gpmc-onenand.c 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * linux/arch/arm/mach-omap2/gpmc-onenand.c
 *
 * Copyright (C) 2006 - 2009 Nokia Corporation
 * Contacts:	Juha Yrjola
 *		Tony Lindgren
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

13
#include <linux/string.h>
14 15 16 17
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/mtd/onenand_regs.h>
#include <linux/io.h>
18
#include <linux/platform_data/mtd-onenand-omap2.h>
19
#include <linux/err.h>
20 21 22

#include <asm/mach/flash.h>

23
#include "gpmc.h"
24
#include "soc.h"
25
#include "gpmc-onenand.h"
26

27 28
#define	ONENAND_IO_SIZE	SZ_128K

29 30 31 32 33 34 35 36
#define	ONENAND_FLAG_SYNCREAD	(1 << 0)
#define	ONENAND_FLAG_SYNCWRITE	(1 << 1)
#define	ONENAND_FLAG_HF		(1 << 2)
#define	ONENAND_FLAG_VHF	(1 << 3)

static unsigned onenand_flags;
static unsigned latency;

37 38
static struct omap_onenand_platform_data *gpmc_onenand_data;

39 40 41 42
static struct resource gpmc_onenand_resource = {
	.flags		= IORESOURCE_MEM,
};

43 44 45
static struct platform_device gpmc_onenand_device = {
	.name		= "omap2-onenand",
	.id		= -1,
46 47
	.num_resources	= 1,
	.resource	= &gpmc_onenand_resource,
48 49
};

50
static struct gpmc_timings omap2_onenand_calc_async_timings(void)
51
{
52
	struct gpmc_device_timings dev_t;
53 54 55 56 57 58 59 60 61 62 63 64
	struct gpmc_timings t;

	const int t_cer = 15;
	const int t_avdp = 12;
	const int t_aavdh = 7;
	const int t_ce = 76;
	const int t_aa = 76;
	const int t_oe = 20;
	const int t_cez = 20; /* max of t_cez, t_oez */
	const int t_wpl = 40;
	const int t_wph = 30;

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
	memset(&dev_t, 0, sizeof(dev_t));

	dev_t.mux = true;
	dev_t.t_avdp_r = max_t(int, t_avdp, t_cer) * 1000;
	dev_t.t_avdp_w = dev_t.t_avdp_r;
	dev_t.t_aavdh = t_aavdh * 1000;
	dev_t.t_aa = t_aa * 1000;
	dev_t.t_ce = t_ce * 1000;
	dev_t.t_oe = t_oe * 1000;
	dev_t.t_cez_r = t_cez * 1000;
	dev_t.t_cez_w = dev_t.t_cez_r;
	dev_t.t_wpl = t_wpl * 1000;
	dev_t.t_wph = t_wph * 1000;

	gpmc_calc_timings(&t, &dev_t);
80

81 82 83 84 85
	return t;
}

static int gpmc_set_async_mode(int cs, struct gpmc_timings *t)
{
86 87 88 89 90
	/* Configure GPMC for asynchronous read */
	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1,
			  GPMC_CONFIG1_DEVICESIZE_16 |
			  GPMC_CONFIG1_MUXADDDATA);

91 92 93 94 95 96
	return gpmc_cs_set_timings(cs, t);
}

static void omap2_onenand_set_async_mode(void __iomem *onenand_base)
{
	u32 reg;
97 98 99 100 101

	/* Ensure sync read and sync write are disabled */
	reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
	reg &= ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE;
	writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
102 103
}

104
static void set_onenand_cfg(void __iomem *onenand_base)
105 106 107 108 109 110 111
{
	u32 reg;

	reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
	reg &= ~((0x7 << ONENAND_SYS_CFG1_BRL_SHIFT) | (0x7 << 9));
	reg |=	(latency << ONENAND_SYS_CFG1_BRL_SHIFT) |
		ONENAND_SYS_CFG1_BL_16;
112
	if (onenand_flags & ONENAND_FLAG_SYNCREAD)
113 114 115
		reg |= ONENAND_SYS_CFG1_SYNC_READ;
	else
		reg &= ~ONENAND_SYS_CFG1_SYNC_READ;
116
	if (onenand_flags & ONENAND_FLAG_SYNCWRITE)
117 118 119
		reg |= ONENAND_SYS_CFG1_SYNC_WRITE;
	else
		reg &= ~ONENAND_SYS_CFG1_SYNC_WRITE;
120
	if (onenand_flags & ONENAND_FLAG_HF)
121 122 123
		reg |= ONENAND_SYS_CFG1_HF;
	else
		reg &= ~ONENAND_SYS_CFG1_HF;
124
	if (onenand_flags & ONENAND_FLAG_VHF)
125 126 127
		reg |= ONENAND_SYS_CFG1_VHF;
	else
		reg &= ~ONENAND_SYS_CFG1_VHF;
128 129 130
	writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
}

131
static int omap2_onenand_get_freq(struct omap_onenand_platform_data *cfg,
132
				  void __iomem *onenand_base)
133 134
{
	u16 ver = readw(onenand_base + ONENAND_REG_VERSION_ID);
135
	int freq;
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

	switch ((ver >> 4) & 0xf) {
	case 0:
		freq = 40;
		break;
	case 1:
		freq = 54;
		break;
	case 2:
		freq = 66;
		break;
	case 3:
		freq = 83;
		break;
	case 4:
		freq = 104;
		break;
	default:
		freq = 54;
		break;
	}

	return freq;
}

161 162
static struct gpmc_timings
omap2_onenand_calc_sync_timings(struct omap_onenand_platform_data *cfg,
163
				int freq)
164
{
165
	struct gpmc_device_timings dev_t;
166 167 168 169 170 171 172
	struct gpmc_timings t;
	const int t_cer  = 15;
	const int t_avdp = 12;
	const int t_cez  = 20; /* max of t_cez, t_oez */
	const int t_wpl  = 40;
	const int t_wph  = 30;
	int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo;
173
	int div, gpmc_clk_ns;
174

175 176 177 178
	if (cfg->flags & ONENAND_SYNC_READ)
		onenand_flags = ONENAND_FLAG_SYNCREAD;
	else if (cfg->flags & ONENAND_SYNC_READWRITE)
		onenand_flags = ONENAND_FLAG_SYNCREAD | ONENAND_FLAG_SYNCWRITE;
179 180

	switch (freq) {
181 182 183 184 185 186 187
	case 104:
		min_gpmc_clk_period = 9600; /* 104 MHz */
		t_ces   = 3;
		t_avds  = 4;
		t_avdh  = 2;
		t_ach   = 3;
		t_aavdh = 6;
188
		t_rdyo  = 6;
189
		break;
190
	case 83:
191
		min_gpmc_clk_period = 12000; /* 83 MHz */
192 193 194 195 196 197 198 199
		t_ces   = 5;
		t_avds  = 4;
		t_avdh  = 2;
		t_ach   = 6;
		t_aavdh = 6;
		t_rdyo  = 9;
		break;
	case 66:
200
		min_gpmc_clk_period = 15000; /* 66 MHz */
201 202 203 204 205 206 207 208
		t_ces   = 6;
		t_avds  = 5;
		t_avdh  = 2;
		t_ach   = 6;
		t_aavdh = 6;
		t_rdyo  = 11;
		break;
	default:
209
		min_gpmc_clk_period = 18500; /* 54 MHz */
210 211 212 213 214 215
		t_ces   = 7;
		t_avds  = 7;
		t_avdh  = 7;
		t_ach   = 9;
		t_aavdh = 7;
		t_rdyo  = 15;
216
		onenand_flags &= ~ONENAND_FLAG_SYNCWRITE;
217 218 219
		break;
	}

220
	div = gpmc_calc_divider(min_gpmc_clk_period);
221 222
	gpmc_clk_ns = gpmc_ticks_to_ns(div);
	if (gpmc_clk_ns < 15) /* >66Mhz */
223 224 225
		onenand_flags |= ONENAND_FLAG_HF;
	else
		onenand_flags &= ~ONENAND_FLAG_HF;
226
	if (gpmc_clk_ns < 12) /* >83Mhz */
227 228 229 230
		onenand_flags |= ONENAND_FLAG_VHF;
	else
		onenand_flags &= ~ONENAND_FLAG_VHF;
	if (onenand_flags & ONENAND_FLAG_VHF)
231
		latency = 8;
232
	else if (onenand_flags & ONENAND_FLAG_HF)
233 234 235 236 237 238
		latency = 6;
	else if (gpmc_clk_ns >= 25) /* 40 MHz*/
		latency = 3;
	else
		latency = 4;

239
	/* Set synchronous read timings */
240
	memset(&dev_t, 0, sizeof(dev_t));
241

242 243
	dev_t.mux = true;
	dev_t.sync_read = true;
244
	if (onenand_flags & ONENAND_FLAG_SYNCWRITE) {
245
		dev_t.sync_write = true;
246
	} else {
247 248 249 250
		dev_t.t_avdp_w = max(t_avdp, t_cer) * 1000;
		dev_t.t_wpl = t_wpl * 1000;
		dev_t.t_wph = t_wph * 1000;
		dev_t.t_aavdh = t_aavdh * 1000;
251
	}
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
	dev_t.ce_xdelay = true;
	dev_t.avd_xdelay = true;
	dev_t.oe_xdelay = true;
	dev_t.we_xdelay = true;
	dev_t.clk = min_gpmc_clk_period;
	dev_t.t_bacc = dev_t.clk;
	dev_t.t_ces = t_ces * 1000;
	dev_t.t_avds = t_avds * 1000;
	dev_t.t_avdh = t_avdh * 1000;
	dev_t.t_ach = t_ach * 1000;
	dev_t.cyc_iaa = (latency + 1);
	dev_t.t_cez_r = t_cez * 1000;
	dev_t.t_cez_w = dev_t.t_cez_r;
	dev_t.cyc_aavdh_oe = 1;
	dev_t.t_rdyo = t_rdyo * 1000 + min_gpmc_clk_period;

	gpmc_calc_timings(&t, &dev_t);
269

270 271 272 273 274 275 276 277
	return t;
}

static int gpmc_set_sync_mode(int cs, struct gpmc_timings *t)
{
	unsigned sync_read = onenand_flags & ONENAND_FLAG_SYNCREAD;
	unsigned sync_write = onenand_flags & ONENAND_FLAG_SYNCWRITE;

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
	/* Configure GPMC for synchronous read */
	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1,
			  GPMC_CONFIG1_WRAPBURST_SUPP |
			  GPMC_CONFIG1_READMULTIPLE_SUPP |
			  (sync_read ? GPMC_CONFIG1_READTYPE_SYNC : 0) |
			  (sync_write ? GPMC_CONFIG1_WRITEMULTIPLE_SUPP : 0) |
			  (sync_write ? GPMC_CONFIG1_WRITETYPE_SYNC : 0) |
			  GPMC_CONFIG1_PAGE_LEN(2) |
			  (cpu_is_omap34xx() ? 0 :
				(GPMC_CONFIG1_WAIT_READ_MON |
				 GPMC_CONFIG1_WAIT_PIN_SEL(0))) |
			  GPMC_CONFIG1_DEVICESIZE_16 |
			  GPMC_CONFIG1_DEVICETYPE_NOR |
			  GPMC_CONFIG1_MUXADDDATA);

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
	return gpmc_cs_set_timings(cs, t);
}

static int omap2_onenand_setup_async(void __iomem *onenand_base)
{
	struct gpmc_timings t;
	int ret;

	omap2_onenand_set_async_mode(onenand_base);

	t = omap2_onenand_calc_async_timings();

	ret = gpmc_set_async_mode(gpmc_onenand_data->cs, &t);
	if (IS_ERR_VALUE(ret))
		return ret;

	omap2_onenand_set_async_mode(onenand_base);

	return 0;
}

static int omap2_onenand_setup_sync(void __iomem *onenand_base, int *freq_ptr)
{
	int ret, freq = *freq_ptr;
	struct gpmc_timings t;

	if (!freq) {
		/* Very first call freq is not known */
321
		freq = omap2_onenand_get_freq(gpmc_onenand_data, onenand_base);
322 323 324
		set_onenand_cfg(onenand_base);
	}

325
	t = omap2_onenand_calc_sync_timings(gpmc_onenand_data, freq);
326

327 328 329 330 331
	ret = gpmc_set_sync_mode(gpmc_onenand_data->cs, &t);
	if (IS_ERR_VALUE(ret))
		return ret;

	set_onenand_cfg(onenand_base);
332

333 334
	*freq_ptr = freq;

335 336 337
	return 0;
}

338
static int gpmc_onenand_setup(void __iomem *onenand_base, int *freq_ptr)
339 340
{
	struct device *dev = &gpmc_onenand_device.dev;
341 342
	unsigned l = ONENAND_SYNC_READ | ONENAND_SYNC_READWRITE;
	int ret;
343

344 345 346 347
	ret = omap2_onenand_setup_async(onenand_base);
	if (ret) {
		dev_err(dev, "unable to set to async mode\n");
		return ret;
348 349
	}

350 351 352 353 354 355 356
	if (!(gpmc_onenand_data->flags & l))
		return 0;

	ret = omap2_onenand_setup_sync(onenand_base, freq_ptr);
	if (ret)
		dev_err(dev, "unable to set to sync mode\n");
	return ret;
357 358 359 360
}

void __init gpmc_onenand_init(struct omap_onenand_platform_data *_onenand_data)
{
361 362
	int err;

363 364 365 366 367 368 369 370 371 372 373
	gpmc_onenand_data = _onenand_data;
	gpmc_onenand_data->onenand_setup = gpmc_onenand_setup;
	gpmc_onenand_device.dev.platform_data = gpmc_onenand_data;

	if (cpu_is_omap24xx() &&
			(gpmc_onenand_data->flags & ONENAND_SYNC_READWRITE)) {
		printk(KERN_ERR "Onenand using only SYNC_READ on 24xx\n");
		gpmc_onenand_data->flags &= ~ONENAND_SYNC_READWRITE;
		gpmc_onenand_data->flags |= ONENAND_SYNC_READ;
	}

374 375 376 377 378
	if (cpu_is_omap34xx())
		gpmc_onenand_data->flags |= ONENAND_IN_OMAP34XX;
	else
		gpmc_onenand_data->flags &= ~ONENAND_IN_OMAP34XX;

379 380 381 382 383 384 385 386 387 388
	err = gpmc_cs_request(gpmc_onenand_data->cs, ONENAND_IO_SIZE,
				(unsigned long *)&gpmc_onenand_resource.start);
	if (err < 0) {
		pr_err("%s: Cannot request GPMC CS\n", __func__);
		return;
	}

	gpmc_onenand_resource.end = gpmc_onenand_resource.start +
							ONENAND_IO_SIZE - 1;

389
	if (platform_device_register(&gpmc_onenand_device) < 0) {
390 391
		pr_err("%s: Unable to register OneNAND device\n", __func__);
		gpmc_cs_free(gpmc_onenand_data->cs);
392 393 394
		return;
	}
}