 2955 2956 2957 2958 2959 2960
 * you know that any inodes previously logged are safely on disk only
 * if it returns 0.
 *
 * Any other return value means you need to call btrfs_commit_transaction.
 * Some of the edge cases for fsyncing directories that have had unlinks
 * or renames done in the past mean that sometimes the only safe
 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
 * that has happened.
2961 2962
 */
int btrfs_sync_log(struct btrfs_trans_handle *trans,
2963
		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2964
{
Y
Yan Zheng 已提交
2965 2966
	int index1;
	int index2;
2967
	int mark;
2968
	int ret;
2969
	struct btrfs_fs_info *fs_info = root->fs_info;
2970
	struct btrfs_root *log = root->log_root;
2971
	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2972
	int log_transid = 0;
2973
	struct btrfs_log_ctx root_log_ctx;
2974
	struct blk_plug plug;
2975

Y
Yan Zheng 已提交
2976
	mutex_lock(&root->log_mutex);
2977 2978 2979 2980 2981 2982 2983
	log_transid = ctx->log_transid;
	if (root->log_transid_committed >= log_transid) {
		mutex_unlock(&root->log_mutex);
		return ctx->log_ret;
	}

	index1 = log_transid % 2;
Y
Yan Zheng 已提交
2984
	if (atomic_read(&root->log_commit[index1])) {
2985
		wait_log_commit(root, log_transid);
Y
Yan Zheng 已提交
2986
		mutex_unlock(&root->log_mutex);
2987
		return ctx->log_ret;
2988
	}
2989
	ASSERT(log_transid == root->log_transid);
Y
Yan Zheng 已提交
2990 2991 2992 2993
	atomic_set(&root->log_commit[index1], 1);

	/* wait for previous tree log sync to complete */
	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2994
		wait_log_commit(root, log_transid - 1);
2995

2996
	while (1) {
M
Miao Xie 已提交
2997
		int batch = atomic_read(&root->log_batch);
2998
		/* when we're on an ssd, just kick the log commit out */
2999
		if (!btrfs_test_opt(fs_info, SSD) &&
3000
		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3001 3002 3003 3004
			mutex_unlock(&root->log_mutex);
			schedule_timeout_uninterruptible(1);
			mutex_lock(&root->log_mutex);
		}
3005
		wait_for_writer(root);
M
Miao Xie 已提交
3006
		if (batch == atomic_read(&root->log_batch))
3007 3008 3009
			break;
	}

3010
	/* bail out if we need to do a full commit */
3011
	if (btrfs_need_log_full_commit(fs_info, trans)) {
3012 3013 3014 3015 3016
		ret = -EAGAIN;
		mutex_unlock(&root->log_mutex);
		goto out;
	}

3017 3018 3019 3020 3021
	if (log_transid % 2 == 0)
		mark = EXTENT_DIRTY;
	else
		mark = EXTENT_NEW;

3022 3023 3024
	/* we start IO on  all the marked extents here, but we don't actually
	 * wait for them until later.
	 */
3025
	blk_start_plug(&plug);
3026
	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3027
	if (ret) {
3028
		blk_finish_plug(&plug);
3029
		btrfs_abort_transaction(trans, ret);
3030
		btrfs_set_log_full_commit(fs_info, trans);
3031 3032 3033
		mutex_unlock(&root->log_mutex);
		goto out;
	}
Y
Yan Zheng 已提交
3034

3035
	btrfs_set_root_node(&log->root_item, log->node);
Y
Yan Zheng 已提交
3036 3037 3038

	root->log_transid++;
	log->log_transid = root->log_transid;
3039
	root->log_start_pid = 0;
Y
Yan Zheng 已提交
3040
	/*
3041 3042 3043
	 * IO has been started, blocks of the log tree have WRITTEN flag set
	 * in their headers. new modifications of the log will be written to
	 * new positions. so it's safe to allow log writers to go in.
Y
Yan Zheng 已提交
3044 3045 3046
	 */
	mutex_unlock(&root->log_mutex);

3047
	btrfs_init_log_ctx(&root_log_ctx, NULL);
3048

Y
Yan Zheng 已提交
3049
	mutex_lock(&log_root_tree->log_mutex);
M
Miao Xie 已提交
3050
	atomic_inc(&log_root_tree->log_batch);
Y
Yan Zheng 已提交
3051
	atomic_inc(&log_root_tree->log_writers);
3052 3053 3054 3055 3056

	index2 = log_root_tree->log_transid % 2;
	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
	root_log_ctx.log_transid = log_root_tree->log_transid;

Y
Yan Zheng 已提交
3057 3058 3059 3060 3061 3062
	mutex_unlock(&log_root_tree->log_mutex);

	ret = update_log_root(trans, log);

	mutex_lock(&log_root_tree->log_mutex);
	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
3063 3064
		/* atomic_dec_and_test implies a barrier */
		cond_wake_up_nomb(&log_root_tree->log_writer_wait);
Y
Yan Zheng 已提交
3065 3066
	}

3067
	if (ret) {
3068 3069 3070
		if (!list_empty(&root_log_ctx.list))
			list_del_init(&root_log_ctx.list);

3071
		blk_finish_plug(&plug);
3072
		btrfs_set_log_full_commit(fs_info, trans);
3073

3074
		if (ret != -ENOSPC) {
3075
			btrfs_abort_transaction(trans, ret);
3076 3077 3078
			mutex_unlock(&log_root_tree->log_mutex);
			goto out;
		}
3079
		btrfs_wait_tree_log_extents(log, mark);
3080 3081 3082 3083 3084
		mutex_unlock(&log_root_tree->log_mutex);
		ret = -EAGAIN;
		goto out;
	}

3085
	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3086
		blk_finish_plug(&plug);
3087
		list_del_init(&root_log_ctx.list);
3088 3089 3090 3091
		mutex_unlock(&log_root_tree->log_mutex);
		ret = root_log_ctx.log_ret;
		goto out;
	}
3092

3093
	index2 = root_log_ctx.log_transid % 2;
Y
Yan Zheng 已提交
3094
	if (atomic_read(&log_root_tree->log_commit[index2])) {
3095
		blk_finish_plug(&plug);
3096
		ret = btrfs_wait_tree_log_extents(log, mark);
3097
		wait_log_commit(log_root_tree,
3098
				root_log_ctx.log_transid);
Y
Yan Zheng 已提交
3099
		mutex_unlock(&log_root_tree->log_mutex);
3100 3101
		if (!ret)
			ret = root_log_ctx.log_ret;
Y
Yan Zheng 已提交
3102 3103
		goto out;
	}
3104
	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
Y
Yan Zheng 已提交
3105 3106
	atomic_set(&log_root_tree->log_commit[index2], 1);

3107
	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3108
		wait_log_commit(log_root_tree,
3109
				root_log_ctx.log_transid - 1);
3110 3111
	}

3112
	wait_for_writer(log_root_tree);
Y
Yan Zheng 已提交
3113

3114 3115 3116 3117
	/*
	 * now that we've moved on to the tree of log tree roots,
	 * check the full commit flag again
	 */
3118
	if (btrfs_need_log_full_commit(fs_info, trans)) {
3119
		blk_finish_plug(&plug);
3120
		btrfs_wait_tree_log_extents(log, mark);
3121 3122 3123 3124
		mutex_unlock(&log_root_tree->log_mutex);
		ret = -EAGAIN;
		goto out_wake_log_root;
	}
Y
Yan Zheng 已提交
3125

3126
	ret = btrfs_write_marked_extents(fs_info,
3127 3128 3129
					 &log_root_tree->dirty_log_pages,
					 EXTENT_DIRTY | EXTENT_NEW);
	blk_finish_plug(&plug);
3130
	if (ret) {
3131
		btrfs_set_log_full_commit(fs_info, trans);
3132
		btrfs_abort_transaction(trans, ret);
3133 3134 3135
		mutex_unlock(&log_root_tree->log_mutex);
		goto out_wake_log_root;
	}
3136
	ret = btrfs_wait_tree_log_extents(log, mark);
3137
	if (!ret)
3138 3139
		ret = btrfs_wait_tree_log_extents(log_root_tree,
						  EXTENT_NEW | EXTENT_DIRTY);
3140
	if (ret) {
3141
		btrfs_set_log_full_commit(fs_info, trans);
3142 3143 3144
		mutex_unlock(&log_root_tree->log_mutex);
		goto out_wake_log_root;
	}
3145

3146 3147 3148 3149
	btrfs_set_super_log_root(fs_info->super_for_commit,
				 log_root_tree->node->start);
	btrfs_set_super_log_root_level(fs_info->super_for_commit,
				       btrfs_header_level(log_root_tree->node));
3150

Y
Yan Zheng 已提交
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
	log_root_tree->log_transid++;
	mutex_unlock(&log_root_tree->log_mutex);

	/*
	 * nobody else is going to jump in and write the the ctree
	 * super here because the log_commit atomic below is protecting
	 * us.  We must be called with a transaction handle pinning
	 * the running transaction open, so a full commit can't hop
	 * in and cause problems either.
	 */
3161
	ret = write_all_supers(fs_info, 1);
3162
	if (ret) {
3163
		btrfs_set_log_full_commit(fs_info, trans);
3164
		btrfs_abort_transaction(trans, ret);
3165 3166
		goto out_wake_log_root;
	}
Y
Yan Zheng 已提交
3167

3168 3169 3170 3171 3172
	mutex_lock(&root->log_mutex);
	if (root->last_log_commit < log_transid)
		root->last_log_commit = log_transid;
	mutex_unlock(&root->log_mutex);

3173
out_wake_log_root:
3174
	mutex_lock(&log_root_tree->log_mutex);
3175 3176
	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);

3177
	log_root_tree->log_transid_committed++;
Y
Yan Zheng 已提交
3178
	atomic_set(&log_root_tree->log_commit[index2], 0);
3179 3180
	mutex_unlock(&log_root_tree->log_mutex);

3181
	/*
3182 3183 3184
	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
	 * all the updates above are seen by the woken threads. It might not be
	 * necessary, but proving that seems to be hard.
3185
	 */
3186
	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3187
out:
3188
	mutex_lock(&root->log_mutex);
3189
	btrfs_remove_all_log_ctxs(root, index1, ret);
3190
	root->log_transid_committed++;
Y
Yan Zheng 已提交
3191
	atomic_set(&root->log_commit[index1], 0);
3192
	mutex_unlock(&root->log_mutex);
3193

3194
	/*
3195 3196 3197
	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
	 * all the updates above are seen by the woken threads. It might not be
	 * necessary, but proving that seems to be hard.
3198
	 */
3199
	cond_wake_up(&root->log_commit_wait[index1]);
3200
	return ret;
3201 3202
}

3203 3204
static void free_log_tree(struct btrfs_trans_handle *trans,
			  struct btrfs_root *log)
3205 3206
{
	int ret;
3207 3208
	u64 start;
	u64 end;
3209 3210 3211 3212 3213
	struct walk_control wc = {
		.free = 1,
		.process_func = process_one_buffer
	};

3214
	ret = walk_log_tree(trans, log, &wc);
3215 3216 3217 3218 3219 3220
	if (ret) {
		if (trans)
			btrfs_abort_transaction(trans, ret);
		else
			btrfs_handle_fs_error(log->fs_info, ret, NULL);
	}
3221

C
Chris Mason 已提交
3222
	while (1) {
3223
		ret = find_first_extent_bit(&log->dirty_log_pages,
3224 3225
				0, &start, &end,
				EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT,
3226
				NULL);
3227 3228 3229
		if (ret)
			break;

3230
		clear_extent_bits(&log->dirty_log_pages, start, end,
3231
				  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3232 3233
	}

Y
Yan Zheng 已提交
3234 3235
	free_extent_buffer(log->node);
	kfree(log);
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
}

/*
 * free all the extents used by the tree log.  This should be called
 * at commit time of the full transaction
 */
int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
{
	if (root->log_root) {
		free_log_tree(trans, root->log_root);
		root->log_root = NULL;
	}
	return 0;
}

int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info)
{
	if (fs_info->log_root_tree) {
		free_log_tree(trans, fs_info->log_root_tree);
		fs_info->log_root_tree = NULL;
	}
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
	return 0;
}

/*
 * If both a file and directory are logged, and unlinks or renames are
 * mixed in, we have a few interesting corners:
 *
 * create file X in dir Y
 * link file X to X.link in dir Y
 * fsync file X
 * unlink file X but leave X.link
 * fsync dir Y
 *
 * After a crash we would expect only X.link to exist.  But file X
 * didn't get fsync'd again so the log has back refs for X and X.link.
 *
 * We solve this by removing directory entries and inode backrefs from the
 * log when a file that was logged in the current transaction is
 * unlinked.  Any later fsync will include the updated log entries, and
 * we'll be able to reconstruct the proper directory items from backrefs.
 *
 * This optimizations allows us to avoid relogging the entire inode
 * or the entire directory.
 */
int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
				 struct btrfs_root *root,
				 const char *name, int name_len,
3285
				 struct btrfs_inode *dir, u64 index)
3286 3287 3288 3289 3290
{
	struct btrfs_root *log;
	struct btrfs_dir_item *di;
	struct btrfs_path *path;
	int ret;
3291
	int err = 0;
3292
	int bytes_del = 0;
3293
	u64 dir_ino = btrfs_ino(dir);
3294

3295
	if (dir->logged_trans < trans->transid)
3296 3297
		return 0;

3298 3299 3300 3301
	ret = join_running_log_trans(root);
	if (ret)
		return 0;

3302
	mutex_lock(&dir->log_mutex);
3303 3304 3305

	log = root->log_root;
	path = btrfs_alloc_path();
3306 3307 3308 3309
	if (!path) {
		err = -ENOMEM;
		goto out_unlock;
	}
3310

L
Li Zefan 已提交
3311
	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3312
				   name, name_len, -1);
3313 3314 3315 3316 3317
	if (IS_ERR(di)) {
		err = PTR_ERR(di);
		goto fail;
	}
	if (di) {
3318 3319
		ret = btrfs_delete_one_dir_name(trans, log, path, di);
		bytes_del += name_len;
3320 3321 3322 3323
		if (ret) {
			err = ret;
			goto fail;
		}
3324
	}
3325
	btrfs_release_path(path);
L
Li Zefan 已提交
3326
	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3327
					 index, name, name_len, -1);
3328 3329 3330 3331 3332
	if (IS_ERR(di)) {
		err = PTR_ERR(di);
		goto fail;
	}
	if (di) {
3333 3334
		ret = btrfs_delete_one_dir_name(trans, log, path, di);
		bytes_del += name_len;
3335 3336 3337 3338
		if (ret) {
			err = ret;
			goto fail;
		}
3339 3340 3341 3342 3343 3344 3345 3346
	}

	/* update the directory size in the log to reflect the names
	 * we have removed
	 */
	if (bytes_del) {
		struct btrfs_key key;

L
Li Zefan 已提交
3347
		key.objectid = dir_ino;
3348 3349
		key.offset = 0;
		key.type = BTRFS_INODE_ITEM_KEY;
3350
		btrfs_release_path(path);
3351 3352

		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3353 3354 3355 3356
		if (ret < 0) {
			err = ret;
			goto fail;
		}
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
		if (ret == 0) {
			struct btrfs_inode_item *item;
			u64 i_size;

			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
					      struct btrfs_inode_item);
			i_size = btrfs_inode_size(path->nodes[0], item);
			if (i_size > bytes_del)
				i_size -= bytes_del;
			else
				i_size = 0;
			btrfs_set_inode_size(path->nodes[0], item, i_size);
			btrfs_mark_buffer_dirty(path->nodes[0]);
		} else
			ret = 0;
3372
		btrfs_release_path(path);
3373
	}
3374
fail:
3375
	btrfs_free_path(path);
3376
out_unlock:
3377
	mutex_unlock(&dir->log_mutex);
3378
	if (ret == -ENOSPC) {
3379
		btrfs_set_log_full_commit(root->fs_info, trans);
3380
		ret = 0;
3381
	} else if (ret < 0)
3382
		btrfs_abort_transaction(trans, ret);
3383

3384
	btrfs_end_log_trans(root);
3385

3386
	return err;
3387 3388 3389 3390 3391 3392
}

/* see comments for btrfs_del_dir_entries_in_log */
int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       const char *name, int name_len,
3393
			       struct btrfs_inode *inode, u64 dirid)
3394
{
3395
	struct btrfs_fs_info *fs_info = root->fs_info;
3396 3397 3398 3399
	struct btrfs_root *log;
	u64 index;
	int ret;

3400
	if (inode->logged_trans < trans->transid)
3401 3402
		return 0;

3403 3404 3405 3406
	ret = join_running_log_trans(root);
	if (ret)
		return 0;
	log = root->log_root;
3407
	mutex_lock(&inode->log_mutex);
3408

3409
	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3410
				  dirid, &index);
3411
	mutex_unlock(&inode->log_mutex);
3412
	if (ret == -ENOSPC) {
3413
		btrfs_set_log_full_commit(fs_info, trans);
3414
		ret = 0;
3415
	} else if (ret < 0 && ret != -ENOENT)
3416
		btrfs_abort_transaction(trans, ret);
3417
	btrfs_end_log_trans(root);
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443

	return ret;
}

/*
 * creates a range item in the log for 'dirid'.  first_offset and
 * last_offset tell us which parts of the key space the log should
 * be considered authoritative for.
 */
static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
				       struct btrfs_root *log,
				       struct btrfs_path *path,
				       int key_type, u64 dirid,
				       u64 first_offset, u64 last_offset)
{
	int ret;
	struct btrfs_key key;
	struct btrfs_dir_log_item *item;

	key.objectid = dirid;
	key.offset = first_offset;
	if (key_type == BTRFS_DIR_ITEM_KEY)
		key.type = BTRFS_DIR_LOG_ITEM_KEY;
	else
		key.type = BTRFS_DIR_LOG_INDEX_KEY;
	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3444 3445
	if (ret)
		return ret;
3446 3447 3448 3449 3450

	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
			      struct btrfs_dir_log_item);
	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
	btrfs_mark_buffer_dirty(path->nodes[0]);
3451
	btrfs_release_path(path);
3452 3453 3454 3455 3456 3457 3458 3459 3460
	return 0;
}

/*
 * log all the items included in the current transaction for a given
 * directory.  This also creates the range items in the log tree required
 * to replay anything deleted before the fsync
 */
static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3461
			  struct btrfs_root *root, struct btrfs_inode *inode,
3462 3463
			  struct btrfs_path *path,
			  struct btrfs_path *dst_path, int key_type,
3464
			  struct btrfs_log_ctx *ctx,
3465 3466 3467 3468 3469
			  u64 min_offset, u64 *last_offset_ret)
{
	struct btrfs_key min_key;
	struct btrfs_root *log = root->log_root;
	struct extent_buffer *src;
3470
	int err = 0;
3471 3472 3473 3474 3475
	int ret;
	int i;
	int nritems;
	u64 first_offset = min_offset;
	u64 last_offset = (u64)-1;
3476
	u64 ino = btrfs_ino(inode);
3477 3478 3479

	log = root->log_root;

L
Li Zefan 已提交
3480
	min_key.objectid = ino;
3481 3482 3483
	min_key.type = key_type;
	min_key.offset = min_offset;

3484
	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3485 3486 3487 3488 3489

	/*
	 * we didn't find anything from this transaction, see if there
	 * is anything at all
	 */
L
Li Zefan 已提交
3490 3491
	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
		min_key.objectid = ino;
3492 3493
		min_key.type = key_type;
		min_key.offset = (u64)-1;
3494
		btrfs_release_path(path);
3495 3496
		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
		if (ret < 0) {
3497
			btrfs_release_path(path);
3498 3499
			return ret;
		}
L
Li Zefan 已提交
3500
		ret = btrfs_previous_item(root, path, ino, key_type);
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510

		/* if ret == 0 there are items for this type,
		 * create a range to tell us the last key of this type.
		 * otherwise, there are no items in this directory after
		 * *min_offset, and we create a range to indicate that.
		 */
		if (ret == 0) {
			struct btrfs_key tmp;
			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
					      path->slots[0]);
C
Chris Mason 已提交
3511
			if (key_type == tmp.type)
3512 3513 3514 3515 3516 3517
				first_offset = max(min_offset, tmp.offset) + 1;
		}
		goto done;
	}

	/* go backward to find any previous key */
L
Li Zefan 已提交
3518
	ret = btrfs_previous_item(root, path, ino, key_type);
3519 3520 3521 3522 3523 3524 3525 3526
	if (ret == 0) {
		struct btrfs_key tmp;
		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
		if (key_type == tmp.type) {
			first_offset = tmp.offset;
			ret = overwrite_item(trans, log, dst_path,
					     path->nodes[0], path->slots[0],
					     &tmp);
3527 3528 3529 3530
			if (ret) {
				err = ret;
				goto done;
			}
3531 3532
		}
	}
3533
	btrfs_release_path(path);
3534

3535 3536 3537 3538 3539 3540 3541 3542
	/*
	 * Find the first key from this transaction again.  See the note for
	 * log_new_dir_dentries, if we're logging a directory recursively we
	 * won't be holding its i_mutex, which means we can modify the directory
	 * while we're logging it.  If we remove an entry between our first
	 * search and this search we'll not find the key again and can just
	 * bail.
	 */
3543
	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3544
	if (ret != 0)
3545 3546 3547 3548 3549 3550
		goto done;

	/*
	 * we have a block from this transaction, log every item in it
	 * from our directory
	 */
C
Chris Mason 已提交
3551
	while (1) {
3552 3553 3554 3555
		struct btrfs_key tmp;
		src = path->nodes[0];
		nritems = btrfs_header_nritems(src);
		for (i = path->slots[0]; i < nritems; i++) {
3556 3557
			struct btrfs_dir_item *di;

3558 3559
			btrfs_item_key_to_cpu(src, &min_key, i);

L
Li Zefan 已提交
3560
			if (min_key.objectid != ino || min_key.type != key_type)
3561 3562 3563
				goto done;
			ret = overwrite_item(trans, log, dst_path, src, i,
					     &min_key);
3564 3565 3566 3567
			if (ret) {
				err = ret;
				goto done;
			}
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598

			/*
			 * We must make sure that when we log a directory entry,
			 * the corresponding inode, after log replay, has a
			 * matching link count. For example:
			 *
			 * touch foo
			 * mkdir mydir
			 * sync
			 * ln foo mydir/bar
			 * xfs_io -c "fsync" mydir
			 * <crash>
			 * <mount fs and log replay>
			 *
			 * Would result in a fsync log that when replayed, our
			 * file inode would have a link count of 1, but we get
			 * two directory entries pointing to the same inode.
			 * After removing one of the names, it would not be
			 * possible to remove the other name, which resulted
			 * always in stale file handle errors, and would not
			 * be possible to rmdir the parent directory, since
			 * its i_size could never decrement to the value
			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
			 */
			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
			btrfs_dir_item_key_to_cpu(src, di, &tmp);
			if (ctx &&
			    (btrfs_dir_transid(src, di) == trans->transid ||
			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
			    tmp.type != BTRFS_ROOT_ITEM_KEY)
				ctx->log_new_dentries = true;
3599 3600 3601 3602 3603 3604 3605 3606
		}
		path->slots[0] = nritems;

		/*
		 * look ahead to the next item and see if it is also
		 * from this directory and from this transaction
		 */
		ret = btrfs_next_leaf(root, path);
3607 3608 3609 3610 3611
		if (ret) {
			if (ret == 1)
				last_offset = (u64)-1;
			else
				err = ret;
3612 3613 3614
			goto done;
		}
		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
L
Li Zefan 已提交
3615
		if (tmp.objectid != ino || tmp.type != key_type) {
3616 3617 3618 3619 3620 3621 3622
			last_offset = (u64)-1;
			goto done;
		}
		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
			ret = overwrite_item(trans, log, dst_path,
					     path->nodes[0], path->slots[0],
					     &tmp);
3623 3624 3625 3626
			if (ret)
				err = ret;
			else
				last_offset = tmp.offset;
3627 3628 3629 3630
			goto done;
		}
	}
done:
3631 3632
	btrfs_release_path(path);
	btrfs_release_path(dst_path);
3633

3634 3635 3636 3637 3638 3639 3640
	if (err == 0) {
		*last_offset_ret = last_offset;
		/*
		 * insert the log range keys to indicate where the log
		 * is valid
		 */
		ret = insert_dir_log_key(trans, log, path, key_type,
L
Li Zefan 已提交
3641
					 ino, first_offset, last_offset);
3642 3643 3644 3645
		if (ret)
			err = ret;
	}
	return err;
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
}

/*
 * logging directories is very similar to logging inodes, We find all the items
 * from the current transaction and write them to the log.
 *
 * The recovery code scans the directory in the subvolume, and if it finds a
 * key in the range logged that is not present in the log tree, then it means
 * that dir entry was unlinked during the transaction.
 *
 * In order for that scan to work, we must include one key smaller than
 * the smallest logged by this transaction and one key larger than the largest
 * key logged by this transaction.
 */
static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3661
			  struct btrfs_root *root, struct btrfs_inode *inode,
3662
			  struct btrfs_path *path,
3663 3664
			  struct btrfs_path *dst_path,
			  struct btrfs_log_ctx *ctx)
3665 3666 3667 3668 3669 3670 3671 3672 3673
{
	u64 min_key;
	u64 max_key;
	int ret;
	int key_type = BTRFS_DIR_ITEM_KEY;

again:
	min_key = 0;
	max_key = 0;
C
Chris Mason 已提交
3674
	while (1) {
3675 3676
		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
				ctx, min_key, &max_key);
3677 3678
		if (ret)
			return ret;
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
		if (max_key == (u64)-1)
			break;
		min_key = max_key + 1;
	}

	if (key_type == BTRFS_DIR_ITEM_KEY) {
		key_type = BTRFS_DIR_INDEX_KEY;
		goto again;
	}
	return 0;
}

/*
 * a helper function to drop items from the log before we relog an
 * inode.  max_key_type indicates the highest item type to remove.
 * This cannot be run for file data extents because it does not
 * free the extents they point to.
 */
static int drop_objectid_items(struct btrfs_trans_handle *trans,
				  struct btrfs_root *log,
				  struct btrfs_path *path,
				  u64 objectid, int max_key_type)
{
	int ret;
	struct btrfs_key key;
	struct btrfs_key found_key;
3705
	int start_slot;
3706 3707 3708 3709 3710

	key.objectid = objectid;
	key.type = max_key_type;
	key.offset = (u64)-1;

C
Chris Mason 已提交
3711
	while (1) {
3712
		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3713
		BUG_ON(ret == 0); /* Logic error */
3714
		if (ret < 0)
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
			break;

		if (path->slots[0] == 0)
			break;

		path->slots[0]--;
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);

		if (found_key.objectid != objectid)
			break;

3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
		found_key.offset = 0;
		found_key.type = 0;
		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
				       &start_slot);

		ret = btrfs_del_items(trans, log, path, start_slot,
				      path->slots[0] - start_slot + 1);
		/*
		 * If start slot isn't 0 then we don't need to re-search, we've
		 * found the last guy with the objectid in this tree.
		 */
		if (ret || start_slot != 0)
3739
			break;
3740
		btrfs_release_path(path);
3741
	}
3742
	btrfs_release_path(path);
3743 3744
	if (ret > 0)
		ret = 0;
3745
	return ret;
3746 3747
}

3748 3749 3750
static void fill_inode_item(struct btrfs_trans_handle *trans,
			    struct extent_buffer *leaf,
			    struct btrfs_inode_item *item,
3751 3752
			    struct inode *inode, int log_inode_only,
			    u64 logged_isize)
3753
{
3754 3755 3756
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
3757 3758 3759 3760 3761 3762 3763

	if (log_inode_only) {
		/* set the generation to zero so the recover code
		 * can tell the difference between an logging
		 * just to say 'this inode exists' and a logging
		 * to say 'update this inode with these values'
		 */
3764
		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3765
		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3766
	} else {
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
		btrfs_set_token_inode_generation(leaf, item,
						 BTRFS_I(inode)->generation,
						 &token);
		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
	}

	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);

3778
	btrfs_set_token_timespec_sec(leaf, &item->atime,
3779
				     inode->i_atime.tv_sec, &token);
3780
	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3781 3782
				      inode->i_atime.tv_nsec, &token);

3783
	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3784
				     inode->i_mtime.tv_sec, &token);
3785
	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3786 3787
				      inode->i_mtime.tv_nsec, &token);

3788
	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3789
				     inode->i_ctime.tv_sec, &token);
3790
	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3791 3792 3793 3794 3795
				      inode->i_ctime.tv_nsec, &token);

	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
				     &token);

3796 3797
	btrfs_set_token_inode_sequence(leaf, item,
				       inode_peek_iversion(inode), &token);
3798 3799 3800 3801
	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3802 3803
}

3804 3805
static int log_inode_item(struct btrfs_trans_handle *trans,
			  struct btrfs_root *log, struct btrfs_path *path,
3806
			  struct btrfs_inode *inode)
3807 3808 3809 3810
{
	struct btrfs_inode_item *inode_item;
	int ret;

3811
	ret = btrfs_insert_empty_item(trans, log, path,
3812
				      &inode->location, sizeof(*inode_item));
3813 3814 3815 3816
	if (ret && ret != -EEXIST)
		return ret;
	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
				    struct btrfs_inode_item);
3817 3818
	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
			0, 0);
3819 3820 3821 3822
	btrfs_release_path(path);
	return 0;
}

3823
static noinline int copy_items(struct btrfs_trans_handle *trans,
3824
			       struct btrfs_inode *inode,
3825
			       struct btrfs_path *dst_path,
3826
			       struct btrfs_path *src_path, u64 *last_extent,
3827 3828
			       int start_slot, int nr, int inode_only,
			       u64 logged_isize)
3829
{
3830
	struct btrfs_fs_info *fs_info = trans->fs_info;
3831 3832
	unsigned long src_offset;
	unsigned long dst_offset;
3833
	struct btrfs_root *log = inode->root->log_root;
3834 3835
	struct btrfs_file_extent_item *extent;
	struct btrfs_inode_item *inode_item;
3836 3837
	struct extent_buffer *src = src_path->nodes[0];
	struct btrfs_key first_key, last_key, key;
3838 3839 3840 3841 3842
	int ret;
	struct btrfs_key *ins_keys;
	u32 *ins_sizes;
	char *ins_data;
	int i;
3843
	struct list_head ordered_sums;
3844
	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3845
	bool has_extents = false;
3846
	bool need_find_last_extent = true;
3847
	bool done = false;
3848 3849

	INIT_LIST_HEAD(&ordered_sums);
3850 3851 3852

	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
			   nr * sizeof(u32), GFP_NOFS);
3853 3854 3855
	if (!ins_data)
		return -ENOMEM;

3856 3857
	first_key.objectid = (u64)-1;

3858 3859 3860 3861 3862 3863 3864 3865 3866
	ins_sizes = (u32 *)ins_data;
	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));

	for (i = 0; i < nr; i++) {
		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
	}
	ret = btrfs_insert_empty_items(trans, log, dst_path,
				       ins_keys, ins_sizes, nr);
3867 3868 3869 3870
	if (ret) {
		kfree(ins_data);
		return ret;
	}
3871

3872
	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3873 3874 3875 3876 3877
		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
						   dst_path->slots[0]);

		src_offset = btrfs_item_ptr_offset(src, start_slot + i);

3878
		if (i == nr - 1)
3879 3880
			last_key = ins_keys[i];

3881
		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3882 3883 3884
			inode_item = btrfs_item_ptr(dst_path->nodes[0],
						    dst_path->slots[0],
						    struct btrfs_inode_item);
3885
			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3886 3887
					&inode->vfs_inode,
					inode_only == LOG_INODE_EXISTS,
3888
					logged_isize);
3889 3890 3891
		} else {
			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
					   src_offset, ins_sizes[i]);
3892
		}
3893

3894 3895 3896 3897 3898 3899 3900 3901
		/*
		 * We set need_find_last_extent here in case we know we were
		 * processing other items and then walk into the first extent in
		 * the inode.  If we don't hit an extent then nothing changes,
		 * we'll do the last search the next time around.
		 */
		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
			has_extents = true;
3902
			if (first_key.objectid == (u64)-1)
3903 3904 3905 3906 3907
				first_key = ins_keys[i];
		} else {
			need_find_last_extent = false;
		}

3908 3909 3910 3911
		/* take a reference on file data extents so that truncates
		 * or deletes of this inode don't have to relog the inode
		 * again
		 */
3912
		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3913
		    !skip_csum) {
3914 3915 3916 3917
			int found_type;
			extent = btrfs_item_ptr(src, start_slot + i,
						struct btrfs_file_extent_item);

3918 3919 3920
			if (btrfs_file_extent_generation(src, extent) < trans->transid)
				continue;

3921
			found_type = btrfs_file_extent_type(src, extent);
3922
			if (found_type == BTRFS_FILE_EXTENT_REG) {
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
				u64 ds, dl, cs, cl;
				ds = btrfs_file_extent_disk_bytenr(src,
								extent);
				/* ds == 0 is a hole */
				if (ds == 0)
					continue;

				dl = btrfs_file_extent_disk_num_bytes(src,
								extent);
				cs = btrfs_file_extent_offset(src, extent);
				cl = btrfs_file_extent_num_bytes(src,
3934
								extent);
3935 3936 3937 3938 3939
				if (btrfs_file_extent_compression(src,
								  extent)) {
					cs = 0;
					cl = dl;
				}
3940 3941

				ret = btrfs_lookup_csums_range(
3942
						fs_info->csum_root,
3943
						ds + cs, ds + cs + cl - 1,
A
Arne Jansen 已提交
3944
						&ordered_sums, 0);
3945 3946 3947 3948 3949
				if (ret) {
					btrfs_release_path(dst_path);
					kfree(ins_data);
					return ret;
				}
3950 3951 3952 3953 3954
			}
		}
	}

	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3955
	btrfs_release_path(dst_path);
3956
	kfree(ins_data);
3957 3958 3959 3960 3961

	/*
	 * we have to do this after the loop above to avoid changing the
	 * log tree while trying to change the log tree.
	 */
3962
	ret = 0;
C
Chris Mason 已提交
3963
	while (!list_empty(&ordered_sums)) {
3964 3965 3966
		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
						   struct btrfs_ordered_sum,
						   list);
3967 3968
		if (!ret)
			ret = btrfs_csum_file_blocks(trans, log, sums);
3969 3970 3971
		list_del(&sums->list);
		kfree(sums);
	}
3972 3973 3974 3975

	if (!has_extents)
		return ret;

3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
	if (need_find_last_extent && *last_extent == first_key.offset) {
		/*
		 * We don't have any leafs between our current one and the one
		 * we processed before that can have file extent items for our
		 * inode (and have a generation number smaller than our current
		 * transaction id).
		 */
		need_find_last_extent = false;
	}

3986 3987 3988 3989 3990 3991 3992 3993 3994
	/*
	 * Because we use btrfs_search_forward we could skip leaves that were
	 * not modified and then assume *last_extent is valid when it really
	 * isn't.  So back up to the previous leaf and read the end of the last
	 * extent before we go and fill in holes.
	 */
	if (need_find_last_extent) {
		u64 len;

3995
		ret = btrfs_prev_leaf(inode->root, src_path);
3996 3997 3998 3999 4000 4001 4002 4003
		if (ret < 0)
			return ret;
		if (ret)
			goto fill_holes;
		if (src_path->slots[0])
			src_path->slots[0]--;
		src = src_path->nodes[0];
		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
4004
		if (key.objectid != btrfs_ino(inode) ||
4005 4006 4007 4008 4009 4010
		    key.type != BTRFS_EXTENT_DATA_KEY)
			goto fill_holes;
		extent = btrfs_item_ptr(src, src_path->slots[0],
					struct btrfs_file_extent_item);
		if (btrfs_file_extent_type(src, extent) ==
		    BTRFS_FILE_EXTENT_INLINE) {
4011
			len = btrfs_file_extent_ram_bytes(src, extent);
4012
			*last_extent = ALIGN(key.offset + len,
4013
					     fs_info->sectorsize);
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
		} else {
			len = btrfs_file_extent_num_bytes(src, extent);
			*last_extent = key.offset + len;
		}
	}
fill_holes:
	/* So we did prev_leaf, now we need to move to the next leaf, but a few
	 * things could have happened
	 *
	 * 1) A merge could have happened, so we could currently be on a leaf
	 * that holds what we were copying in the first place.
	 * 2) A split could have happened, and now not all of the items we want
	 * are on the same leaf.
	 *
	 * So we need to adjust how we search for holes, we need to drop the
	 * path and re-search for the first extent key we found, and then walk
	 * forward until we hit the last one we copied.
	 */
	if (need_find_last_extent) {
		/* btrfs_prev_leaf could return 1 without releasing the path */
		btrfs_release_path(src_path);
4035 4036
		ret = btrfs_search_slot(NULL, inode->root, &first_key,
				src_path, 0, 0);
4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
		if (ret < 0)
			return ret;
		ASSERT(ret == 0);
		src = src_path->nodes[0];
		i = src_path->slots[0];
	} else {
		i = start_slot;
	}

	/*
	 * Ok so here we need to go through and fill in any holes we may have
	 * to make sure that holes are punched for those areas in case they had
	 * extents previously.
	 */
	while (!done) {
		u64 offset, len;
		u64 extent_end;

		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
4056
			ret = btrfs_next_leaf(inode->root, src_path);
4057 4058 4059 4060 4061
			if (ret < 0)
				return ret;
			ASSERT(ret == 0);
			src = src_path->nodes[0];
			i = 0;
4062
			need_find_last_extent = true;
4063 4064 4065 4066 4067
		}

		btrfs_item_key_to_cpu(src, &key, i);
		if (!btrfs_comp_cpu_keys(&key, &last_key))
			done = true;
4068
		if (key.objectid != btrfs_ino(inode) ||
4069 4070 4071 4072 4073 4074 4075
		    key.type != BTRFS_EXTENT_DATA_KEY) {
			i++;
			continue;
		}
		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
		if (btrfs_file_extent_type(src, extent) ==
		    BTRFS_FILE_EXTENT_INLINE) {
4076
			len = btrfs_file_extent_ram_bytes(src, extent);
4077
			extent_end = ALIGN(key.offset + len,
4078
					   fs_info->sectorsize);
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
		} else {
			len = btrfs_file_extent_num_bytes(src, extent);
			extent_end = key.offset + len;
		}
		i++;

		if (*last_extent == key.offset) {
			*last_extent = extent_end;
			continue;
		}
		offset = *last_extent;
		len = key.offset - *last_extent;
4091
		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4092
				offset, 0, 0, len, 0, len, 0, 0, 0);
4093 4094
		if (ret)
			break;
4095
		*last_extent = extent_end;
4096
	}
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123

	/*
	 * Check if there is a hole between the last extent found in our leaf
	 * and the first extent in the next leaf. If there is one, we need to
	 * log an explicit hole so that at replay time we can punch the hole.
	 */
	if (ret == 0 &&
	    key.objectid == btrfs_ino(inode) &&
	    key.type == BTRFS_EXTENT_DATA_KEY &&
	    i == btrfs_header_nritems(src_path->nodes[0])) {
		ret = btrfs_next_leaf(inode->root, src_path);
		need_find_last_extent = true;
		if (ret > 0) {
			ret = 0;
		} else if (ret == 0) {
			btrfs_item_key_to_cpu(src_path->nodes[0], &key,
					      src_path->slots[0]);
			if (key.objectid == btrfs_ino(inode) &&
			    key.type == BTRFS_EXTENT_DATA_KEY &&
			    *last_extent < key.offset) {
				const u64 len = key.offset - *last_extent;

				ret = btrfs_insert_file_extent(trans, log,
							       btrfs_ino(inode),
							       *last_extent, 0,
							       0, len, 0, len,
							       0, 0, 0);
4124
				*last_extent += len;
4125 4126 4127
			}
		}
	}
4128 4129 4130 4131 4132 4133
	/*
	 * Need to let the callers know we dropped the path so they should
	 * re-search.
	 */
	if (!ret && need_find_last_extent)
		ret = 1;
4134
	return ret;
4135 4136
}

J
Josef Bacik 已提交
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct extent_map *em1, *em2;

	em1 = list_entry(a, struct extent_map, list);
	em2 = list_entry(b, struct extent_map, list);

	if (em1->start < em2->start)
		return -1;
	else if (em1->start > em2->start)
		return 1;
	return 0;
}

4151 4152
static int log_extent_csums(struct btrfs_trans_handle *trans,
			    struct btrfs_inode *inode,
4153
			    struct btrfs_root *log_root,
4154
			    const struct extent_map *em)
J
Josef Bacik 已提交
4155
{
4156 4157
	u64 csum_offset;
	u64 csum_len;
4158 4159
	LIST_HEAD(ordered_sums);
	int ret = 0;
4160

4161 4162
	if (inode->flags & BTRFS_INODE_NODATASUM ||
	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4163
	    em->block_start == EXTENT_MAP_HOLE)
4164
		return 0;
J
Josef Bacik 已提交
4165

4166
	/* If we're compressed we have to save the entire range of csums. */
4167 4168
	if (em->compress_type) {
		csum_offset = 0;
4169
		csum_len = max(em->block_len, em->orig_block_len);
4170
	} else {
4171 4172
		csum_offset = em->mod_start - em->start;
		csum_len = em->mod_len;
4173
	}
4174

4175
	/* block start is already adjusted for the file extent offset. */
4176
	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4177 4178 4179 4180 4181
				       em->block_start + csum_offset,
				       em->block_start + csum_offset +
				       csum_len - 1, &ordered_sums, 0);
	if (ret)
		return ret;
J
Josef Bacik 已提交
4182

4183 4184 4185 4186 4187
	while (!list_empty(&ordered_sums)) {
		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
						   struct btrfs_ordered_sum,
						   list);
		if (!ret)
4188
			ret = btrfs_csum_file_blocks(trans, log_root, sums);
4189 4190
		list_del(&sums->list);
		kfree(sums);
J
Josef Bacik 已提交
4191 4192
	}

4193
	return ret;
J
Josef Bacik 已提交
4194 4195
}

4196
static int log_one_extent(struct btrfs_trans_handle *trans,
4197
			  struct btrfs_inode *inode, struct btrfs_root *root,
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
			  const struct extent_map *em,
			  struct btrfs_path *path,
			  struct btrfs_log_ctx *ctx)
{
	struct btrfs_root *log = root->log_root;
	struct btrfs_file_extent_item *fi;
	struct extent_buffer *leaf;
	struct btrfs_map_token token;
	struct btrfs_key key;
	u64 extent_offset = em->start - em->orig_start;
	u64 block_len;
	int ret;
	int extent_inserted = 0;

4212
	ret = log_extent_csums(trans, inode, log, em);
4213 4214 4215 4216 4217
	if (ret)
		return ret;

	btrfs_init_map_token(&token);

4218
	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4219 4220 4221 4222 4223 4224
				   em->start + em->len, NULL, 0, 1,
				   sizeof(*fi), &extent_inserted);
	if (ret)
		return ret;

	if (!extent_inserted) {
4225
		key.objectid = btrfs_ino(inode);
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
		key.type = BTRFS_EXTENT_DATA_KEY;
		key.offset = em->start;

		ret = btrfs_insert_empty_item(trans, log, path, &key,
					      sizeof(*fi));
		if (ret)
			return ret;
	}
	leaf = path->nodes[0];
	fi = btrfs_item_ptr(leaf, path->slots[0],
			    struct btrfs_file_extent_item);

4238
	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
					       &token);
	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
		btrfs_set_token_file_extent_type(leaf, fi,
						 BTRFS_FILE_EXTENT_PREALLOC,
						 &token);
	else
		btrfs_set_token_file_extent_type(leaf, fi,
						 BTRFS_FILE_EXTENT_REG,
						 &token);

	block_len = max(em->block_len, em->orig_block_len);
	if (em->compress_type != BTRFS_COMPRESS_NONE) {
		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
							em->block_start,
							&token);
		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
							   &token);
	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
							em->block_start -
							extent_offset, &token);
		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
							   &token);
	} else {
		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
							   &token);
	}

	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
						&token);
	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
	btrfs_mark_buffer_dirty(leaf);

	btrfs_release_path(path);

	return ret;
}

4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
/*
 * Log all prealloc extents beyond the inode's i_size to make sure we do not
 * lose them after doing a fast fsync and replaying the log. We scan the
 * subvolume's root instead of iterating the inode's extent map tree because
 * otherwise we can log incorrect extent items based on extent map conversion.
 * That can happen due to the fact that extent maps are merged when they
 * are not in the extent map tree's list of modified extents.
 */
static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
				      struct btrfs_inode *inode,
				      struct btrfs_path *path)
{
	struct btrfs_root *root = inode->root;
	struct btrfs_key key;
	const u64 i_size = i_size_read(&inode->vfs_inode);
	const u64 ino = btrfs_ino(inode);
	struct btrfs_path *dst_path = NULL;
	u64 last_extent = (u64)-1;
	int ins_nr = 0;
	int start_slot;
	int ret;

	if (!(inode->flags & BTRFS_INODE_PREALLOC))
		return 0;

	key.objectid = ino;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = i_size;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

	while (true) {
		struct extent_buffer *leaf = path->nodes[0];
		int slot = path->slots[0];

		if (slot >= btrfs_header_nritems(leaf)) {
			if (ins_nr > 0) {
				ret = copy_items(trans, inode, dst_path, path,
						 &last_extent, start_slot,
						 ins_nr, 1, 0);
				if (ret < 0)
					goto out;
				ins_nr = 0;
			}
			ret = btrfs_next_leaf(root, path);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				ret = 0;
				break;
			}
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid > ino)
			break;
		if (WARN_ON_ONCE(key.objectid < ino) ||
		    key.type < BTRFS_EXTENT_DATA_KEY ||
		    key.offset < i_size) {
			path->slots[0]++;
			continue;
		}
		if (last_extent == (u64)-1) {
			last_extent = key.offset;
			/*
			 * Avoid logging extent items logged in past fsync calls
			 * and leading to duplicate keys in the log tree.
			 */
			do {
				ret = btrfs_truncate_inode_items(trans,
							 root->log_root,
							 &inode->vfs_inode,
							 i_size,
							 BTRFS_EXTENT_DATA_KEY);
			} while (ret == -EAGAIN);
			if (ret)
				goto out;
		}
		if (ins_nr == 0)
			start_slot = slot;
		ins_nr++;
		path->slots[0]++;
		if (!dst_path) {
			dst_path = btrfs_alloc_path();
			if (!dst_path) {
				ret = -ENOMEM;
				goto out;
			}
		}
	}
	if (ins_nr > 0) {
		ret = copy_items(trans, inode, dst_path, path, &last_extent,
				 start_slot, ins_nr, 1, 0);
		if (ret > 0)
			ret = 0;
	}
out:
	btrfs_release_path(path);
	btrfs_free_path(dst_path);
	return ret;
}

J
Josef Bacik 已提交
4386 4387
static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
				     struct btrfs_root *root,
4388
				     struct btrfs_inode *inode,
4389
				     struct btrfs_path *path,
4390 4391 4392
				     struct btrfs_log_ctx *ctx,
				     const u64 start,
				     const u64 end)
J
Josef Bacik 已提交
4393 4394 4395
{
	struct extent_map *em, *n;
	struct list_head extents;
4396
	struct extent_map_tree *tree = &inode->extent_tree;
4397
	u64 logged_start, logged_end;
J
Josef Bacik 已提交
4398 4399
	u64 test_gen;
	int ret = 0;
4400
	int num = 0;
J
Josef Bacik 已提交
4401 4402 4403 4404 4405

	INIT_LIST_HEAD(&extents);

	write_lock(&tree->lock);
	test_gen = root->fs_info->last_trans_committed;
4406 4407
	logged_start = start;
	logged_end = end;
J
Josef Bacik 已提交
4408 4409

	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
		/*
		 * Skip extents outside our logging range. It's important to do
		 * it for correctness because if we don't ignore them, we may
		 * log them before their ordered extent completes, and therefore
		 * we could log them without logging their respective checksums
		 * (the checksum items are added to the csum tree at the very
		 * end of btrfs_finish_ordered_io()). Also leave such extents
		 * outside of our range in the list, since we may have another
		 * ranged fsync in the near future that needs them. If an extent
		 * outside our range corresponds to a hole, log it to avoid
		 * leaving gaps between extents (fsck will complain when we are
		 * not using the NO_HOLES feature).
		 */
		if ((em->start > end || em->start + em->len <= start) &&
		    em->block_start != EXTENT_MAP_HOLE)
			continue;

J
Josef Bacik 已提交
4427
		list_del_init(&em->list);
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
		/*
		 * Just an arbitrary number, this can be really CPU intensive
		 * once we start getting a lot of extents, and really once we
		 * have a bunch of extents we just want to commit since it will
		 * be faster.
		 */
		if (++num > 32768) {
			list_del_init(&tree->modified_extents);
			ret = -EFBIG;
			goto process;
		}

J
Josef Bacik 已提交
4440 4441
		if (em->generation <= test_gen)
			continue;
4442

4443 4444 4445 4446 4447
		/* We log prealloc extents beyond eof later. */
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
		    em->start >= i_size_read(&inode->vfs_inode))
			continue;

4448 4449 4450 4451 4452
		if (em->start < logged_start)
			logged_start = em->start;
		if ((em->start + em->len - 1) > logged_end)
			logged_end = em->start + em->len - 1;

4453
		/* Need a ref to keep it from getting evicted from cache */
4454
		refcount_inc(&em->refs);
4455
		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
J
Josef Bacik 已提交
4456
		list_add_tail(&em->list, &extents);
4457
		num++;
J
Josef Bacik 已提交
4458 4459 4460
	}

	list_sort(NULL, &extents, extent_cmp);
4461
process:
J
Josef Bacik 已提交
4462 4463 4464 4465 4466 4467 4468 4469 4470
	while (!list_empty(&extents)) {
		em = list_entry(extents.next, struct extent_map, list);

		list_del_init(&em->list);

		/*
		 * If we had an error we just need to delete everybody from our
		 * private list.
		 */
4471
		if (ret) {
4472
			clear_em_logging(tree, em);
4473
			free_extent_map(em);
J
Josef Bacik 已提交
4474
			continue;
4475 4476 4477
		}

		write_unlock(&tree->lock);
J
Josef Bacik 已提交
4478

4479
		ret = log_one_extent(trans, inode, root, em, path, ctx);
4480
		write_lock(&tree->lock);
4481 4482
		clear_em_logging(tree, em);
		free_extent_map(em);
J
Josef Bacik 已提交
4483
	}
4484 4485
	WARN_ON(!list_empty(&extents));
	write_unlock(&tree->lock);
J
Josef Bacik 已提交
4486 4487

	btrfs_release_path(path);
4488 4489 4490
	if (!ret)
		ret = btrfs_log_prealloc_extents(trans, inode, path);

J
Josef Bacik 已提交
4491 4492 4493
	return ret;
}

4494
static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4495 4496 4497 4498 4499
			     struct btrfs_path *path, u64 *size_ret)
{
	struct btrfs_key key;
	int ret;

4500
	key.objectid = btrfs_ino(inode);
4501 4502 4503 4504 4505 4506 4507
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
	if (ret < 0) {
		return ret;
	} else if (ret > 0) {
4508
		*size_ret = 0;
4509 4510 4511 4512 4513 4514
	} else {
		struct btrfs_inode_item *item;

		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
				      struct btrfs_inode_item);
		*size_ret = btrfs_inode_size(path->nodes[0], item);
4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
		/*
		 * If the in-memory inode's i_size is smaller then the inode
		 * size stored in the btree, return the inode's i_size, so
		 * that we get a correct inode size after replaying the log
		 * when before a power failure we had a shrinking truncate
		 * followed by addition of a new name (rename / new hard link).
		 * Otherwise return the inode size from the btree, to avoid
		 * data loss when replaying a log due to previously doing a
		 * write that expands the inode's size and logging a new name
		 * immediately after.
		 */
		if (*size_ret > inode->vfs_inode.i_size)
			*size_ret = inode->vfs_inode.i_size;
4528 4529 4530 4531 4532 4533
	}

	btrfs_release_path(path);
	return 0;
}

4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
/*
 * At the moment we always log all xattrs. This is to figure out at log replay
 * time which xattrs must have their deletion replayed. If a xattr is missing
 * in the log tree and exists in the fs/subvol tree, we delete it. This is
 * because if a xattr is deleted, the inode is fsynced and a power failure
 * happens, causing the log to be replayed the next time the fs is mounted,
 * we want the xattr to not exist anymore (same behaviour as other filesystems
 * with a journal, ext3/4, xfs, f2fs, etc).
 */
static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
				struct btrfs_root *root,
4545
				struct btrfs_inode *inode,
4546 4547 4548 4549 4550
				struct btrfs_path *path,
				struct btrfs_path *dst_path)
{
	int ret;
	struct btrfs_key key;
4551
	const u64 ino = btrfs_ino(inode);
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
	int ins_nr = 0;
	int start_slot = 0;

	key.objectid = ino;
	key.type = BTRFS_XATTR_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	while (true) {
		int slot = path->slots[0];
		struct extent_buffer *leaf = path->nodes[0];
		int nritems = btrfs_header_nritems(leaf);

		if (slot >= nritems) {
			if (ins_nr > 0) {
				u64 last_extent = 0;

4572
				ret = copy_items(trans, inode, dst_path, path,
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
						 &last_extent, start_slot,
						 ins_nr, 1, 0);
				/* can't be 1, extent items aren't processed */
				ASSERT(ret <= 0);
				if (ret < 0)
					return ret;
				ins_nr = 0;
			}
			ret = btrfs_next_leaf(root, path);
			if (ret < 0)
				return ret;
			else if (ret > 0)
				break;
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
			break;

		if (ins_nr == 0)
			start_slot = slot;
		ins_nr++;
		path->slots[0]++;
		cond_resched();
	}
	if (ins_nr > 0) {
		u64 last_extent = 0;

4602
		ret = copy_items(trans, inode, dst_path, path,
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
				 &last_extent, start_slot,
				 ins_nr, 1, 0);
		/* can't be 1, extent items aren't processed */
		ASSERT(ret <= 0);
		if (ret < 0)
			return ret;
	}

	return 0;
}

4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
/*
 * If the no holes feature is enabled we need to make sure any hole between the
 * last extent and the i_size of our inode is explicitly marked in the log. This
 * is to make sure that doing something like:
 *
 *      1) create file with 128Kb of data
 *      2) truncate file to 64Kb
 *      3) truncate file to 256Kb
 *      4) fsync file
 *      5) <crash/power failure>
 *      6) mount fs and trigger log replay
 *
 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
 * file correspond to a hole. The presence of explicit holes in a log tree is
 * what guarantees that log replay will remove/adjust file extent items in the
 * fs/subvol tree.
 *
 * Here we do not need to care about holes between extents, that is already done
 * by copy_items(). We also only need to do this in the full sync path, where we
 * lookup for extents from the fs/subvol tree only. In the fast path case, we
 * lookup the list of modified extent maps and if any represents a hole, we
 * insert a corresponding extent representing a hole in the log tree.
 */
static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
4640
				   struct btrfs_inode *inode,
4641 4642
				   struct btrfs_path *path)
{
4643
	struct btrfs_fs_info *fs_info = root->fs_info;
4644 4645 4646 4647 4648 4649
	int ret;
	struct btrfs_key key;
	u64 hole_start;
	u64 hole_size;
	struct extent_buffer *leaf;
	struct btrfs_root *log = root->log_root;
4650 4651
	const u64 ino = btrfs_ino(inode);
	const u64 i_size = i_size_read(&inode->vfs_inode);
4652

4653
	if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
		return 0;

	key.objectid = ino;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	ASSERT(ret != 0);
	if (ret < 0)
		return ret;

	ASSERT(path->slots[0] > 0);
	path->slots[0]--;
	leaf = path->nodes[0];
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
		/* inode does not have any extents */
		hole_start = 0;
		hole_size = i_size;
	} else {
		struct btrfs_file_extent_item *extent;
		u64 len;

		/*
		 * If there's an extent beyond i_size, an explicit hole was
		 * already inserted by copy_items().
		 */
		if (key.offset >= i_size)
			return 0;

		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_file_extent_item);

		if (btrfs_file_extent_type(leaf, extent) ==
4689
		    BTRFS_FILE_EXTENT_INLINE)
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
			return 0;

		len = btrfs_file_extent_num_bytes(leaf, extent);
		/* Last extent goes beyond i_size, no need to log a hole. */
		if (key.offset + len > i_size)
			return 0;
		hole_start = key.offset + len;
		hole_size = i_size - hole_start;
	}
	btrfs_release_path(path);

	/* Last extent ends at i_size. */
	if (hole_size == 0)
		return 0;

4705
	hole_size = ALIGN(hole_size, fs_info->sectorsize);
4706 4707 4708 4709 4710
	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
				       hole_size, 0, hole_size, 0, 0, 0);
	return ret;
}

4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
/*
 * When we are logging a new inode X, check if it doesn't have a reference that
 * matches the reference from some other inode Y created in a past transaction
 * and that was renamed in the current transaction. If we don't do this, then at
 * log replay time we can lose inode Y (and all its files if it's a directory):
 *
 * mkdir /mnt/x
 * echo "hello world" > /mnt/x/foobar
 * sync
 * mv /mnt/x /mnt/y
 * mkdir /mnt/x                 # or touch /mnt/x
 * xfs_io -c fsync /mnt/x
 * <power fail>
 * mount fs, trigger log replay
 *
 * After the log replay procedure, we would lose the first directory and all its
 * files (file foobar).
 * For the case where inode Y is not a directory we simply end up losing it:
 *
 * echo "123" > /mnt/foo
 * sync
 * mv /mnt/foo /mnt/bar
 * echo "abc" > /mnt/foo
 * xfs_io -c fsync /mnt/foo
 * <power fail>
 *
 * We also need this for cases where a snapshot entry is replaced by some other
 * entry (file or directory) otherwise we end up with an unreplayable log due to
 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
 * if it were a regular entry:
 *
 * mkdir /mnt/x
 * btrfs subvolume snapshot /mnt /mnt/x/snap
 * btrfs subvolume delete /mnt/x/snap
 * rmdir /mnt/x
 * mkdir /mnt/x
 * fsync /mnt/x or fsync some new file inside it
 * <power fail>
 *
 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
 * the same transaction.
 */
static int btrfs_check_ref_name_override(struct extent_buffer *eb,
					 const int slot,
					 const struct btrfs_key *key,
4756
					 struct btrfs_inode *inode,
4757
					 u64 *other_ino)
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
{
	int ret;
	struct btrfs_path *search_path;
	char *name = NULL;
	u32 name_len = 0;
	u32 item_size = btrfs_item_size_nr(eb, slot);
	u32 cur_offset = 0;
	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);

	search_path = btrfs_alloc_path();
	if (!search_path)
		return -ENOMEM;
	search_path->search_commit_root = 1;
	search_path->skip_locking = 1;

	while (cur_offset < item_size) {
		u64 parent;
		u32 this_name_len;
		u32 this_len;
		unsigned long name_ptr;
		struct btrfs_dir_item *di;

		if (key->type == BTRFS_INODE_REF_KEY) {
			struct btrfs_inode_ref *iref;

			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
			parent = key->offset;
			this_name_len = btrfs_inode_ref_name_len(eb, iref);
			name_ptr = (unsigned long)(iref + 1);
			this_len = sizeof(*iref) + this_name_len;
		} else {
			struct btrfs_inode_extref *extref;

			extref = (struct btrfs_inode_extref *)(ptr +
							       cur_offset);
			parent = btrfs_inode_extref_parent(eb, extref);
			this_name_len = btrfs_inode_extref_name_len(eb, extref);
			name_ptr = (unsigned long)&extref->name;
			this_len = sizeof(*extref) + this_name_len;
		}

		if (this_name_len > name_len) {
			char *new_name;

			new_name = krealloc(name, this_name_len, GFP_NOFS);
			if (!new_name) {
				ret = -ENOMEM;
				goto out;
			}
			name_len = this_name_len;
			name = new_name;
		}

		read_extent_buffer(eb, name, name_ptr, this_name_len);
4812 4813
		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
				parent, name, this_name_len, 0);
4814
		if (di && !IS_ERR(di)) {
4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
			struct btrfs_key di_key;

			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
						  di, &di_key);
			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
				ret = 1;
				*other_ino = di_key.objectid;
			} else {
				ret = -EAGAIN;
			}
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
			goto out;
		} else if (IS_ERR(di)) {
			ret = PTR_ERR(di);
			goto out;
		}
		btrfs_release_path(search_path);

		cur_offset += this_len;
	}
	ret = 0;
out:
	btrfs_free_path(search_path);
	kfree(name);
	return ret;
}

4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
/* log a single inode in the tree log.
 * At least one parent directory for this inode must exist in the tree
 * or be logged already.
 *
 * Any items from this inode changed by the current transaction are copied
 * to the log tree.  An extra reference is taken on any extents in this
 * file, allowing us to avoid a whole pile of corner cases around logging
 * blocks that have been removed from the tree.
 *
 * See LOG_INODE_ALL and related defines for a description of what inode_only
 * does.
 *
 * This handles both files and directories.
 */
4855
static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4856
			   struct btrfs_root *root, struct btrfs_inode *inode,
4857 4858
			   int inode_only,
			   const loff_t start,
4859 4860
			   const loff_t end,
			   struct btrfs_log_ctx *ctx)
4861
{
4862
	struct btrfs_fs_info *fs_info = root->fs_info;
4863 4864 4865 4866 4867
	struct btrfs_path *path;
	struct btrfs_path *dst_path;
	struct btrfs_key min_key;
	struct btrfs_key max_key;
	struct btrfs_root *log = root->log_root;
4868
	u64 last_extent = 0;
4869
	int err = 0;
4870
	int ret;
4871
	int nritems;
4872 4873
	int ins_start_slot = 0;
	int ins_nr;
J
Josef Bacik 已提交
4874
	bool fast_search = false;
4875 4876
	u64 ino = btrfs_ino(inode);
	struct extent_map_tree *em_tree = &inode->extent_tree;
4877
	u64 logged_isize = 0;
4878
	bool need_log_inode_item = true;
4879
	bool xattrs_logged = false;
4880 4881

	path = btrfs_alloc_path();
4882 4883
	if (!path)
		return -ENOMEM;
4884
	dst_path = btrfs_alloc_path();
4885 4886 4887 4888
	if (!dst_path) {
		btrfs_free_path(path);
		return -ENOMEM;
	}
4889

L
Li Zefan 已提交
4890
	min_key.objectid = ino;
4891 4892 4893
	min_key.type = BTRFS_INODE_ITEM_KEY;
	min_key.offset = 0;

L
Li Zefan 已提交
4894
	max_key.objectid = ino;
4895 4896


J
Josef Bacik 已提交
4897
	/* today the code can only do partial logging of directories */
4898
	if (S_ISDIR(inode->vfs_inode.i_mode) ||
4899
	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4900
		       &inode->runtime_flags) &&
4901
	     inode_only >= LOG_INODE_EXISTS))
4902 4903 4904 4905 4906
		max_key.type = BTRFS_XATTR_ITEM_KEY;
	else
		max_key.type = (u8)-1;
	max_key.offset = (u64)-1;

4907 4908 4909 4910 4911 4912
	/*
	 * Only run delayed items if we are a dir or a new file.
	 * Otherwise commit the delayed inode only, which is needed in
	 * order for the log replay code to mark inodes for link count
	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
	 */
4913 4914 4915
	if (S_ISDIR(inode->vfs_inode.i_mode) ||
	    inode->generation > fs_info->last_trans_committed)
		ret = btrfs_commit_inode_delayed_items(trans, inode);
4916
	else
4917
		ret = btrfs_commit_inode_delayed_inode(inode);
4918 4919 4920 4921 4922

	if (ret) {
		btrfs_free_path(path);
		btrfs_free_path(dst_path);
		return ret;
4923 4924
	}

4925 4926
	if (inode_only == LOG_OTHER_INODE) {
		inode_only = LOG_INODE_EXISTS;
4927
		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
4928
	} else {
4929
		mutex_lock(&inode->log_mutex);
4930
	}
4931 4932 4933 4934 4935

	/*
	 * a brute force approach to making sure we get the most uptodate
	 * copies of everything.
	 */
4936
	if (S_ISDIR(inode->vfs_inode.i_mode)) {
4937 4938
		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;

4939 4940
		if (inode_only == LOG_INODE_EXISTS)
			max_key_type = BTRFS_XATTR_ITEM_KEY;
L
Li Zefan 已提交
4941
		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4942
	} else {
4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
		if (inode_only == LOG_INODE_EXISTS) {
			/*
			 * Make sure the new inode item we write to the log has
			 * the same isize as the current one (if it exists).
			 * This is necessary to prevent data loss after log
			 * replay, and also to prevent doing a wrong expanding
			 * truncate - for e.g. create file, write 4K into offset
			 * 0, fsync, write 4K into offset 4096, add hard link,
			 * fsync some other file (to sync log), power fail - if
			 * we use the inode's current i_size, after log replay
			 * we get a 8Kb file, with the last 4Kb extent as a hole
			 * (zeroes), as if an expanding truncate happened,
			 * instead of getting a file of 4Kb only.
			 */
4957
			err = logged_inode_size(log, inode, path, &logged_isize);
4958 4959 4960
			if (err)
				goto out_unlock;
		}
4961
		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4962
			     &inode->runtime_flags)) {
4963
			if (inode_only == LOG_INODE_EXISTS) {
4964
				max_key.type = BTRFS_XATTR_ITEM_KEY;
4965 4966 4967 4968
				ret = drop_objectid_items(trans, log, path, ino,
							  max_key.type);
			} else {
				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4969
					  &inode->runtime_flags);
4970
				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4971
					  &inode->runtime_flags);
4972 4973
				while(1) {
					ret = btrfs_truncate_inode_items(trans,
4974
						log, &inode->vfs_inode, 0, 0);
4975 4976 4977
					if (ret != -EAGAIN)
						break;
				}
4978
			}
4979
		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4980
					      &inode->runtime_flags) ||
4981
			   inode_only == LOG_INODE_EXISTS) {
4982
			if (inode_only == LOG_INODE_ALL)
4983
				fast_search = true;
4984
			max_key.type = BTRFS_XATTR_ITEM_KEY;
J
Josef Bacik 已提交
4985
			ret = drop_objectid_items(trans, log, path, ino,
4986
						  max_key.type);
4987 4988 4989 4990
		} else {
			if (inode_only == LOG_INODE_ALL)
				fast_search = true;
			goto log_extents;
J
Josef Bacik 已提交
4991
		}
4992

4993
	}
4994 4995 4996 4997
	if (ret) {
		err = ret;
		goto out_unlock;
	}
4998

C
Chris Mason 已提交
4999
	while (1) {
5000
		ins_nr = 0;
5001
		ret = btrfs_search_forward(root, &min_key,
5002
					   path, trans->transid);
5003 5004 5005 5006
		if (ret < 0) {
			err = ret;
			goto out_unlock;
		}
5007 5008
		if (ret != 0)
			break;
5009
again:
5010
		/* note, ins_nr might be > 0 here, cleanup outside the loop */
L
Li Zefan 已提交
5011
		if (min_key.objectid != ino)
5012 5013 5014
			break;
		if (min_key.type > max_key.type)
			break;
5015

5016 5017 5018
		if (min_key.type == BTRFS_INODE_ITEM_KEY)
			need_log_inode_item = false;

5019 5020
		if ((min_key.type == BTRFS_INODE_REF_KEY ||
		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
5021
		    inode->generation == trans->transid) {
5022 5023
			u64 other_ino = 0;

5024
			ret = btrfs_check_ref_name_override(path->nodes[0],
5025 5026
					path->slots[0], &min_key, inode,
					&other_ino);
5027 5028 5029
			if (ret < 0) {
				err = ret;
				goto out_unlock;
5030
			} else if (ret > 0 && ctx &&
5031
				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5032 5033 5034 5035 5036 5037 5038 5039 5040
				struct btrfs_key inode_key;
				struct inode *other_inode;

				if (ins_nr > 0) {
					ins_nr++;
				} else {
					ins_nr = 1;
					ins_start_slot = path->slots[0];
				}
5041
				ret = copy_items(trans, inode, dst_path, path,
5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
						 &last_extent, ins_start_slot,
						 ins_nr, inode_only,
						 logged_isize);
				if (ret < 0) {
					err = ret;
					goto out_unlock;
				}
				ins_nr = 0;
				btrfs_release_path(path);
				inode_key.objectid = other_ino;
				inode_key.type = BTRFS_INODE_ITEM_KEY;
				inode_key.offset = 0;
5054
				other_inode = btrfs_iget(fs_info->sb,
5055 5056 5057 5058 5059 5060 5061 5062
							 &inode_key, root,
							 NULL);
				/*
				 * If the other inode that had a conflicting dir
				 * entry was deleted in the current transaction,
				 * we don't need to do more work nor fallback to
				 * a transaction commit.
				 */
A
Al Viro 已提交
5063
				if (other_inode == ERR_PTR(-ENOENT)) {
5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077
					goto next_key;
				} else if (IS_ERR(other_inode)) {
					err = PTR_ERR(other_inode);
					goto out_unlock;
				}
				/*
				 * We are safe logging the other inode without
				 * acquiring its i_mutex as long as we log with
				 * the LOG_INODE_EXISTS mode. We're safe against
				 * concurrent renames of the other inode as well
				 * because during a rename we pin the log and
				 * update the log with the new name before we
				 * unpin it.
				 */
5078 5079 5080 5081
				err = btrfs_log_inode(trans, root,
						BTRFS_I(other_inode),
						LOG_OTHER_INODE, 0, LLONG_MAX,
						ctx);
5082 5083 5084 5085 5086
				iput(other_inode);
				if (err)
					goto out_unlock;
				else
					goto next_key;
5087 5088 5089
			}
		}

5090 5091 5092 5093
		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
			if (ins_nr == 0)
				goto next_slot;
5094
			ret = copy_items(trans, inode, dst_path, path,
5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
					 &last_extent, ins_start_slot,
					 ins_nr, inode_only, logged_isize);
			if (ret < 0) {
				err = ret;
				goto out_unlock;
			}
			ins_nr = 0;
			if (ret) {
				btrfs_release_path(path);
				continue;
			}
			goto next_slot;
		}

5109 5110 5111 5112 5113 5114 5115
		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
			ins_nr++;
			goto next_slot;
		} else if (!ins_nr) {
			ins_start_slot = path->slots[0];
			ins_nr = 1;
			goto next_slot;
5116 5117
		}

5118
		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5119 5120
				 ins_start_slot, ins_nr, inode_only,
				 logged_isize);
5121
		if (ret < 0) {
5122 5123
			err = ret;
			goto out_unlock;
5124 5125
		}
		if (ret) {
5126 5127 5128
			ins_nr = 0;
			btrfs_release_path(path);
			continue;
5129
		}
5130 5131 5132
		ins_nr = 1;
		ins_start_slot = path->slots[0];
next_slot:
5133

5134 5135 5136 5137 5138 5139 5140
		nritems = btrfs_header_nritems(path->nodes[0]);
		path->slots[0]++;
		if (path->slots[0] < nritems) {
			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
					      path->slots[0]);
			goto again;
		}
5141
		if (ins_nr) {
5142
			ret = copy_items(trans, inode, dst_path, path,
5143
					 &last_extent, ins_start_slot,
5144
					 ins_nr, inode_only, logged_isize);
5145
			if (ret < 0) {
5146 5147 5148
				err = ret;
				goto out_unlock;
			}
5149
			ret = 0;
5150 5151
			ins_nr = 0;
		}
5152
		btrfs_release_path(path);
5153
next_key:
5154
		if (min_key.offset < (u64)-1) {
5155
			min_key.offset++;
5156
		} else if (min_key.type < max_key.type) {
5157
			min_key.type++;
5158 5159
			min_key.offset = 0;
		} else {
5160
			break;
5161
		}
5162
	}
5163
	if (ins_nr) {
5164
		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5165 5166
				 ins_start_slot, ins_nr, inode_only,
				 logged_isize);
5167
		if (ret < 0) {
5168 5169 5170
			err = ret;
			goto out_unlock;
		}
5171
		ret = 0;
5172 5173
		ins_nr = 0;
	}
J
Josef Bacik 已提交
5174

5175 5176
	btrfs_release_path(path);
	btrfs_release_path(dst_path);
5177
	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5178 5179
	if (err)
		goto out_unlock;
5180
	xattrs_logged = true;
5181 5182 5183
	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
		btrfs_release_path(path);
		btrfs_release_path(dst_path);
5184
		err = btrfs_log_trailing_hole(trans, root, inode, path);
5185 5186 5187
		if (err)
			goto out_unlock;
	}
5188
log_extents:
5189 5190
	btrfs_release_path(path);
	btrfs_release_path(dst_path);
5191
	if (need_log_inode_item) {
5192
		err = log_inode_item(trans, log, dst_path, inode);
5193 5194 5195 5196 5197
		if (!err && !xattrs_logged) {
			err = btrfs_log_all_xattrs(trans, root, inode, path,
						   dst_path);
			btrfs_release_path(path);
		}
5198 5199 5200
		if (err)
			goto out_unlock;
	}
J
Josef Bacik 已提交
5201
	if (fast_search) {
5202
		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5203
						ctx, start, end);
J
Josef Bacik 已提交
5204 5205 5206 5207
		if (ret) {
			err = ret;
			goto out_unlock;
		}
5208
	} else if (inode_only == LOG_INODE_ALL) {
5209 5210
		struct extent_map *em, *n;

5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
		write_lock(&em_tree->lock);
		/*
		 * We can't just remove every em if we're called for a ranged
		 * fsync - that is, one that doesn't cover the whole possible
		 * file range (0 to LLONG_MAX). This is because we can have
		 * em's that fall outside the range we're logging and therefore
		 * their ordered operations haven't completed yet
		 * (btrfs_finish_ordered_io() not invoked yet). This means we
		 * didn't get their respective file extent item in the fs/subvol
		 * tree yet, and need to let the next fast fsync (one which
		 * consults the list of modified extent maps) find the em so
		 * that it logs a matching file extent item and waits for the
		 * respective ordered operation to complete (if it's still
		 * running).
		 *
		 * Removing every em outside the range we're logging would make
		 * the next fast fsync not log their matching file extent items,
		 * therefore making us lose data after a log replay.
		 */
		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
					 list) {
			const u64 mod_end = em->mod_start + em->mod_len - 1;

			if (em->mod_start >= start && mod_end <= end)
				list_del_init(&em->list);
		}
		write_unlock(&em_tree->lock);
J
Josef Bacik 已提交
5238 5239
	}

5240 5241 5242
	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
		ret = log_directory_changes(trans, root, inode, path, dst_path,
					ctx);
5243 5244 5245 5246
		if (ret) {
			err = ret;
			goto out_unlock;
		}
5247
	}
5248

5249 5250 5251 5252
	spin_lock(&inode->lock);
	inode->logged_trans = trans->transid;
	inode->last_log_commit = inode->last_sub_trans;
	spin_unlock(&inode->lock);
5253
out_unlock:
5254
	mutex_unlock(&inode->log_mutex);
5255 5256 5257

	btrfs_free_path(path);
	btrfs_free_path(dst_path);
5258
	return err;
5259 5260
}

5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273
/*
 * Check if we must fallback to a transaction commit when logging an inode.
 * This must be called after logging the inode and is used only in the context
 * when fsyncing an inode requires the need to log some other inode - in which
 * case we can't lock the i_mutex of each other inode we need to log as that
 * can lead to deadlocks with concurrent fsync against other inodes (as we can
 * log inodes up or down in the hierarchy) or rename operations for example. So
 * we take the log_mutex of the inode after we have logged it and then check for
 * its last_unlink_trans value - this is safe because any task setting
 * last_unlink_trans must take the log_mutex and it must do this before it does
 * the actual unlink operation, so if we do this check before a concurrent task
 * sets last_unlink_trans it means we've logged a consistent version/state of
 * all the inode items, otherwise we are not sure and must do a transaction
5274
 * commit (the concurrent task might have only updated last_unlink_trans before
5275 5276 5277
 * we logged the inode or it might have also done the unlink).
 */
static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5278
					  struct btrfs_inode *inode)
5279
{
5280
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5281 5282
	bool ret = false;

5283 5284
	mutex_lock(&inode->log_mutex);
	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5285 5286 5287 5288 5289 5290 5291
		/*
		 * Make sure any commits to the log are forced to be full
		 * commits.
		 */
		btrfs_set_log_full_commit(fs_info, trans);
		ret = true;
	}
5292
	mutex_unlock(&inode->log_mutex);
5293 5294 5295 5296

	return ret;
}

5297 5298 5299 5300 5301 5302 5303
/*
 * follow the dentry parent pointers up the chain and see if any
 * of the directories in it require a full commit before they can
 * be logged.  Returns zero if nothing special needs to be done or 1 if
 * a full commit is required.
 */
static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5304
					       struct btrfs_inode *inode,
5305 5306 5307
					       struct dentry *parent,
					       struct super_block *sb,
					       u64 last_committed)
5308
{
5309
	int ret = 0;
5310
	struct dentry *old_parent = NULL;
5311
	struct btrfs_inode *orig_inode = inode;
5312

5313 5314 5315 5316 5317 5318
	/*
	 * for regular files, if its inode is already on disk, we don't
	 * have to worry about the parents at all.  This is because
	 * we can use the last_unlink_trans field to record renames
	 * and other fun in this file.
	 */
5319 5320 5321 5322
	if (S_ISREG(inode->vfs_inode.i_mode) &&
	    inode->generation <= last_committed &&
	    inode->last_unlink_trans <= last_committed)
		goto out;
5323

5324
	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5325
		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5326
			goto out;
5327
		inode = BTRFS_I(d_inode(parent));
5328 5329 5330
	}

	while (1) {
5331 5332
		/*
		 * If we are logging a directory then we start with our inode,
5333
		 * not our parent's inode, so we need to skip setting the
5334 5335 5336 5337
		 * logged_trans so that further down in the log code we don't
		 * think this inode has already been logged.
		 */
		if (inode != orig_inode)
5338
			inode->logged_trans = trans->transid;
5339 5340
		smp_mb();

5341
		if (btrfs_must_commit_transaction(trans, inode)) {
5342 5343 5344 5345
			ret = 1;
			break;
		}

5346
		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5347 5348
			break;

5349
		if (IS_ROOT(parent)) {
5350 5351
			inode = BTRFS_I(d_inode(parent));
			if (btrfs_must_commit_transaction(trans, inode))
5352
				ret = 1;
5353
			break;
5354
		}
5355

5356 5357 5358
		parent = dget_parent(parent);
		dput(old_parent);
		old_parent = parent;
5359
		inode = BTRFS_I(d_inode(parent));
5360 5361

	}
5362
	dput(old_parent);
5363
out:
5364 5365 5366
	return ret;
}

5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415
struct btrfs_dir_list {
	u64 ino;
	struct list_head list;
};

/*
 * Log the inodes of the new dentries of a directory. See log_dir_items() for
 * details about the why it is needed.
 * This is a recursive operation - if an existing dentry corresponds to a
 * directory, that directory's new entries are logged too (same behaviour as
 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
 * the dentries point to we do not lock their i_mutex, otherwise lockdep
 * complains about the following circular lock dependency / possible deadlock:
 *
 *        CPU0                                        CPU1
 *        ----                                        ----
 * lock(&type->i_mutex_dir_key#3/2);
 *                                            lock(sb_internal#2);
 *                                            lock(&type->i_mutex_dir_key#3/2);
 * lock(&sb->s_type->i_mutex_key#14);
 *
 * Where sb_internal is the lock (a counter that works as a lock) acquired by
 * sb_start_intwrite() in btrfs_start_transaction().
 * Not locking i_mutex of the inodes is still safe because:
 *
 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
 *    that while logging the inode new references (names) are added or removed
 *    from the inode, leaving the logged inode item with a link count that does
 *    not match the number of logged inode reference items. This is fine because
 *    at log replay time we compute the real number of links and correct the
 *    link count in the inode item (see replay_one_buffer() and
 *    link_to_fixup_dir());
 *
 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
 *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
 *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
 *    has a size that doesn't match the sum of the lengths of all the logged
 *    names. This does not result in a problem because if a dir_item key is
 *    logged but its matching dir_index key is not logged, at log replay time we
 *    don't use it to replay the respective name (see replay_one_name()). On the
 *    other hand if only the dir_index key ends up being logged, the respective
 *    name is added to the fs/subvol tree with both the dir_item and dir_index
 *    keys created (see replay_one_name()).
 *    The directory's inode item with a wrong i_size is not a problem as well,
 *    since we don't use it at log replay time to set the i_size in the inode
 *    item of the fs/subvol tree (see overwrite_item()).
 */
static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
				struct btrfs_root *root,
5416
				struct btrfs_inode *start_inode,
5417 5418
				struct btrfs_log_ctx *ctx)
{
5419
	struct btrfs_fs_info *fs_info = root->fs_info;
5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434
	struct btrfs_root *log = root->log_root;
	struct btrfs_path *path;
	LIST_HEAD(dir_list);
	struct btrfs_dir_list *dir_elem;
	int ret = 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
	if (!dir_elem) {
		btrfs_free_path(path);
		return -ENOMEM;
	}
5435
	dir_elem->ino = btrfs_ino(start_inode);
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486
	list_add_tail(&dir_elem->list, &dir_list);

	while (!list_empty(&dir_list)) {
		struct extent_buffer *leaf;
		struct btrfs_key min_key;
		int nritems;
		int i;

		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
					    list);
		if (ret)
			goto next_dir_inode;

		min_key.objectid = dir_elem->ino;
		min_key.type = BTRFS_DIR_ITEM_KEY;
		min_key.offset = 0;
again:
		btrfs_release_path(path);
		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
		if (ret < 0) {
			goto next_dir_inode;
		} else if (ret > 0) {
			ret = 0;
			goto next_dir_inode;
		}

process_leaf:
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		for (i = path->slots[0]; i < nritems; i++) {
			struct btrfs_dir_item *di;
			struct btrfs_key di_key;
			struct inode *di_inode;
			struct btrfs_dir_list *new_dir_elem;
			int log_mode = LOG_INODE_EXISTS;
			int type;

			btrfs_item_key_to_cpu(leaf, &min_key, i);
			if (min_key.objectid != dir_elem->ino ||
			    min_key.type != BTRFS_DIR_ITEM_KEY)
				goto next_dir_inode;

			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
			type = btrfs_dir_type(leaf, di);
			if (btrfs_dir_transid(leaf, di) < trans->transid &&
			    type != BTRFS_FT_DIR)
				continue;
			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
				continue;

5487
			btrfs_release_path(path);
5488
			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5489 5490 5491 5492 5493
			if (IS_ERR(di_inode)) {
				ret = PTR_ERR(di_inode);
				goto next_dir_inode;
			}

5494
			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5495
				iput(di_inode);
5496
				break;
5497 5498 5499
			}

			ctx->log_new_dentries = false;
5500
			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5501
				log_mode = LOG_INODE_ALL;
5502
			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5503
					      log_mode, 0, LLONG_MAX, ctx);
5504
			if (!ret &&
5505
			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5506
				ret = 1;
5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544
			iput(di_inode);
			if (ret)
				goto next_dir_inode;
			if (ctx->log_new_dentries) {
				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
						       GFP_NOFS);
				if (!new_dir_elem) {
					ret = -ENOMEM;
					goto next_dir_inode;
				}
				new_dir_elem->ino = di_key.objectid;
				list_add_tail(&new_dir_elem->list, &dir_list);
			}
			break;
		}
		if (i == nritems) {
			ret = btrfs_next_leaf(log, path);
			if (ret < 0) {
				goto next_dir_inode;
			} else if (ret > 0) {
				ret = 0;
				goto next_dir_inode;
			}
			goto process_leaf;
		}
		if (min_key.offset < (u64)-1) {
			min_key.offset++;
			goto again;
		}
next_dir_inode:
		list_del(&dir_elem->list);
		kfree(dir_elem);
	}

	btrfs_free_path(path);
	return ret;
}

5545
static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5546
				 struct btrfs_inode *inode,
5547 5548
				 struct btrfs_log_ctx *ctx)
{
5549
	struct btrfs_fs_info *fs_info = trans->fs_info;
5550 5551 5552
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;
5553 5554
	struct btrfs_root *root = inode->root;
	const u64 ino = btrfs_ino(inode);
5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
	path->skip_locking = 1;
	path->search_commit_root = 1;

	key.objectid = ino;
	key.type = BTRFS_INODE_REF_KEY;
	key.offset = 0;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

	while (true) {
		struct extent_buffer *leaf = path->nodes[0];
		int slot = path->slots[0];
		u32 cur_offset = 0;
		u32 item_size;
		unsigned long ptr;

		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0)
				goto out;
			else if (ret > 0)
				break;
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &key, slot);
		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
			break;

		item_size = btrfs_item_size_nr(leaf, slot);
		ptr = btrfs_item_ptr_offset(leaf, slot);
		while (cur_offset < item_size) {
			struct btrfs_key inode_key;
			struct inode *dir_inode;

			inode_key.type = BTRFS_INODE_ITEM_KEY;
			inode_key.offset = 0;

			if (key.type == BTRFS_INODE_EXTREF_KEY) {
				struct btrfs_inode_extref *extref;

				extref = (struct btrfs_inode_extref *)
					(ptr + cur_offset);
				inode_key.objectid = btrfs_inode_extref_parent(
					leaf, extref);
				cur_offset += sizeof(*extref);
				cur_offset += btrfs_inode_extref_name_len(leaf,
					extref);
			} else {
				inode_key.objectid = key.offset;
				cur_offset = item_size;
			}

5614
			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5615
					       root, NULL);
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
			/*
			 * If the parent inode was deleted, return an error to
			 * fallback to a transaction commit. This is to prevent
			 * getting an inode that was moved from one parent A to
			 * a parent B, got its former parent A deleted and then
			 * it got fsync'ed, from existing at both parents after
			 * a log replay (and the old parent still existing).
			 * Example:
			 *
			 * mkdir /mnt/A
			 * mkdir /mnt/B
			 * touch /mnt/B/bar
			 * sync
			 * mv /mnt/B/bar /mnt/A/bar
			 * mv -T /mnt/A /mnt/B
			 * fsync /mnt/B/bar
			 * <power fail>
			 *
			 * If we ignore the old parent B which got deleted,
			 * after a log replay we would have file bar linked
			 * at both parents and the old parent B would still
			 * exist.
			 */
			if (IS_ERR(dir_inode)) {
				ret = PTR_ERR(dir_inode);
				goto out;
			}
5643

5644 5645
			if (ctx)
				ctx->log_new_dentries = false;
5646
			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5647
					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5648
			if (!ret &&
5649
			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5650
				ret = 1;
5651 5652
			if (!ret && ctx && ctx->log_new_dentries)
				ret = log_new_dir_dentries(trans, root,
5653
						   BTRFS_I(dir_inode), ctx);
5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665
			iput(dir_inode);
			if (ret)
				goto out;
		}
		path->slots[0]++;
	}
	ret = 0;
out:
	btrfs_free_path(path);
	return ret;
}

5666 5667 5668 5669 5670 5671
/*
 * helper function around btrfs_log_inode to make sure newly created
 * parent directories also end up in the log.  A minimal inode and backref
 * only logging is done of any parent directories that are older than
 * the last committed transaction
 */
5672
static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5673
				  struct btrfs_inode *inode,
5674 5675 5676
				  struct dentry *parent,
				  const loff_t start,
				  const loff_t end,
5677
				  int inode_only,
5678
				  struct btrfs_log_ctx *ctx)
5679
{
5680
	struct btrfs_root *root = inode->root;
5681
	struct btrfs_fs_info *fs_info = root->fs_info;
5682
	struct super_block *sb;
5683
	struct dentry *old_parent = NULL;
5684
	int ret = 0;
5685
	u64 last_committed = fs_info->last_trans_committed;
5686
	bool log_dentries = false;
5687
	struct btrfs_inode *orig_inode = inode;
5688

5689
	sb = inode->vfs_inode.i_sb;
5690

5691
	if (btrfs_test_opt(fs_info, NOTREELOG)) {
S
Sage Weil 已提交
5692 5693 5694 5695
		ret = 1;
		goto end_no_trans;
	}

5696 5697 5698 5699
	/*
	 * The prev transaction commit doesn't complete, we need do
	 * full commit by ourselves.
	 */
5700 5701
	if (fs_info->last_trans_log_full_commit >
	    fs_info->last_trans_committed) {
5702 5703 5704 5705
		ret = 1;
		goto end_no_trans;
	}

5706
	if (btrfs_root_refs(&root->root_item) == 0) {
5707 5708 5709 5710
		ret = 1;
		goto end_no_trans;
	}

5711 5712
	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
			last_committed);
5713 5714
	if (ret)
		goto end_no_trans;
5715

5716 5717 5718 5719 5720 5721 5722
	/*
	 * Skip already logged inodes or inodes corresponding to tmpfiles
	 * (since logging them is pointless, a link count of 0 means they
	 * will never be accessible).
	 */
	if (btrfs_inode_in_log(inode, trans->transid) ||
	    inode->vfs_inode.i_nlink == 0) {
5723 5724 5725 5726
		ret = BTRFS_NO_LOG_SYNC;
		goto end_no_trans;
	}

5727
	ret = start_log_trans(trans, root, ctx);
5728
	if (ret)
5729
		goto end_no_trans;
5730

5731
	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5732 5733
	if (ret)
		goto end_trans;
5734

5735 5736 5737 5738 5739 5740
	/*
	 * for regular files, if its inode is already on disk, we don't
	 * have to worry about the parents at all.  This is because
	 * we can use the last_unlink_trans field to record renames
	 * and other fun in this file.
	 */
5741 5742 5743
	if (S_ISREG(inode->vfs_inode.i_mode) &&
	    inode->generation <= last_committed &&
	    inode->last_unlink_trans <= last_committed) {
5744 5745 5746
		ret = 0;
		goto end_trans;
	}
5747

5748
	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
5749 5750
		log_dentries = true;

5751
	/*
5752
	 * On unlink we must make sure all our current and old parent directory
5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791
	 * inodes are fully logged. This is to prevent leaving dangling
	 * directory index entries in directories that were our parents but are
	 * not anymore. Not doing this results in old parent directory being
	 * impossible to delete after log replay (rmdir will always fail with
	 * error -ENOTEMPTY).
	 *
	 * Example 1:
	 *
	 * mkdir testdir
	 * touch testdir/foo
	 * ln testdir/foo testdir/bar
	 * sync
	 * unlink testdir/bar
	 * xfs_io -c fsync testdir/foo
	 * <power failure>
	 * mount fs, triggers log replay
	 *
	 * If we don't log the parent directory (testdir), after log replay the
	 * directory still has an entry pointing to the file inode using the bar
	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
	 * the file inode has a link count of 1.
	 *
	 * Example 2:
	 *
	 * mkdir testdir
	 * touch foo
	 * ln foo testdir/foo2
	 * ln foo testdir/foo3
	 * sync
	 * unlink testdir/foo3
	 * xfs_io -c fsync foo
	 * <power failure>
	 * mount fs, triggers log replay
	 *
	 * Similar as the first example, after log replay the parent directory
	 * testdir still has an entry pointing to the inode file with name foo3
	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
	 * and has a link count of 2.
	 */
5792
	if (inode->last_unlink_trans > last_committed) {
5793 5794 5795 5796 5797
		ret = btrfs_log_all_parents(trans, orig_inode, ctx);
		if (ret)
			goto end_trans;
	}

5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813
	/*
	 * If a new hard link was added to the inode in the current transaction
	 * and its link count is now greater than 1, we need to fallback to a
	 * transaction commit, otherwise we can end up not logging all its new
	 * parents for all the hard links. Here just from the dentry used to
	 * fsync, we can not visit the ancestor inodes for all the other hard
	 * links to figure out if any is new, so we fallback to a transaction
	 * commit (instead of adding a lot of complexity of scanning a btree,
	 * since this scenario is not a common use case).
	 */
	if (inode->vfs_inode.i_nlink > 1 &&
	    inode->last_link_trans > last_committed) {
		ret = -EMLINK;
		goto end_trans;
	}

5814
	while (1) {
5815
		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5816 5817
			break;

5818 5819
		inode = BTRFS_I(d_inode(parent));
		if (root != inode->root)
5820 5821
			break;

5822 5823 5824
		if (inode->generation > last_committed) {
			ret = btrfs_log_inode(trans, root, inode,
					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5825 5826
			if (ret)
				goto end_trans;
5827
		}
5828
		if (IS_ROOT(parent))
5829
			break;
5830

5831 5832 5833
		parent = dget_parent(parent);
		dput(old_parent);
		old_parent = parent;
5834
	}
5835
	if (log_dentries)
5836
		ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5837 5838
	else
		ret = 0;
5839
end_trans:
5840
	dput(old_parent);
5841
	if (ret < 0) {
5842
		btrfs_set_log_full_commit(fs_info, trans);
5843 5844
		ret = 1;
	}
5845 5846 5847

	if (ret)
		btrfs_remove_log_ctx(root, ctx);
5848 5849 5850
	btrfs_end_log_trans(root);
end_no_trans:
	return ret;
5851 5852 5853 5854 5855 5856 5857 5858 5859
}

/*
 * it is not safe to log dentry if the chunk root has added new
 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
 * If this returns 1, you must commit the transaction to safely get your
 * data on disk.
 */
int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5860
			  struct dentry *dentry,
5861 5862
			  const loff_t start,
			  const loff_t end,
5863
			  struct btrfs_log_ctx *ctx)
5864
{
5865 5866 5867
	struct dentry *parent = dget_parent(dentry);
	int ret;

5868 5869
	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
				     start, end, LOG_INODE_ALL, ctx);
5870 5871 5872
	dput(parent);

	return ret;
5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894
}

/*
 * should be called during mount to recover any replay any log trees
 * from the FS
 */
int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_trans_handle *trans;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_key tmp_key;
	struct btrfs_root *log;
	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
	struct walk_control wc = {
		.process_func = process_one_buffer,
		.stage = 0,
	};

	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
5895 5896 5897
	if (!path)
		return -ENOMEM;

5898
	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5899

5900
	trans = btrfs_start_transaction(fs_info->tree_root, 0);
5901 5902 5903 5904
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		goto error;
	}
5905 5906 5907 5908

	wc.trans = trans;
	wc.pin = 1;

T
Tsutomu Itoh 已提交
5909
	ret = walk_log_tree(trans, log_root_tree, &wc);
5910
	if (ret) {
J
Jeff Mahoney 已提交
5911 5912
		btrfs_handle_fs_error(fs_info, ret,
			"Failed to pin buffers while recovering log root tree.");
5913 5914
		goto error;
	}
5915 5916 5917 5918

again:
	key.objectid = BTRFS_TREE_LOG_OBJECTID;
	key.offset = (u64)-1;
5919
	key.type = BTRFS_ROOT_ITEM_KEY;
5920

C
Chris Mason 已提交
5921
	while (1) {
5922
		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5923 5924

		if (ret < 0) {
5925
			btrfs_handle_fs_error(fs_info, ret,
5926 5927 5928
				    "Couldn't find tree log root.");
			goto error;
		}
5929 5930 5931 5932 5933 5934 5935
		if (ret > 0) {
			if (path->slots[0] == 0)
				break;
			path->slots[0]--;
		}
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
5936
		btrfs_release_path(path);
5937 5938 5939
		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
			break;

5940
		log = btrfs_read_fs_root(log_root_tree, &found_key);
5941 5942
		if (IS_ERR(log)) {
			ret = PTR_ERR(log);
5943
			btrfs_handle_fs_error(fs_info, ret,
5944 5945 5946
				    "Couldn't read tree log root.");
			goto error;
		}
5947 5948 5949 5950 5951 5952

		tmp_key.objectid = found_key.offset;
		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
		tmp_key.offset = (u64)-1;

		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5953 5954
		if (IS_ERR(wc.replay_dest)) {
			ret = PTR_ERR(wc.replay_dest);
5955 5956 5957
			free_extent_buffer(log->node);
			free_extent_buffer(log->commit_root);
			kfree(log);
J
Jeff Mahoney 已提交
5958 5959
			btrfs_handle_fs_error(fs_info, ret,
				"Couldn't read target root for tree log recovery.");
5960 5961
			goto error;
		}
5962

Y
Yan Zheng 已提交
5963
		wc.replay_dest->log_root = log;
5964
		btrfs_record_root_in_trans(trans, wc.replay_dest);
5965 5966
		ret = walk_log_tree(trans, log, &wc);

5967
		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5968 5969 5970 5971
			ret = fixup_inode_link_counts(trans, wc.replay_dest,
						      path);
		}

5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988
		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
			struct btrfs_root *root = wc.replay_dest;

			btrfs_release_path(path);

			/*
			 * We have just replayed everything, and the highest
			 * objectid of fs roots probably has changed in case
			 * some inode_item's got replayed.
			 *
			 * root->objectid_mutex is not acquired as log replay
			 * could only happen during mount.
			 */
			ret = btrfs_find_highest_objectid(root,
						  &root->highest_objectid);
		}

5989
		key.offset = found_key.offset - 1;
Y
Yan Zheng 已提交
5990
		wc.replay_dest->log_root = NULL;
5991
		free_extent_buffer(log->node);
5992
		free_extent_buffer(log->commit_root);
5993 5994
		kfree(log);

5995 5996 5997
		if (ret)
			goto error;

5998 5999 6000
		if (found_key.offset == 0)
			break;
	}
6001
	btrfs_release_path(path);
6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017

	/* step one is to pin it all, step two is to replay just inodes */
	if (wc.pin) {
		wc.pin = 0;
		wc.process_func = replay_one_buffer;
		wc.stage = LOG_WALK_REPLAY_INODES;
		goto again;
	}
	/* step three is to replay everything */
	if (wc.stage < LOG_WALK_REPLAY_ALL) {
		wc.stage++;
		goto again;
	}

	btrfs_free_path(path);

6018
	/* step 4: commit the transaction, which also unpins the blocks */
6019
	ret = btrfs_commit_transaction(trans);
6020 6021 6022
	if (ret)
		return ret;

6023 6024
	free_extent_buffer(log_root_tree->node);
	log_root_tree->log_root = NULL;
6025
	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6026
	kfree(log_root_tree);
6027

6028
	return 0;
6029
error:
6030
	if (wc.trans)
6031
		btrfs_end_transaction(wc.trans);
6032 6033
	btrfs_free_path(path);
	return ret;
6034
}
6035 6036 6037 6038 6039 6040 6041 6042

/*
 * there are some corner cases where we want to force a full
 * commit instead of allowing a directory to be logged.
 *
 * They revolve around files there were unlinked from the directory, and
 * this function updates the parent directory so that a full commit is
 * properly done if it is fsync'd later after the unlinks are done.
6043 6044 6045
 *
 * Must be called before the unlink operations (updates to the subvolume tree,
 * inodes, etc) are done.
6046 6047
 */
void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6048
			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6049 6050
			     int for_rename)
{
6051 6052 6053 6054 6055 6056 6057 6058 6059 6060
	/*
	 * when we're logging a file, if it hasn't been renamed
	 * or unlinked, and its inode is fully committed on disk,
	 * we don't have to worry about walking up the directory chain
	 * to log its parents.
	 *
	 * So, we use the last_unlink_trans field to put this transid
	 * into the file.  When the file is logged we check it and
	 * don't log the parents if the file is fully on disk.
	 */
6061 6062 6063
	mutex_lock(&inode->log_mutex);
	inode->last_unlink_trans = trans->transid;
	mutex_unlock(&inode->log_mutex);
6064

6065 6066 6067 6068 6069
	/*
	 * if this directory was already logged any new
	 * names for this file/dir will get recorded
	 */
	smp_mb();
6070
	if (dir->logged_trans == trans->transid)
6071 6072 6073 6074 6075 6076
		return;

	/*
	 * if the inode we're about to unlink was logged,
	 * the log will be properly updated for any new names
	 */
6077
	if (inode->logged_trans == trans->transid)
6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093
		return;

	/*
	 * when renaming files across directories, if the directory
	 * there we're unlinking from gets fsync'd later on, there's
	 * no way to find the destination directory later and fsync it
	 * properly.  So, we have to be conservative and force commits
	 * so the new name gets discovered.
	 */
	if (for_rename)
		goto record;

	/* we can safely do the unlink without any special recording */
	return;

record:
6094 6095 6096
	mutex_lock(&dir->log_mutex);
	dir->last_unlink_trans = trans->transid;
	mutex_unlock(&dir->log_mutex);
6097 6098 6099 6100 6101 6102 6103 6104 6105 6106
}

/*
 * Make sure that if someone attempts to fsync the parent directory of a deleted
 * snapshot, it ends up triggering a transaction commit. This is to guarantee
 * that after replaying the log tree of the parent directory's root we will not
 * see the snapshot anymore and at log replay time we will not see any log tree
 * corresponding to the deleted snapshot's root, which could lead to replaying
 * it after replaying the log tree of the parent directory (which would replay
 * the snapshot delete operation).
6107 6108 6109
 *
 * Must be called before the actual snapshot destroy operation (updates to the
 * parent root and tree of tree roots trees, etc) are done.
6110 6111
 */
void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6112
				   struct btrfs_inode *dir)
6113
{
6114 6115 6116
	mutex_lock(&dir->log_mutex);
	dir->last_unlink_trans = trans->transid;
	mutex_unlock(&dir->log_mutex);
6117 6118 6119 6120 6121 6122
}

/*
 * Call this after adding a new name for a file and it will properly
 * update the log to reflect the new name.
 *
6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133
 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
 * true (because it's not used).
 *
 * Return value depends on whether @sync_log is true or false.
 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
 *            committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
 *            otherwise.
 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
 *             to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
 *             or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
 *             committed (without attempting to sync the log).
6134 6135
 */
int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6136
			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6137 6138
			struct dentry *parent,
			bool sync_log, struct btrfs_log_ctx *ctx)
6139
{
6140
	struct btrfs_fs_info *fs_info = trans->fs_info;
6141
	int ret;
6142

6143 6144 6145 6146
	/*
	 * this will force the logging code to walk the dentry chain
	 * up for the file
	 */
6147
	if (!S_ISDIR(inode->vfs_inode.i_mode))
6148
		inode->last_unlink_trans = trans->transid;
6149

6150 6151 6152 6153
	/*
	 * if this inode hasn't been logged and directory we're renaming it
	 * from hasn't been logged, we don't need to log it
	 */
6154 6155
	if (inode->logged_trans <= fs_info->last_trans_committed &&
	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182
		return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
			BTRFS_DONT_NEED_LOG_SYNC;

	if (sync_log) {
		struct btrfs_log_ctx ctx2;

		btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
		ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
					     LOG_INODE_EXISTS, &ctx2);
		if (ret == BTRFS_NO_LOG_SYNC)
			return BTRFS_DONT_NEED_TRANS_COMMIT;
		else if (ret)
			return BTRFS_NEED_TRANS_COMMIT;

		ret = btrfs_sync_log(trans, inode->root, &ctx2);
		if (ret)
			return BTRFS_NEED_TRANS_COMMIT;
		return BTRFS_DONT_NEED_TRANS_COMMIT;
	}

	ASSERT(ctx);
	ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
				     LOG_INODE_EXISTS, ctx);
	if (ret == BTRFS_NO_LOG_SYNC)
		return BTRFS_DONT_NEED_LOG_SYNC;
	else if (ret)
		return BTRFS_NEED_TRANS_COMMIT;
6183

6184
	return BTRFS_NEED_LOG_SYNC;
6185 6186
}