brcmnand.c 61.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
/*
 * Copyright © 2010-2015 Broadcom Corporation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 */

#include <linux/version.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/err.h>
#include <linux/completion.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/dma-mapping.h>
#include <linux/ioport.h>
#include <linux/bug.h>
#include <linux/kernel.h>
#include <linux/bitops.h>
#include <linux/mm.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/of.h>
#include <linux/of_mtd.h>
#include <linux/of_platform.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/log2.h>

#include "brcmnand.h"

/*
 * This flag controls if WP stays on between erase/write commands to mitigate
 * flash corruption due to power glitches. Values:
 * 0: NAND_WP is not used or not available
 * 1: NAND_WP is set by default, cleared for erase/write operations
 * 2: NAND_WP is always cleared
 */
static int wp_on = 1;
module_param(wp_on, int, 0444);

/***********************************************************************
 * Definitions
 ***********************************************************************/

#define DRV_NAME			"brcmnand"

#define CMD_NULL			0x00
#define CMD_PAGE_READ			0x01
#define CMD_SPARE_AREA_READ		0x02
#define CMD_STATUS_READ			0x03
#define CMD_PROGRAM_PAGE		0x04
#define CMD_PROGRAM_SPARE_AREA		0x05
#define CMD_COPY_BACK			0x06
#define CMD_DEVICE_ID_READ		0x07
#define CMD_BLOCK_ERASE			0x08
#define CMD_FLASH_RESET			0x09
#define CMD_BLOCKS_LOCK			0x0a
#define CMD_BLOCKS_LOCK_DOWN		0x0b
#define CMD_BLOCKS_UNLOCK		0x0c
#define CMD_READ_BLOCKS_LOCK_STATUS	0x0d
#define CMD_PARAMETER_READ		0x0e
#define CMD_PARAMETER_CHANGE_COL	0x0f
#define CMD_LOW_LEVEL_OP		0x10

struct brcm_nand_dma_desc {
	u32 next_desc;
	u32 next_desc_ext;
	u32 cmd_irq;
	u32 dram_addr;
	u32 dram_addr_ext;
	u32 tfr_len;
	u32 total_len;
	u32 flash_addr;
	u32 flash_addr_ext;
	u32 cs;
	u32 pad2[5];
	u32 status_valid;
} __packed;

/* Bitfields for brcm_nand_dma_desc::status_valid */
#define FLASH_DMA_ECC_ERROR	(1 << 8)
#define FLASH_DMA_CORR_ERROR	(1 << 9)

/* 512B flash cache in the NAND controller HW */
#define FC_SHIFT		9U
#define FC_BYTES		512U
#define FC_WORDS		(FC_BYTES >> 2)

#define BRCMNAND_MIN_PAGESIZE	512
#define BRCMNAND_MIN_BLOCKSIZE	(8 * 1024)
#define BRCMNAND_MIN_DEVSIZE	(4ULL * 1024 * 1024)

/* Controller feature flags */
enum {
	BRCMNAND_HAS_1K_SECTORS			= BIT(0),
	BRCMNAND_HAS_PREFETCH			= BIT(1),
	BRCMNAND_HAS_CACHE_MODE			= BIT(2),
	BRCMNAND_HAS_WP				= BIT(3),
};

struct brcmnand_controller {
	struct device		*dev;
	struct nand_hw_control	controller;
	void __iomem		*nand_base;
	void __iomem		*nand_fc; /* flash cache */
	void __iomem		*flash_dma_base;
	unsigned int		irq;
	unsigned int		dma_irq;
	int			nand_version;

122 123 124
	/* Some SoCs provide custom interrupt status register(s) */
	struct brcmnand_soc	*soc;

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
	int			cmd_pending;
	bool			dma_pending;
	struct completion	done;
	struct completion	dma_done;

	/* List of NAND hosts (one for each chip-select) */
	struct list_head host_list;

	struct brcm_nand_dma_desc *dma_desc;
	dma_addr_t		dma_pa;

	/* in-memory cache of the FLASH_CACHE, used only for some commands */
	u32			flash_cache[FC_WORDS];

	/* Controller revision details */
	const u16		*reg_offsets;
	unsigned int		reg_spacing; /* between CS1, CS2, ... regs */
	const u8		*cs_offsets; /* within each chip-select */
	const u8		*cs0_offsets; /* within CS0, if different */
	unsigned int		max_block_size;
	const unsigned int	*block_sizes;
	unsigned int		max_page_size;
	const unsigned int	*page_sizes;
	unsigned int		max_oob;
	u32			features;

	/* for low-power standby/resume only */
	u32			nand_cs_nand_select;
	u32			nand_cs_nand_xor;
	u32			corr_stat_threshold;
	u32			flash_dma_mode;
};

struct brcmnand_cfg {
	u64			device_size;
	unsigned int		block_size;
	unsigned int		page_size;
	unsigned int		spare_area_size;
	unsigned int		device_width;
	unsigned int		col_adr_bytes;
	unsigned int		blk_adr_bytes;
	unsigned int		ful_adr_bytes;
	unsigned int		sector_size_1k;
	unsigned int		ecc_level;
	/* use for low-power standby/resume only */
	u32			acc_control;
	u32			config;
	u32			config_ext;
	u32			timing_1;
	u32			timing_2;
};

struct brcmnand_host {
	struct list_head	node;
	struct device_node	*of_node;

	struct nand_chip	chip;
	struct mtd_info		mtd;
	struct platform_device	*pdev;
	int			cs;

	unsigned int		last_cmd;
	unsigned int		last_byte;
	u64			last_addr;
	struct brcmnand_cfg	hwcfg;
	struct brcmnand_controller *ctrl;
};

enum brcmnand_reg {
	BRCMNAND_CMD_START = 0,
	BRCMNAND_CMD_EXT_ADDRESS,
	BRCMNAND_CMD_ADDRESS,
	BRCMNAND_INTFC_STATUS,
	BRCMNAND_CS_SELECT,
	BRCMNAND_CS_XOR,
	BRCMNAND_LL_OP,
	BRCMNAND_CS0_BASE,
	BRCMNAND_CS1_BASE,		/* CS1 regs, if non-contiguous */
	BRCMNAND_CORR_THRESHOLD,
	BRCMNAND_CORR_THRESHOLD_EXT,
	BRCMNAND_UNCORR_COUNT,
	BRCMNAND_CORR_COUNT,
	BRCMNAND_CORR_EXT_ADDR,
	BRCMNAND_CORR_ADDR,
	BRCMNAND_UNCORR_EXT_ADDR,
	BRCMNAND_UNCORR_ADDR,
	BRCMNAND_SEMAPHORE,
	BRCMNAND_ID,
	BRCMNAND_ID_EXT,
	BRCMNAND_LL_RDATA,
	BRCMNAND_OOB_READ_BASE,
	BRCMNAND_OOB_READ_10_BASE,	/* offset 0x10, if non-contiguous */
	BRCMNAND_OOB_WRITE_BASE,
	BRCMNAND_OOB_WRITE_10_BASE,	/* offset 0x10, if non-contiguous */
	BRCMNAND_FC_BASE,
};

/* BRCMNAND v4.0 */
static const u16 brcmnand_regs_v40[] = {
	[BRCMNAND_CMD_START]		=  0x04,
	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
	[BRCMNAND_INTFC_STATUS]		=  0x6c,
	[BRCMNAND_CS_SELECT]		=  0x14,
	[BRCMNAND_CS_XOR]		=  0x18,
	[BRCMNAND_LL_OP]		= 0x178,
	[BRCMNAND_CS0_BASE]		=  0x40,
	[BRCMNAND_CS1_BASE]		=  0xd0,
	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
	[BRCMNAND_UNCORR_COUNT]		=     0,
	[BRCMNAND_CORR_COUNT]		=     0,
	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
	[BRCMNAND_CORR_ADDR]		=  0x74,
	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
	[BRCMNAND_SEMAPHORE]		=  0x58,
	[BRCMNAND_ID]			=  0x60,
	[BRCMNAND_ID_EXT]		=  0x64,
	[BRCMNAND_LL_RDATA]		= 0x17c,
	[BRCMNAND_OOB_READ_BASE]	=  0x20,
	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
	[BRCMNAND_FC_BASE]		= 0x200,
};

/* BRCMNAND v5.0 */
static const u16 brcmnand_regs_v50[] = {
	[BRCMNAND_CMD_START]		=  0x04,
	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
	[BRCMNAND_INTFC_STATUS]		=  0x6c,
	[BRCMNAND_CS_SELECT]		=  0x14,
	[BRCMNAND_CS_XOR]		=  0x18,
	[BRCMNAND_LL_OP]		= 0x178,
	[BRCMNAND_CS0_BASE]		=  0x40,
	[BRCMNAND_CS1_BASE]		=  0xd0,
	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
	[BRCMNAND_UNCORR_COUNT]		=     0,
	[BRCMNAND_CORR_COUNT]		=     0,
	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
	[BRCMNAND_CORR_ADDR]		=  0x74,
	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
	[BRCMNAND_SEMAPHORE]		=  0x58,
	[BRCMNAND_ID]			=  0x60,
	[BRCMNAND_ID_EXT]		=  0x64,
	[BRCMNAND_LL_RDATA]		= 0x17c,
	[BRCMNAND_OOB_READ_BASE]	=  0x20,
	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
	[BRCMNAND_OOB_WRITE_10_BASE]	= 0x140,
	[BRCMNAND_FC_BASE]		= 0x200,
};

/* BRCMNAND v6.0 - v7.1 */
static const u16 brcmnand_regs_v60[] = {
	[BRCMNAND_CMD_START]		=  0x04,
	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
	[BRCMNAND_INTFC_STATUS]		=  0x14,
	[BRCMNAND_CS_SELECT]		=  0x18,
	[BRCMNAND_CS_XOR]		=  0x1c,
	[BRCMNAND_LL_OP]		=  0x20,
	[BRCMNAND_CS0_BASE]		=  0x50,
	[BRCMNAND_CS1_BASE]		=     0,
	[BRCMNAND_CORR_THRESHOLD]	=  0xc0,
	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xc4,
	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
	[BRCMNAND_CORR_COUNT]		= 0x100,
	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
	[BRCMNAND_CORR_ADDR]		= 0x110,
	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
	[BRCMNAND_UNCORR_ADDR]		= 0x118,
	[BRCMNAND_SEMAPHORE]		= 0x150,
	[BRCMNAND_ID]			= 0x194,
	[BRCMNAND_ID_EXT]		= 0x198,
	[BRCMNAND_LL_RDATA]		= 0x19c,
	[BRCMNAND_OOB_READ_BASE]	= 0x200,
	[BRCMNAND_OOB_READ_10_BASE]	=     0,
	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
	[BRCMNAND_FC_BASE]		= 0x400,
};

enum brcmnand_cs_reg {
	BRCMNAND_CS_CFG_EXT = 0,
	BRCMNAND_CS_CFG,
	BRCMNAND_CS_ACC_CONTROL,
	BRCMNAND_CS_TIMING1,
	BRCMNAND_CS_TIMING2,
};

/* Per chip-select offsets for v7.1 */
static const u8 brcmnand_cs_offsets_v71[] = {
	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
	[BRCMNAND_CS_CFG_EXT]		= 0x04,
	[BRCMNAND_CS_CFG]		= 0x08,
	[BRCMNAND_CS_TIMING1]		= 0x0c,
	[BRCMNAND_CS_TIMING2]		= 0x10,
};

/* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
static const u8 brcmnand_cs_offsets[] = {
	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
	[BRCMNAND_CS_CFG_EXT]		= 0x04,
	[BRCMNAND_CS_CFG]		= 0x04,
	[BRCMNAND_CS_TIMING1]		= 0x08,
	[BRCMNAND_CS_TIMING2]		= 0x0c,
};

/* Per chip-select offset for <= v5.0 on CS0 only */
static const u8 brcmnand_cs_offsets_cs0[] = {
	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
	[BRCMNAND_CS_CFG_EXT]		= 0x08,
	[BRCMNAND_CS_CFG]		= 0x08,
	[BRCMNAND_CS_TIMING1]		= 0x10,
	[BRCMNAND_CS_TIMING2]		= 0x14,
};

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
/*
 * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
 * one config register, but once the bitfields overflowed, newer controllers
 * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
 */
enum {
	CFG_BLK_ADR_BYTES_SHIFT		= 8,
	CFG_COL_ADR_BYTES_SHIFT		= 12,
	CFG_FUL_ADR_BYTES_SHIFT		= 16,
	CFG_BUS_WIDTH_SHIFT		= 23,
	CFG_BUS_WIDTH			= BIT(CFG_BUS_WIDTH_SHIFT),
	CFG_DEVICE_SIZE_SHIFT		= 24,

	/* Only for pre-v7.1 (with no CFG_EXT register) */
	CFG_PAGE_SIZE_SHIFT		= 20,
	CFG_BLK_SIZE_SHIFT		= 28,

	/* Only for v7.1+ (with CFG_EXT register) */
	CFG_EXT_PAGE_SIZE_SHIFT		= 0,
	CFG_EXT_BLK_SIZE_SHIFT		= 4,
};

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
/* BRCMNAND_INTFC_STATUS */
enum {
	INTFC_FLASH_STATUS		= GENMASK(7, 0),

	INTFC_ERASED			= BIT(27),
	INTFC_OOB_VALID			= BIT(28),
	INTFC_CACHE_VALID		= BIT(29),
	INTFC_FLASH_READY		= BIT(30),
	INTFC_CTLR_READY		= BIT(31),
};

static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
{
	return brcmnand_readl(ctrl->nand_base + offs);
}

static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
				 u32 val)
{
	brcmnand_writel(val, ctrl->nand_base + offs);
}

static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
{
	static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
	static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
	static const unsigned int page_sizes[] = { 512, 2048, 4096, 8192, 0 };

	ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;

	/* Only support v4.0+? */
	if (ctrl->nand_version < 0x0400) {
		dev_err(ctrl->dev, "version %#x not supported\n",
			ctrl->nand_version);
		return -ENODEV;
	}

	/* Register offsets */
	if (ctrl->nand_version >= 0x0600)
		ctrl->reg_offsets = brcmnand_regs_v60;
	else if (ctrl->nand_version >= 0x0500)
		ctrl->reg_offsets = brcmnand_regs_v50;
	else if (ctrl->nand_version >= 0x0400)
		ctrl->reg_offsets = brcmnand_regs_v40;

	/* Chip-select stride */
	if (ctrl->nand_version >= 0x0701)
		ctrl->reg_spacing = 0x14;
	else
		ctrl->reg_spacing = 0x10;

	/* Per chip-select registers */
	if (ctrl->nand_version >= 0x0701) {
		ctrl->cs_offsets = brcmnand_cs_offsets_v71;
	} else {
		ctrl->cs_offsets = brcmnand_cs_offsets;

		/* v5.0 and earlier has a different CS0 offset layout */
		if (ctrl->nand_version <= 0x0500)
			ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
	}

	/* Page / block sizes */
	if (ctrl->nand_version >= 0x0701) {
		/* >= v7.1 use nice power-of-2 values! */
		ctrl->max_page_size = 16 * 1024;
		ctrl->max_block_size = 2 * 1024 * 1024;
	} else {
		ctrl->page_sizes = page_sizes;
		if (ctrl->nand_version >= 0x0600)
			ctrl->block_sizes = block_sizes_v6;
		else
			ctrl->block_sizes = block_sizes_v4;

		if (ctrl->nand_version < 0x0400) {
			ctrl->max_page_size = 4096;
			ctrl->max_block_size = 512 * 1024;
		}
	}

	/* Maximum spare area sector size (per 512B) */
	if (ctrl->nand_version >= 0x0600)
		ctrl->max_oob = 64;
	else if (ctrl->nand_version >= 0x0500)
		ctrl->max_oob = 32;
	else
		ctrl->max_oob = 16;

	/* v6.0 and newer (except v6.1) have prefetch support */
	if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
		ctrl->features |= BRCMNAND_HAS_PREFETCH;

	/*
	 * v6.x has cache mode, but it's implemented differently. Ignore it for
	 * now.
	 */
	if (ctrl->nand_version >= 0x0700)
		ctrl->features |= BRCMNAND_HAS_CACHE_MODE;

	if (ctrl->nand_version >= 0x0500)
		ctrl->features |= BRCMNAND_HAS_1K_SECTORS;

	if (ctrl->nand_version >= 0x0700)
		ctrl->features |= BRCMNAND_HAS_WP;
	else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
		ctrl->features |= BRCMNAND_HAS_WP;

	return 0;
}

static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
		enum brcmnand_reg reg)
{
	u16 offs = ctrl->reg_offsets[reg];

	if (offs)
		return nand_readreg(ctrl, offs);
	else
		return 0;
}

static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
				      enum brcmnand_reg reg, u32 val)
{
	u16 offs = ctrl->reg_offsets[reg];

	if (offs)
		nand_writereg(ctrl, offs, val);
}

static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
				    enum brcmnand_reg reg, u32 mask, unsigned
				    int shift, u32 val)
{
	u32 tmp = brcmnand_read_reg(ctrl, reg);

	tmp &= ~mask;
	tmp |= val << shift;
	brcmnand_write_reg(ctrl, reg, tmp);
}

static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
{
	return __raw_readl(ctrl->nand_fc + word * 4);
}

static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
				     int word, u32 val)
{
	__raw_writel(val, ctrl->nand_fc + word * 4);
}

static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
				     enum brcmnand_cs_reg reg)
{
	u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
	u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
	u8 cs_offs;

	if (cs == 0 && ctrl->cs0_offsets)
		cs_offs = ctrl->cs0_offsets[reg];
	else
		cs_offs = ctrl->cs_offsets[reg];

	if (cs && offs_cs1)
		return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;

	return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
}

static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
{
	if (ctrl->nand_version < 0x0600)
		return 1;
	return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
}

static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
{
	struct brcmnand_controller *ctrl = host->ctrl;
	unsigned int shift = 0, bits;
	enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
	int cs = host->cs;

	if (ctrl->nand_version >= 0x0600)
		bits = 6;
	else if (ctrl->nand_version >= 0x0500)
		bits = 5;
	else
		bits = 4;

	if (ctrl->nand_version >= 0x0600) {
		if (cs >= 5)
			reg = BRCMNAND_CORR_THRESHOLD_EXT;
		shift = (cs % 5) * bits;
	}
	brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
}

static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
{
	if (ctrl->nand_version < 0x0700)
		return 24;
	return 0;
}

/***********************************************************************
 * NAND ACC CONTROL bitfield
 *
 * Some bits have remained constant throughout hardware revision, while
 * others have shifted around.
 ***********************************************************************/

/* Constant for all versions (where supported) */
enum {
	/* See BRCMNAND_HAS_CACHE_MODE */
	ACC_CONTROL_CACHE_MODE				= BIT(22),

	/* See BRCMNAND_HAS_PREFETCH */
	ACC_CONTROL_PREFETCH				= BIT(23),

	ACC_CONTROL_PAGE_HIT				= BIT(24),
	ACC_CONTROL_WR_PREEMPT				= BIT(25),
	ACC_CONTROL_PARTIAL_PAGE			= BIT(26),
	ACC_CONTROL_RD_ERASED				= BIT(27),
	ACC_CONTROL_FAST_PGM_RDIN			= BIT(28),
	ACC_CONTROL_WR_ECC				= BIT(30),
	ACC_CONTROL_RD_ECC				= BIT(31),
};

static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
{
	if (ctrl->nand_version >= 0x0600)
		return GENMASK(6, 0);
	else
		return GENMASK(5, 0);
}

#define NAND_ACC_CONTROL_ECC_SHIFT	16

static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
{
	u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;

	return mask << NAND_ACC_CONTROL_ECC_SHIFT;
}

static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
{
	struct brcmnand_controller *ctrl = host->ctrl;
	u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
	u32 acc_control = nand_readreg(ctrl, offs);
	u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;

	if (en) {
		acc_control |= ecc_flags; /* enable RD/WR ECC */
		acc_control |= host->hwcfg.ecc_level
			       << NAND_ACC_CONTROL_ECC_SHIFT;
	} else {
		acc_control &= ~ecc_flags; /* disable RD/WR ECC */
		acc_control &= ~brcmnand_ecc_level_mask(ctrl);
	}

	nand_writereg(ctrl, offs, acc_control);
}

static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
{
	if (ctrl->nand_version >= 0x0600)
		return 7;
	else if (ctrl->nand_version >= 0x0500)
		return 6;
	else
		return -1;
}

static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
{
	struct brcmnand_controller *ctrl = host->ctrl;
	int shift = brcmnand_sector_1k_shift(ctrl);
	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
						  BRCMNAND_CS_ACC_CONTROL);

	if (shift < 0)
		return 0;

	return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
}

static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
{
	struct brcmnand_controller *ctrl = host->ctrl;
	int shift = brcmnand_sector_1k_shift(ctrl);
	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
						  BRCMNAND_CS_ACC_CONTROL);
	u32 tmp;

	if (shift < 0)
		return;

	tmp = nand_readreg(ctrl, acc_control_offs);
	tmp &= ~(1 << shift);
	tmp |= (!!val) << shift;
	nand_writereg(ctrl, acc_control_offs, tmp);
}

/***********************************************************************
 * CS_NAND_SELECT
 ***********************************************************************/

enum {
	CS_SELECT_NAND_WP			= BIT(29),
	CS_SELECT_AUTO_DEVICE_ID_CFG		= BIT(30),
};

static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
{
	u32 val = en ? CS_SELECT_NAND_WP : 0;

	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
}

/***********************************************************************
 * Flash DMA
 ***********************************************************************/

enum flash_dma_reg {
	FLASH_DMA_REVISION		= 0x00,
	FLASH_DMA_FIRST_DESC		= 0x04,
	FLASH_DMA_FIRST_DESC_EXT	= 0x08,
	FLASH_DMA_CTRL			= 0x0c,
	FLASH_DMA_MODE			= 0x10,
	FLASH_DMA_STATUS		= 0x14,
	FLASH_DMA_INTERRUPT_DESC	= 0x18,
	FLASH_DMA_INTERRUPT_DESC_EXT	= 0x1c,
	FLASH_DMA_ERROR_STATUS		= 0x20,
	FLASH_DMA_CURRENT_DESC		= 0x24,
	FLASH_DMA_CURRENT_DESC_EXT	= 0x28,
};

static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
{
	return ctrl->flash_dma_base;
}

static inline bool flash_dma_buf_ok(const void *buf)
{
	return buf && !is_vmalloc_addr(buf) &&
		likely(IS_ALIGNED((uintptr_t)buf, 4));
}

static inline void flash_dma_writel(struct brcmnand_controller *ctrl, u8 offs,
				    u32 val)
{
	brcmnand_writel(val, ctrl->flash_dma_base + offs);
}

static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl, u8 offs)
{
	return brcmnand_readl(ctrl->flash_dma_base + offs);
}

/* Low-level operation types: command, address, write, or read */
enum brcmnand_llop_type {
	LL_OP_CMD,
	LL_OP_ADDR,
	LL_OP_WR,
	LL_OP_RD,
};

/***********************************************************************
 * Internal support functions
 ***********************************************************************/

static inline bool is_hamming_ecc(struct brcmnand_cfg *cfg)
{
	return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
		cfg->ecc_level == 15;
}

/*
 * Returns a nand_ecclayout strucutre for the given layout/configuration.
 * Returns NULL on failure.
 */
static struct nand_ecclayout *brcmnand_create_layout(int ecc_level,
						     struct brcmnand_host *host)
{
	struct brcmnand_cfg *cfg = &host->hwcfg;
	int i, j;
	struct nand_ecclayout *layout;
	int req;
	int sectors;
	int sas;
	int idx1, idx2;

	layout = devm_kzalloc(&host->pdev->dev, sizeof(*layout), GFP_KERNEL);
	if (!layout)
		return NULL;

	sectors = cfg->page_size / (512 << cfg->sector_size_1k);
	sas = cfg->spare_area_size << cfg->sector_size_1k;

	/* Hamming */
	if (is_hamming_ecc(cfg)) {
		for (i = 0, idx1 = 0, idx2 = 0; i < sectors; i++) {
			/* First sector of each page may have BBI */
			if (i == 0) {
				layout->oobfree[idx2].offset = i * sas + 1;
				/* Small-page NAND use byte 6 for BBI */
				if (cfg->page_size == 512)
					layout->oobfree[idx2].offset--;
				layout->oobfree[idx2].length = 5;
			} else {
				layout->oobfree[idx2].offset = i * sas;
				layout->oobfree[idx2].length = 6;
			}
			idx2++;
			layout->eccpos[idx1++] = i * sas + 6;
			layout->eccpos[idx1++] = i * sas + 7;
			layout->eccpos[idx1++] = i * sas + 8;
			layout->oobfree[idx2].offset = i * sas + 9;
			layout->oobfree[idx2].length = 7;
			idx2++;
			/* Leave zero-terminated entry for OOBFREE */
			if (idx1 >= MTD_MAX_ECCPOS_ENTRIES_LARGE ||
				    idx2 >= MTD_MAX_OOBFREE_ENTRIES_LARGE - 1)
				break;
		}
		goto out;
	}

	/*
	 * CONTROLLER_VERSION:
	 *   < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
	 *  >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
	 * But we will just be conservative.
	 */
	req = DIV_ROUND_UP(ecc_level * 14, 8);
	if (req >= sas) {
		dev_err(&host->pdev->dev,
			"error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
			req, sas);
		return NULL;
	}

	layout->eccbytes = req * sectors;
	for (i = 0, idx1 = 0, idx2 = 0; i < sectors; i++) {
		for (j = sas - req; j < sas && idx1 <
				MTD_MAX_ECCPOS_ENTRIES_LARGE; j++, idx1++)
			layout->eccpos[idx1] = i * sas + j;

		/* First sector of each page may have BBI */
		if (i == 0) {
			if (cfg->page_size == 512 && (sas - req >= 6)) {
				/* Small-page NAND use byte 6 for BBI */
				layout->oobfree[idx2].offset = 0;
				layout->oobfree[idx2].length = 5;
				idx2++;
				if (sas - req > 6) {
					layout->oobfree[idx2].offset = 6;
					layout->oobfree[idx2].length =
						sas - req - 6;
					idx2++;
				}
			} else if (sas > req + 1) {
				layout->oobfree[idx2].offset = i * sas + 1;
				layout->oobfree[idx2].length = sas - req - 1;
				idx2++;
			}
		} else if (sas > req) {
			layout->oobfree[idx2].offset = i * sas;
			layout->oobfree[idx2].length = sas - req;
			idx2++;
		}
		/* Leave zero-terminated entry for OOBFREE */
		if (idx1 >= MTD_MAX_ECCPOS_ENTRIES_LARGE ||
				idx2 >= MTD_MAX_OOBFREE_ENTRIES_LARGE - 1)
			break;
	}
out:
	/* Sum available OOB */
	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE; i++)
		layout->oobavail += layout->oobfree[i].length;
	return layout;
}

static struct nand_ecclayout *brcmstb_choose_ecc_layout(
		struct brcmnand_host *host)
{
	struct nand_ecclayout *layout;
	struct brcmnand_cfg *p = &host->hwcfg;
	unsigned int ecc_level = p->ecc_level;

	if (p->sector_size_1k)
		ecc_level <<= 1;

	layout = brcmnand_create_layout(ecc_level, host);
	if (!layout) {
		dev_err(&host->pdev->dev,
				"no proper ecc_layout for this NAND cfg\n");
		return NULL;
	}

	return layout;
}

static void brcmnand_wp(struct mtd_info *mtd, int wp)
{
	struct nand_chip *chip = mtd->priv;
	struct brcmnand_host *host = chip->priv;
	struct brcmnand_controller *ctrl = host->ctrl;

	if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
		static int old_wp = -1;

		if (old_wp != wp) {
			dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
			old_wp = wp;
		}
		brcmnand_set_wp(ctrl, wp);
	}
}

/* Helper functions for reading and writing OOB registers */
static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
{
	u16 offset0, offset10, reg_offs;

	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];

	if (offs >= ctrl->max_oob)
		return 0x77;

	if (offs >= 16 && offset10)
		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
	else
		reg_offs = offset0 + (offs & ~0x03);

	return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
}

static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
				 u32 data)
{
	u16 offset0, offset10, reg_offs;

	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];

	if (offs >= ctrl->max_oob)
		return;

	if (offs >= 16 && offset10)
		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
	else
		reg_offs = offset0 + (offs & ~0x03);

	nand_writereg(ctrl, reg_offs, data);
}

/*
 * read_oob_from_regs - read data from OOB registers
 * @ctrl: NAND controller
 * @i: sub-page sector index
 * @oob: buffer to read to
 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
 */
static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
			      int sas, int sector_1k)
{
	int tbytes = sas << sector_1k;
	int j;

	/* Adjust OOB values for 1K sector size */
	if (sector_1k && (i & 0x01))
		tbytes = max(0, tbytes - (int)ctrl->max_oob);
	tbytes = min_t(int, tbytes, ctrl->max_oob);

	for (j = 0; j < tbytes; j++)
		oob[j] = oob_reg_read(ctrl, j);
	return tbytes;
}

/*
 * write_oob_to_regs - write data to OOB registers
 * @i: sub-page sector index
 * @oob: buffer to write from
 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
 */
static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
			     const u8 *oob, int sas, int sector_1k)
{
	int tbytes = sas << sector_1k;
	int j;

	/* Adjust OOB values for 1K sector size */
	if (sector_1k && (i & 0x01))
		tbytes = max(0, tbytes - (int)ctrl->max_oob);
	tbytes = min_t(int, tbytes, ctrl->max_oob);

	for (j = 0; j < tbytes; j += 4)
		oob_reg_write(ctrl, j,
				(oob[j + 0] << 24) |
				(oob[j + 1] << 16) |
				(oob[j + 2] <<  8) |
				(oob[j + 3] <<  0));
	return tbytes;
}

static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
{
	struct brcmnand_controller *ctrl = data;

	/* Discard all NAND_CTLRDY interrupts during DMA */
	if (ctrl->dma_pending)
		return IRQ_HANDLED;

	complete(&ctrl->done);
	return IRQ_HANDLED;
}

993 994 995 996 997 998 999 1000 1001 1002 1003
/* Handle SoC-specific interrupt hardware */
static irqreturn_t brcmnand_irq(int irq, void *data)
{
	struct brcmnand_controller *ctrl = data;

	if (ctrl->soc->ctlrdy_ack(ctrl->soc))
		return brcmnand_ctlrdy_irq(irq, data);

	return IRQ_NONE;
}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
static irqreturn_t brcmnand_dma_irq(int irq, void *data)
{
	struct brcmnand_controller *ctrl = data;

	complete(&ctrl->dma_done);

	return IRQ_HANDLED;
}

static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
{
	struct brcmnand_controller *ctrl = host->ctrl;
	u32 intfc;

	dev_dbg(ctrl->dev, "send native cmd %d addr_lo 0x%x\n", cmd,
		brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS));
	BUG_ON(ctrl->cmd_pending != 0);
	ctrl->cmd_pending = cmd;

	intfc = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
	BUG_ON(!(intfc & INTFC_CTLR_READY));

	mb(); /* flush previous writes */
	brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
			   cmd << brcmnand_cmd_shift(ctrl));
}

/***********************************************************************
 * NAND MTD API: read/program/erase
 ***********************************************************************/

static void brcmnand_cmd_ctrl(struct mtd_info *mtd, int dat,
	unsigned int ctrl)
{
	/* intentionally left blank */
}

static int brcmnand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
{
	struct nand_chip *chip = mtd->priv;
	struct brcmnand_host *host = chip->priv;
	struct brcmnand_controller *ctrl = host->ctrl;
	unsigned long timeo = msecs_to_jiffies(100);

	dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
	if (ctrl->cmd_pending &&
			wait_for_completion_timeout(&ctrl->done, timeo) <= 0) {
		u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
					>> brcmnand_cmd_shift(ctrl);

		dev_err_ratelimited(ctrl->dev,
			"timeout waiting for command %#02x\n", cmd);
		dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
			brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
	}
	ctrl->cmd_pending = 0;
	return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
				 INTFC_FLASH_STATUS;
}

enum {
	LLOP_RE				= BIT(16),
	LLOP_WE				= BIT(17),
	LLOP_ALE			= BIT(18),
	LLOP_CLE			= BIT(19),
	LLOP_RETURN_IDLE		= BIT(31),

	LLOP_DATA_MASK			= GENMASK(15, 0),
};

static int brcmnand_low_level_op(struct brcmnand_host *host,
				 enum brcmnand_llop_type type, u32 data,
				 bool last_op)
{
	struct mtd_info *mtd = &host->mtd;
	struct nand_chip *chip = &host->chip;
	struct brcmnand_controller *ctrl = host->ctrl;
	u32 tmp;

	tmp = data & LLOP_DATA_MASK;
	switch (type) {
	case LL_OP_CMD:
		tmp |= LLOP_WE | LLOP_CLE;
		break;
	case LL_OP_ADDR:
		/* WE | ALE */
		tmp |= LLOP_WE | LLOP_ALE;
		break;
	case LL_OP_WR:
		/* WE */
		tmp |= LLOP_WE;
		break;
	case LL_OP_RD:
		/* RE */
		tmp |= LLOP_RE;
		break;
	}
	if (last_op)
		/* RETURN_IDLE */
		tmp |= LLOP_RETURN_IDLE;

	dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);

	brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
	(void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);

	brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
	return brcmnand_waitfunc(mtd, chip);
}

static void brcmnand_cmdfunc(struct mtd_info *mtd, unsigned command,
			     int column, int page_addr)
{
	struct nand_chip *chip = mtd->priv;
	struct brcmnand_host *host = chip->priv;
	struct brcmnand_controller *ctrl = host->ctrl;
	u64 addr = (u64)page_addr << chip->page_shift;
	int native_cmd = 0;

	if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
			command == NAND_CMD_RNDOUT)
		addr = (u64)column;
	/* Avoid propagating a negative, don't-care address */
	else if (page_addr < 0)
		addr = 0;

	dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
		(unsigned long long)addr);

	host->last_cmd = command;
	host->last_byte = 0;
	host->last_addr = addr;

	switch (command) {
	case NAND_CMD_RESET:
		native_cmd = CMD_FLASH_RESET;
		break;
	case NAND_CMD_STATUS:
		native_cmd = CMD_STATUS_READ;
		break;
	case NAND_CMD_READID:
		native_cmd = CMD_DEVICE_ID_READ;
		break;
	case NAND_CMD_READOOB:
		native_cmd = CMD_SPARE_AREA_READ;
		break;
	case NAND_CMD_ERASE1:
		native_cmd = CMD_BLOCK_ERASE;
		brcmnand_wp(mtd, 0);
		break;
	case NAND_CMD_PARAM:
		native_cmd = CMD_PARAMETER_READ;
		break;
	case NAND_CMD_SET_FEATURES:
	case NAND_CMD_GET_FEATURES:
		brcmnand_low_level_op(host, LL_OP_CMD, command, false);
		brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
		break;
	case NAND_CMD_RNDOUT:
		native_cmd = CMD_PARAMETER_CHANGE_COL;
		addr &= ~((u64)(FC_BYTES - 1));
		/*
		 * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
		 * NB: hwcfg.sector_size_1k may not be initialized yet
		 */
		if (brcmnand_get_sector_size_1k(host)) {
			host->hwcfg.sector_size_1k =
				brcmnand_get_sector_size_1k(host);
			brcmnand_set_sector_size_1k(host, 0);
		}
		break;
	}

	if (!native_cmd)
		return;

	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
		(host->cs << 16) | ((addr >> 32) & 0xffff));
	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
	brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, lower_32_bits(addr));
	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);

	brcmnand_send_cmd(host, native_cmd);
	brcmnand_waitfunc(mtd, chip);

	if (native_cmd == CMD_PARAMETER_READ ||
			native_cmd == CMD_PARAMETER_CHANGE_COL) {
		int i;
1192 1193 1194

		brcmnand_soc_data_bus_prepare(ctrl->soc);

1195 1196 1197 1198 1199 1200
		/*
		 * Must cache the FLASH_CACHE now, since changes in
		 * SECTOR_SIZE_1K may invalidate it
		 */
		for (i = 0; i < FC_WORDS; i++)
			ctrl->flash_cache[i] = brcmnand_read_fc(ctrl, i);
1201 1202 1203

		brcmnand_soc_data_bus_unprepare(ctrl->soc);

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
		/* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
		if (host->hwcfg.sector_size_1k)
			brcmnand_set_sector_size_1k(host,
						    host->hwcfg.sector_size_1k);
	}

	/* Re-enable protection is necessary only after erase */
	if (command == NAND_CMD_ERASE1)
		brcmnand_wp(mtd, 1);
}

static uint8_t brcmnand_read_byte(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct brcmnand_host *host = chip->priv;
	struct brcmnand_controller *ctrl = host->ctrl;
	uint8_t ret = 0;
	int addr, offs;

	switch (host->last_cmd) {
	case NAND_CMD_READID:
		if (host->last_byte < 4)
			ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
				(24 - (host->last_byte << 3));
		else if (host->last_byte < 8)
			ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
				(56 - (host->last_byte << 3));
		break;

	case NAND_CMD_READOOB:
		ret = oob_reg_read(ctrl, host->last_byte);
		break;

	case NAND_CMD_STATUS:
		ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
					INTFC_FLASH_STATUS;
		if (wp_on) /* hide WP status */
			ret |= NAND_STATUS_WP;
		break;

	case NAND_CMD_PARAM:
	case NAND_CMD_RNDOUT:
		addr = host->last_addr + host->last_byte;
		offs = addr & (FC_BYTES - 1);

		/* At FC_BYTES boundary, switch to next column */
		if (host->last_byte > 0 && offs == 0)
			chip->cmdfunc(mtd, NAND_CMD_RNDOUT, addr, -1);

		ret = ctrl->flash_cache[offs >> 2] >>
					(24 - ((offs & 0x03) << 3));
		break;
	case NAND_CMD_GET_FEATURES:
		if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
			ret = 0;
		} else {
			bool last = host->last_byte ==
				ONFI_SUBFEATURE_PARAM_LEN - 1;
			brcmnand_low_level_op(host, LL_OP_RD, 0, last);
			ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
		}
	}

	dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
	host->last_byte++;

	return ret;
}

static void brcmnand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
	int i;

	for (i = 0; i < len; i++, buf++)
		*buf = brcmnand_read_byte(mtd);
}

static void brcmnand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
				   int len)
{
	int i;
	struct nand_chip *chip = mtd->priv;
	struct brcmnand_host *host = chip->priv;

	switch (host->last_cmd) {
	case NAND_CMD_SET_FEATURES:
		for (i = 0; i < len; i++)
			brcmnand_low_level_op(host, LL_OP_WR, buf[i],
						  (i + 1) == len);
		break;
	default:
		BUG();
		break;
	}
}

/**
 * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
 * following ahead of time:
 *  - Is this descriptor the beginning or end of a linked list?
 *  - What is the (DMA) address of the next descriptor in the linked list?
 */
static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
				  struct brcm_nand_dma_desc *desc, u64 addr,
				  dma_addr_t buf, u32 len, u8 dma_cmd,
				  bool begin, bool end,
				  dma_addr_t next_desc)
{
	memset(desc, 0, sizeof(*desc));
	/* Descriptors are written in native byte order (wordwise) */
	desc->next_desc = lower_32_bits(next_desc);
	desc->next_desc_ext = upper_32_bits(next_desc);
	desc->cmd_irq = (dma_cmd << 24) |
		(end ? (0x03 << 8) : 0) | /* IRQ | STOP */
		(!!begin) | ((!!end) << 1); /* head, tail */
#ifdef CONFIG_CPU_BIG_ENDIAN
	desc->cmd_irq |= 0x01 << 12;
#endif
	desc->dram_addr = lower_32_bits(buf);
	desc->dram_addr_ext = upper_32_bits(buf);
	desc->tfr_len = len;
	desc->total_len = len;
	desc->flash_addr = lower_32_bits(addr);
	desc->flash_addr_ext = upper_32_bits(addr);
	desc->cs = host->cs;
	desc->status_valid = 0x01;
	return 0;
}

/**
 * Kick the FLASH_DMA engine, with a given DMA descriptor
 */
static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
{
	struct brcmnand_controller *ctrl = host->ctrl;
	unsigned long timeo = msecs_to_jiffies(100);

	flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
	(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
	flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT, upper_32_bits(desc));
	(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);

	/* Start FLASH_DMA engine */
	ctrl->dma_pending = true;
	mb(); /* flush previous writes */
	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */

	if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
		dev_err(ctrl->dev,
				"timeout waiting for DMA; status %#x, error status %#x\n",
				flash_dma_readl(ctrl, FLASH_DMA_STATUS),
				flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
	}
	ctrl->dma_pending = false;
	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
}

static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
			      u32 len, u8 dma_cmd)
{
	struct brcmnand_controller *ctrl = host->ctrl;
	dma_addr_t buf_pa;
	int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;

	buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
	if (dma_mapping_error(ctrl->dev, buf_pa)) {
		dev_err(ctrl->dev, "unable to map buffer for DMA\n");
		return -ENOMEM;
	}

	brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
				   dma_cmd, true, true, 0);

	brcmnand_dma_run(host, ctrl->dma_pa);

	dma_unmap_single(ctrl->dev, buf_pa, len, dir);

	if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
		return -EBADMSG;
	else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
		return -EUCLEAN;

	return 0;
}

/*
 * Assumes proper CS is already set
 */
static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
				u64 addr, unsigned int trans, u32 *buf,
				u8 *oob, u64 *err_addr)
{
	struct brcmnand_host *host = chip->priv;
	struct brcmnand_controller *ctrl = host->ctrl;
	int i, j, ret = 0;

	/* Clear error addresses */
	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
	brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);

	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
			(host->cs << 16) | ((addr >> 32) & 0xffff));
	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);

	for (i = 0; i < trans; i++, addr += FC_BYTES) {
		brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
				   lower_32_bits(addr));
		(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
		/* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
		brcmnand_send_cmd(host, CMD_PAGE_READ);
		brcmnand_waitfunc(mtd, chip);

1416 1417 1418
		if (likely(buf)) {
			brcmnand_soc_data_bus_prepare(ctrl->soc);

1419 1420 1421
			for (j = 0; j < FC_WORDS; j++, buf++)
				*buf = brcmnand_read_fc(ctrl, j);

1422 1423 1424
			brcmnand_soc_data_bus_unprepare(ctrl->soc);
		}

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
		if (oob)
			oob += read_oob_from_regs(ctrl, i, oob,
					mtd->oobsize / trans,
					host->hwcfg.sector_size_1k);

		if (!ret) {
			*err_addr = brcmnand_read_reg(ctrl,
					BRCMNAND_UNCORR_ADDR) |
				((u64)(brcmnand_read_reg(ctrl,
						BRCMNAND_UNCORR_EXT_ADDR)
					& 0xffff) << 32);
			if (*err_addr)
				ret = -EBADMSG;
		}

		if (!ret) {
			*err_addr = brcmnand_read_reg(ctrl,
					BRCMNAND_CORR_ADDR) |
				((u64)(brcmnand_read_reg(ctrl,
						BRCMNAND_CORR_EXT_ADDR)
					& 0xffff) << 32);
			if (*err_addr)
				ret = -EUCLEAN;
		}
	}

	return ret;
}

static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
			 u64 addr, unsigned int trans, u32 *buf, u8 *oob)
{
	struct brcmnand_host *host = chip->priv;
	struct brcmnand_controller *ctrl = host->ctrl;
	u64 err_addr = 0;
	int err;

	dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);

	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_COUNT, 0);

	if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
		err = brcmnand_dma_trans(host, addr, buf, trans * FC_BYTES,
					     CMD_PAGE_READ);
		if (err) {
			if (mtd_is_bitflip_or_eccerr(err))
				err_addr = addr;
			else
				return -EIO;
		}
	} else {
		if (oob)
			memset(oob, 0x99, mtd->oobsize);

		err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
					       oob, &err_addr);
	}

	if (mtd_is_eccerr(err)) {
		dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
			(unsigned long long)err_addr);
		mtd->ecc_stats.failed++;
		/* NAND layer expects zero on ECC errors */
		return 0;
	}

	if (mtd_is_bitflip(err)) {
		unsigned int corrected = brcmnand_count_corrected(ctrl);

		dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
			(unsigned long long)err_addr);
		mtd->ecc_stats.corrected += corrected;
		/* Always exceed the software-imposed threshold */
		return max(mtd->bitflip_threshold, corrected);
	}

	return 0;
}

static int brcmnand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
			      uint8_t *buf, int oob_required, int page)
{
	struct brcmnand_host *host = chip->priv;
	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;

	return brcmnand_read(mtd, chip, host->last_addr,
			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
}

static int brcmnand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
				  uint8_t *buf, int oob_required, int page)
{
	struct brcmnand_host *host = chip->priv;
	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
	int ret;

	brcmnand_set_ecc_enabled(host, 0);
	ret = brcmnand_read(mtd, chip, host->last_addr,
			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
	brcmnand_set_ecc_enabled(host, 1);
	return ret;
}

static int brcmnand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
			     int page)
{
	return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
			mtd->writesize >> FC_SHIFT,
			NULL, (u8 *)chip->oob_poi);
}

static int brcmnand_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
				 int page)
{
	struct brcmnand_host *host = chip->priv;

	brcmnand_set_ecc_enabled(host, 0);
	brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
		mtd->writesize >> FC_SHIFT,
		NULL, (u8 *)chip->oob_poi);
	brcmnand_set_ecc_enabled(host, 1);
	return 0;
}

static int brcmnand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
				 uint32_t data_offs, uint32_t readlen,
				 uint8_t *bufpoi, int page)
{
	struct brcmnand_host *host = chip->priv;

	return brcmnand_read(mtd, chip, host->last_addr + data_offs,
			readlen >> FC_SHIFT, (u32 *)bufpoi, NULL);
}

static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
			  u64 addr, const u32 *buf, u8 *oob)
{
	struct brcmnand_host *host = chip->priv;
	struct brcmnand_controller *ctrl = host->ctrl;
	unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
	int status, ret = 0;

	dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);

1569
	if (unlikely((unsigned long)buf & 0x03)) {
1570
		dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
1571
		buf = (u32 *)((unsigned long)buf & ~0x03);
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
	}

	brcmnand_wp(mtd, 0);

	for (i = 0; i < ctrl->max_oob; i += 4)
		oob_reg_write(ctrl, i, 0xffffffff);

	if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
		if (brcmnand_dma_trans(host, addr, (u32 *)buf,
					mtd->writesize, CMD_PROGRAM_PAGE))
			ret = -EIO;
		goto out;
	}

	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
			(host->cs << 16) | ((addr >> 32) & 0xffff));
	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);

	for (i = 0; i < trans; i++, addr += FC_BYTES) {
		/* full address MUST be set before populating FC */
		brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
				   lower_32_bits(addr));
		(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);

1596 1597 1598
		if (buf) {
			brcmnand_soc_data_bus_prepare(ctrl->soc);

1599 1600
			for (j = 0; j < FC_WORDS; j++, buf++)
				brcmnand_write_fc(ctrl, j, *buf);
1601 1602 1603

			brcmnand_soc_data_bus_unprepare(ctrl->soc);
		} else if (oob) {
1604 1605
			for (j = 0; j < FC_WORDS; j++)
				brcmnand_write_fc(ctrl, j, 0xffffffff);
1606
		}
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630

		if (oob) {
			oob += write_oob_to_regs(ctrl, i, oob,
					mtd->oobsize / trans,
					host->hwcfg.sector_size_1k);
		}

		/* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
		brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
		status = brcmnand_waitfunc(mtd, chip);

		if (status & NAND_STATUS_FAIL) {
			dev_info(ctrl->dev, "program failed at %llx\n",
				(unsigned long long)addr);
			ret = -EIO;
			goto out;
		}
	}
out:
	brcmnand_wp(mtd, 1);
	return ret;
}

static int brcmnand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1631
			       const uint8_t *buf, int oob_required, int page)
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
{
	struct brcmnand_host *host = chip->priv;
	void *oob = oob_required ? chip->oob_poi : NULL;

	brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
	return 0;
}

static int brcmnand_write_page_raw(struct mtd_info *mtd,
				   struct nand_chip *chip, const uint8_t *buf,
1642
				   int oob_required, int page)
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
{
	struct brcmnand_host *host = chip->priv;
	void *oob = oob_required ? chip->oob_poi : NULL;

	brcmnand_set_ecc_enabled(host, 0);
	brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
	brcmnand_set_ecc_enabled(host, 1);
	return 0;
}

static int brcmnand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
				  int page)
{
	return brcmnand_write(mtd, chip, (u64)page << chip->page_shift,
				  NULL, chip->oob_poi);
}

static int brcmnand_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
				  int page)
{
	struct brcmnand_host *host = chip->priv;
	int ret;

	brcmnand_set_ecc_enabled(host, 0);
	ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
				 (u8 *)chip->oob_poi);
	brcmnand_set_ecc_enabled(host, 1);

	return ret;
}

/***********************************************************************
 * Per-CS setup (1 NAND device)
 ***********************************************************************/

static int brcmnand_set_cfg(struct brcmnand_host *host,
			    struct brcmnand_cfg *cfg)
{
	struct brcmnand_controller *ctrl = host->ctrl;
	struct nand_chip *chip = &host->chip;
	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
			BRCMNAND_CS_CFG_EXT);
	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
			BRCMNAND_CS_ACC_CONTROL);
	u8 block_size = 0, page_size = 0, device_size = 0;
	u32 tmp;

	if (ctrl->block_sizes) {
		int i, found;

		for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
			if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
				block_size = i;
				found = 1;
			}
		if (!found) {
			dev_warn(ctrl->dev, "invalid block size %u\n",
					cfg->block_size);
			return -EINVAL;
		}
	} else {
		block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
	}

	if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
				cfg->block_size > ctrl->max_block_size)) {
		dev_warn(ctrl->dev, "invalid block size %u\n",
				cfg->block_size);
		block_size = 0;
	}

	if (ctrl->page_sizes) {
		int i, found;

		for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
			if (ctrl->page_sizes[i] == cfg->page_size) {
				page_size = i;
				found = 1;
			}
		if (!found) {
			dev_warn(ctrl->dev, "invalid page size %u\n",
					cfg->page_size);
			return -EINVAL;
		}
	} else {
		page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
	}

	if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
				cfg->page_size > ctrl->max_page_size)) {
		dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
		return -EINVAL;
	}

	if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
		dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
			(unsigned long long)cfg->device_size);
		return -EINVAL;
	}
	device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);

1745 1746 1747 1748 1749
	tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
		(cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
		(cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
		(!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
		(device_size << CFG_DEVICE_SIZE_SHIFT);
1750
	if (cfg_offs == cfg_ext_offs) {
1751 1752
		tmp |= (page_size << CFG_PAGE_SIZE_SHIFT) |
		       (block_size << CFG_BLK_SIZE_SHIFT);
1753 1754 1755
		nand_writereg(ctrl, cfg_offs, tmp);
	} else {
		nand_writereg(ctrl, cfg_offs, tmp);
1756 1757
		tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
		      (block_size << CFG_EXT_BLK_SIZE_SHIFT);
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
		nand_writereg(ctrl, cfg_ext_offs, tmp);
	}

	tmp = nand_readreg(ctrl, acc_control_offs);
	tmp &= ~brcmnand_ecc_level_mask(ctrl);
	tmp |= cfg->ecc_level << NAND_ACC_CONTROL_ECC_SHIFT;
	tmp &= ~brcmnand_spare_area_mask(ctrl);
	tmp |= cfg->spare_area_size;
	nand_writereg(ctrl, acc_control_offs, tmp);

	brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);

	/* threshold = ceil(BCH-level * 0.75) */
	brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));

	return 0;
}

static void brcmnand_print_cfg(char *buf, struct brcmnand_cfg *cfg)
{
	buf += sprintf(buf,
		"%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
		(unsigned long long)cfg->device_size >> 20,
		cfg->block_size >> 10,
		cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
		cfg->page_size >= 1024 ? "KiB" : "B",
		cfg->spare_area_size, cfg->device_width);

	/* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
	if (is_hamming_ecc(cfg))
		sprintf(buf, ", Hamming ECC");
	else if (cfg->sector_size_1k)
		sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
	else
1792
		sprintf(buf, ", BCH-%u", cfg->ecc_level);
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
}

/*
 * Minimum number of bytes to address a page. Calculated as:
 *     roundup(log2(size / page-size) / 8)
 *
 * NB: the following does not "round up" for non-power-of-2 'size'; but this is
 *     OK because many other things will break if 'size' is irregular...
 */
static inline int get_blk_adr_bytes(u64 size, u32 writesize)
{
	return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
}

static int brcmnand_setup_dev(struct brcmnand_host *host)
{
	struct mtd_info *mtd = &host->mtd;
	struct nand_chip *chip = &host->chip;
	struct brcmnand_controller *ctrl = host->ctrl;
	struct brcmnand_cfg *cfg = &host->hwcfg;
	char msg[128];
	u32 offs, tmp, oob_sector;
	int ret;

	memset(cfg, 0, sizeof(*cfg));

1819 1820
	ret = of_property_read_u32(chip->flash_node,
				   "brcm,nand-oob-sector-size",
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
				   &oob_sector);
	if (ret) {
		/* Use detected size */
		cfg->spare_area_size = mtd->oobsize /
					(mtd->writesize >> FC_SHIFT);
	} else {
		cfg->spare_area_size = oob_sector;
	}
	if (cfg->spare_area_size > ctrl->max_oob)
		cfg->spare_area_size = ctrl->max_oob;
	/*
	 * Set oobsize to be consistent with controller's spare_area_size, as
	 * the rest is inaccessible.
	 */
	mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);

	cfg->device_size = mtd->size;
	cfg->block_size = mtd->erasesize;
	cfg->page_size = mtd->writesize;
	cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
	cfg->col_adr_bytes = 2;
	cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);

	switch (chip->ecc.size) {
	case 512:
		if (chip->ecc.strength == 1) /* Hamming */
			cfg->ecc_level = 15;
		else
			cfg->ecc_level = chip->ecc.strength;
		cfg->sector_size_1k = 0;
		break;
	case 1024:
		if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
			dev_err(ctrl->dev, "1KB sectors not supported\n");
			return -EINVAL;
		}
		if (chip->ecc.strength & 0x1) {
			dev_err(ctrl->dev,
				"odd ECC not supported with 1KB sectors\n");
			return -EINVAL;
		}

		cfg->ecc_level = chip->ecc.strength >> 1;
		cfg->sector_size_1k = 1;
		break;
	default:
		dev_err(ctrl->dev, "unsupported ECC size: %d\n",
			chip->ecc.size);
		return -EINVAL;
	}

	cfg->ful_adr_bytes = cfg->blk_adr_bytes;
	if (mtd->writesize > 512)
		cfg->ful_adr_bytes += cfg->col_adr_bytes;
	else
		cfg->ful_adr_bytes += 1;

	ret = brcmnand_set_cfg(host, cfg);
	if (ret)
		return ret;

	brcmnand_set_ecc_enabled(host, 1);

	brcmnand_print_cfg(msg, cfg);
	dev_info(ctrl->dev, "detected %s\n", msg);

	/* Configure ACC_CONTROL */
	offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
	tmp = nand_readreg(ctrl, offs);
	tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
	tmp &= ~ACC_CONTROL_RD_ERASED;
	tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
	if (ctrl->features & BRCMNAND_HAS_PREFETCH) {
		/*
		 * FIXME: Flash DMA + prefetch may see spurious erased-page ECC
		 * errors
		 */
		if (has_flash_dma(ctrl))
			tmp &= ~ACC_CONTROL_PREFETCH;
		else
			tmp |= ACC_CONTROL_PREFETCH;
	}
	nand_writereg(ctrl, offs, tmp);

	return 0;
}

static int brcmnand_init_cs(struct brcmnand_host *host)
{
	struct brcmnand_controller *ctrl = host->ctrl;
	struct device_node *dn = host->of_node;
	struct platform_device *pdev = host->pdev;
	struct mtd_info *mtd;
	struct nand_chip *chip;
1915
	int ret;
1916
	u16 cfg_offs;
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
	struct mtd_part_parser_data ppdata = { .of_node = dn };

	ret = of_property_read_u32(dn, "reg", &host->cs);
	if (ret) {
		dev_err(&pdev->dev, "can't get chip-select\n");
		return -ENXIO;
	}

	mtd = &host->mtd;
	chip = &host->chip;

1928
	chip->flash_node = dn;
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
	chip->priv = host;
	mtd->priv = chip;
	mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "brcmnand.%d",
				   host->cs);
	mtd->owner = THIS_MODULE;
	mtd->dev.parent = &pdev->dev;

	chip->IO_ADDR_R = (void __iomem *)0xdeadbeef;
	chip->IO_ADDR_W = (void __iomem *)0xdeadbeef;

	chip->cmd_ctrl = brcmnand_cmd_ctrl;
	chip->cmdfunc = brcmnand_cmdfunc;
	chip->waitfunc = brcmnand_waitfunc;
	chip->read_byte = brcmnand_read_byte;
	chip->read_buf = brcmnand_read_buf;
	chip->write_buf = brcmnand_write_buf;

	chip->ecc.mode = NAND_ECC_HW;
	chip->ecc.read_page = brcmnand_read_page;
	chip->ecc.read_subpage = brcmnand_read_subpage;
	chip->ecc.write_page = brcmnand_write_page;
	chip->ecc.read_page_raw = brcmnand_read_page_raw;
	chip->ecc.write_page_raw = brcmnand_write_page_raw;
	chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
	chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
	chip->ecc.read_oob = brcmnand_read_oob;
	chip->ecc.write_oob = brcmnand_write_oob;

	chip->controller = &ctrl->controller;

1959 1960 1961 1962 1963 1964 1965 1966 1967
	/*
	 * The bootloader might have configured 16bit mode but
	 * NAND READID command only works in 8bit mode. We force
	 * 8bit mode here to ensure that NAND READID commands works.
	 */
	cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
	nand_writereg(ctrl, cfg_offs,
		      nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
	if (nand_scan_ident(mtd, 1, NULL))
		return -ENXIO;

	chip->options |= NAND_NO_SUBPAGE_WRITE;
	/*
	 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
	 * to/from, and have nand_base pass us a bounce buffer instead, as
	 * needed.
	 */
	chip->options |= NAND_USE_BOUNCE_BUFFER;

	if (of_get_nand_on_flash_bbt(dn))
		chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;

	if (brcmnand_setup_dev(host))
		return -ENXIO;

	chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
	/* only use our internal HW threshold */
	mtd->bitflip_threshold = 1;

	chip->ecc.layout = brcmstb_choose_ecc_layout(host);
	if (!chip->ecc.layout)
		return -ENXIO;

	if (nand_scan_tail(mtd))
		return -ENXIO;

	return mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
}

static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
					    int restore)
{
	struct brcmnand_controller *ctrl = host->ctrl;
	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
			BRCMNAND_CS_CFG_EXT);
	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
			BRCMNAND_CS_ACC_CONTROL);
	u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
	u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);

	if (restore) {
		nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
		if (cfg_offs != cfg_ext_offs)
			nand_writereg(ctrl, cfg_ext_offs,
				      host->hwcfg.config_ext);
		nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
		nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
		nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
	} else {
		host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
		if (cfg_offs != cfg_ext_offs)
			host->hwcfg.config_ext =
				nand_readreg(ctrl, cfg_ext_offs);
		host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
		host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
		host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
	}
}

static int brcmnand_suspend(struct device *dev)
{
	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
	struct brcmnand_host *host;

	list_for_each_entry(host, &ctrl->host_list, node)
		brcmnand_save_restore_cs_config(host, 0);

	ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
	ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
	ctrl->corr_stat_threshold =
		brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);

	if (has_flash_dma(ctrl))
		ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);

	return 0;
}

static int brcmnand_resume(struct device *dev)
{
	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
	struct brcmnand_host *host;

	if (has_flash_dma(ctrl)) {
		flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
	}

	brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
	brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
	brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
			ctrl->corr_stat_threshold);
2063 2064 2065 2066 2067
	if (ctrl->soc) {
		/* Clear/re-enable interrupt */
		ctrl->soc->ctlrdy_ack(ctrl->soc);
		ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
	}
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106

	list_for_each_entry(host, &ctrl->host_list, node) {
		struct mtd_info *mtd = &host->mtd;
		struct nand_chip *chip = mtd->priv;

		brcmnand_save_restore_cs_config(host, 1);

		/* Reset the chip, required by some chips after power-up */
		chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
	}

	return 0;
}

const struct dev_pm_ops brcmnand_pm_ops = {
	.suspend		= brcmnand_suspend,
	.resume			= brcmnand_resume,
};
EXPORT_SYMBOL_GPL(brcmnand_pm_ops);

static const struct of_device_id brcmnand_of_match[] = {
	{ .compatible = "brcm,brcmnand-v4.0" },
	{ .compatible = "brcm,brcmnand-v5.0" },
	{ .compatible = "brcm,brcmnand-v6.0" },
	{ .compatible = "brcm,brcmnand-v6.1" },
	{ .compatible = "brcm,brcmnand-v7.0" },
	{ .compatible = "brcm,brcmnand-v7.1" },
	{},
};
MODULE_DEVICE_TABLE(of, brcmnand_of_match);

/***********************************************************************
 * Platform driver setup (per controller)
 ***********************************************************************/

int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
{
	struct device *dev = &pdev->dev;
	struct device_node *dn = dev->of_node, *child;
2107
	struct brcmnand_controller *ctrl;
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
	struct resource *res;
	int ret;

	/* We only support device-tree instantiation */
	if (!dn)
		return -ENODEV;

	if (!of_match_node(brcmnand_of_match, dn))
		return -ENODEV;

	ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
	if (!ctrl)
		return -ENOMEM;

	dev_set_drvdata(dev, ctrl);
	ctrl->dev = dev;

	init_completion(&ctrl->done);
	init_completion(&ctrl->dma_done);
	spin_lock_init(&ctrl->controller.lock);
	init_waitqueue_head(&ctrl->controller.wq);
	INIT_LIST_HEAD(&ctrl->host_list);

	/* NAND register range */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	ctrl->nand_base = devm_ioremap_resource(dev, res);
	if (IS_ERR(ctrl->nand_base))
		return PTR_ERR(ctrl->nand_base);

	/* Initialize NAND revision */
	ret = brcmnand_revision_init(ctrl);
	if (ret)
		return ret;

	/*
	 * Most chips have this cache at a fixed offset within 'nand' block.
	 * Some must specify this region separately.
	 */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
	if (res) {
		ctrl->nand_fc = devm_ioremap_resource(dev, res);
		if (IS_ERR(ctrl->nand_fc))
			return PTR_ERR(ctrl->nand_fc);
	} else {
		ctrl->nand_fc = ctrl->nand_base +
				ctrl->reg_offsets[BRCMNAND_FC_BASE];
	}

	/* FLASH_DMA */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
	if (res) {
		ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
		if (IS_ERR(ctrl->flash_dma_base))
			return PTR_ERR(ctrl->flash_dma_base);

		flash_dma_writel(ctrl, FLASH_DMA_MODE, 1); /* linked-list */
		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);

		/* Allocate descriptor(s) */
		ctrl->dma_desc = dmam_alloc_coherent(dev,
						     sizeof(*ctrl->dma_desc),
						     &ctrl->dma_pa, GFP_KERNEL);
		if (!ctrl->dma_desc)
			return -ENOMEM;

		ctrl->dma_irq = platform_get_irq(pdev, 1);
		if ((int)ctrl->dma_irq < 0) {
			dev_err(dev, "missing FLASH_DMA IRQ\n");
			return -ENODEV;
		}

		ret = devm_request_irq(dev, ctrl->dma_irq,
				brcmnand_dma_irq, 0, DRV_NAME,
				ctrl);
		if (ret < 0) {
			dev_err(dev, "can't allocate IRQ %d: error %d\n",
					ctrl->dma_irq, ret);
			return ret;
		}

		dev_info(dev, "enabling FLASH_DMA\n");
	}

	/* Disable automatic device ID config, direct addressing */
	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
			 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
	/* Disable XOR addressing */
	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);

	if (ctrl->features & BRCMNAND_HAS_WP) {
		/* Permanently disable write protection */
		if (wp_on == 2)
			brcmnand_set_wp(ctrl, false);
	} else {
		wp_on = 0;
	}

	/* IRQ */
	ctrl->irq = platform_get_irq(pdev, 0);
	if ((int)ctrl->irq < 0) {
		dev_err(dev, "no IRQ defined\n");
		return -ENODEV;
	}

2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
	/*
	 * Some SoCs integrate this controller (e.g., its interrupt bits) in
	 * interesting ways
	 */
	if (soc) {
		ctrl->soc = soc;

		ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
				       DRV_NAME, ctrl);

		/* Enable interrupt */
		ctrl->soc->ctlrdy_ack(ctrl->soc);
		ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
	} else {
		/* Use standard interrupt infrastructure */
		ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
				       DRV_NAME, ctrl);
	}
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
	if (ret < 0) {
		dev_err(dev, "can't allocate IRQ %d: error %d\n",
			ctrl->irq, ret);
		return ret;
	}

	for_each_available_child_of_node(dn, child) {
		if (of_device_is_compatible(child, "brcm,nandcs")) {
			struct brcmnand_host *host;

			host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
			if (!host)
				return -ENOMEM;
			host->pdev = pdev;
			host->ctrl = ctrl;
			host->of_node = child;

			ret = brcmnand_init_cs(host);
			if (ret)
				continue; /* Try all chip-selects */

			list_add_tail(&host->node, &ctrl->host_list);
		}
	}

	/* No chip-selects could initialize properly */
	if (list_empty(&ctrl->host_list))
		return -ENODEV;

	return 0;
}
EXPORT_SYMBOL_GPL(brcmnand_probe);

int brcmnand_remove(struct platform_device *pdev)
{
	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
	struct brcmnand_host *host;

	list_for_each_entry(host, &ctrl->host_list, node)
		nand_release(&host->mtd);

	dev_set_drvdata(&pdev->dev, NULL);

	return 0;
}
EXPORT_SYMBOL_GPL(brcmnand_remove);

MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Kevin Cernekee");
MODULE_AUTHOR("Brian Norris");
MODULE_DESCRIPTION("NAND driver for Broadcom chips");
MODULE_ALIAS("platform:brcmnand");