pgalloc.c 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/*
 *  Page table allocation functions
 *
 *    Copyright IBM Corp. 2016
 *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
 */

#include <linux/mm.h>
#include <linux/sysctl.h>
#include <asm/mmu_context.h>
#include <asm/pgalloc.h>
#include <asm/gmap.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>

#ifdef CONFIG_PGSTE

static int page_table_allocate_pgste_min = 0;
static int page_table_allocate_pgste_max = 1;
int page_table_allocate_pgste = 0;
EXPORT_SYMBOL(page_table_allocate_pgste);

static struct ctl_table page_table_sysctl[] = {
	{
		.procname	= "allocate_pgste",
		.data		= &page_table_allocate_pgste,
		.maxlen		= sizeof(int),
		.mode		= S_IRUGO | S_IWUSR,
		.proc_handler	= proc_dointvec,
		.extra1		= &page_table_allocate_pgste_min,
		.extra2		= &page_table_allocate_pgste_max,
	},
	{ }
};

static struct ctl_table page_table_sysctl_dir[] = {
	{
		.procname	= "vm",
		.maxlen		= 0,
		.mode		= 0555,
		.child		= page_table_sysctl,
	},
	{ }
};

static int __init page_table_register_sysctl(void)
{
	return register_sysctl_table(page_table_sysctl_dir) ? 0 : -ENOMEM;
}
__initcall(page_table_register_sysctl);

#endif /* CONFIG_PGSTE */

unsigned long *crst_table_alloc(struct mm_struct *mm)
{
	struct page *page = alloc_pages(GFP_KERNEL, 2);

	if (!page)
		return NULL;
	return (unsigned long *) page_to_phys(page);
}

void crst_table_free(struct mm_struct *mm, unsigned long *table)
{
	free_pages((unsigned long) table, 2);
}

static void __crst_table_upgrade(void *arg)
{
	struct mm_struct *mm = arg;

	if (current->active_mm == mm) {
		clear_user_asce();
		set_user_asce(mm);
	}
	__tlb_flush_local();
}

79
int crst_table_upgrade(struct mm_struct *mm)
80 81 82
{
	unsigned long *table, *pgd;

83 84 85
	/* upgrade should only happen from 3 to 4 levels */
	BUG_ON(mm->context.asce_limit != (1UL << 42));

86 87 88
	table = crst_table_alloc(mm);
	if (!table)
		return -ENOMEM;
89

90
	spin_lock_bh(&mm->page_table_lock);
91 92 93 94 95 96 97 98
	pgd = (unsigned long *) mm->pgd;
	crst_table_init(table, _REGION2_ENTRY_EMPTY);
	pgd_populate(mm, (pgd_t *) table, (pud_t *) pgd);
	mm->pgd = (pgd_t *) table;
	mm->context.asce_limit = 1UL << 53;
	mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
			   _ASCE_USER_BITS | _ASCE_TYPE_REGION2;
	mm->task_size = mm->context.asce_limit;
99
	spin_unlock_bh(&mm->page_table_lock);
100 101

	on_each_cpu(__crst_table_upgrade, mm, 0);
102 103 104
	return 0;
}

105
void crst_table_downgrade(struct mm_struct *mm)
106 107 108
{
	pgd_t *pgd;

109 110 111
	/* downgrade should only happen from 3 to 2 levels (compat only) */
	BUG_ON(mm->context.asce_limit != (1UL << 42));

112 113 114 115
	if (current->active_mm == mm) {
		clear_user_asce();
		__tlb_flush_mm(mm);
	}
116 117 118 119 120 121 122 123 124

	pgd = mm->pgd;
	mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN);
	mm->context.asce_limit = 1UL << 31;
	mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
			   _ASCE_USER_BITS | _ASCE_TYPE_SEGMENT;
	mm->task_size = mm->context.asce_limit;
	crst_table_free(mm, (unsigned long *) pgd);

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
	if (current->active_mm == mm)
		set_user_asce(mm);
}

static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
{
	unsigned int old, new;

	do {
		old = atomic_read(v);
		new = old ^ bits;
	} while (atomic_cmpxchg(v, old, new) != old);
	return new;
}

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
#ifdef CONFIG_PGSTE

struct page *page_table_alloc_pgste(struct mm_struct *mm)
{
	struct page *page;
	unsigned long *table;

	page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
	if (page) {
		table = (unsigned long *) page_to_phys(page);
		clear_table(table, _PAGE_INVALID, PAGE_SIZE/2);
		clear_table(table + PTRS_PER_PTE, 0, PAGE_SIZE/2);
	}
	return page;
}

void page_table_free_pgste(struct page *page)
{
	__free_page(page);
}

#endif /* CONFIG_PGSTE */

163 164 165 166 167 168 169 170 171 172 173 174
/*
 * page table entry allocation/free routines.
 */
unsigned long *page_table_alloc(struct mm_struct *mm)
{
	unsigned long *table;
	struct page *page;
	unsigned int mask, bit;

	/* Try to get a fragment of a 4K page as a 2K page table */
	if (!mm_alloc_pgste(mm)) {
		table = NULL;
175
		spin_lock_bh(&mm->context.pgtable_lock);
176 177 178 179 180 181 182 183 184 185 186 187 188 189
		if (!list_empty(&mm->context.pgtable_list)) {
			page = list_first_entry(&mm->context.pgtable_list,
						struct page, lru);
			mask = atomic_read(&page->_mapcount);
			mask = (mask | (mask >> 4)) & 3;
			if (mask != 3) {
				table = (unsigned long *) page_to_phys(page);
				bit = mask & 1;		/* =1 -> second 2K */
				if (bit)
					table += PTRS_PER_PTE;
				atomic_xor_bits(&page->_mapcount, 1U << bit);
				list_del(&page->lru);
			}
		}
190
		spin_unlock_bh(&mm->context.pgtable_lock);
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
		if (table)
			return table;
	}
	/* Allocate a fresh page */
	page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
	if (!page)
		return NULL;
	if (!pgtable_page_ctor(page)) {
		__free_page(page);
		return NULL;
	}
	/* Initialize page table */
	table = (unsigned long *) page_to_phys(page);
	if (mm_alloc_pgste(mm)) {
		/* Return 4K page table with PGSTEs */
		atomic_set(&page->_mapcount, 3);
		clear_table(table, _PAGE_INVALID, PAGE_SIZE/2);
		clear_table(table + PTRS_PER_PTE, 0, PAGE_SIZE/2);
	} else {
		/* Return the first 2K fragment of the page */
		atomic_set(&page->_mapcount, 1);
		clear_table(table, _PAGE_INVALID, PAGE_SIZE);
213
		spin_lock_bh(&mm->context.pgtable_lock);
214
		list_add(&page->lru, &mm->context.pgtable_list);
215
		spin_unlock_bh(&mm->context.pgtable_lock);
216 217 218 219 220 221 222 223 224 225 226 227 228
	}
	return table;
}

void page_table_free(struct mm_struct *mm, unsigned long *table)
{
	struct page *page;
	unsigned int bit, mask;

	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
	if (!mm_alloc_pgste(mm)) {
		/* Free 2K page table fragment of a 4K page */
		bit = (__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t));
229
		spin_lock_bh(&mm->context.pgtable_lock);
230 231 232 233 234
		mask = atomic_xor_bits(&page->_mapcount, 1U << bit);
		if (mask & 3)
			list_add(&page->lru, &mm->context.pgtable_list);
		else
			list_del(&page->lru);
235
		spin_unlock_bh(&mm->context.pgtable_lock);
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
		if (mask != 0)
			return;
	}

	pgtable_page_dtor(page);
	atomic_set(&page->_mapcount, -1);
	__free_page(page);
}

void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
			 unsigned long vmaddr)
{
	struct mm_struct *mm;
	struct page *page;
	unsigned int bit, mask;

	mm = tlb->mm;
	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
	if (mm_alloc_pgste(mm)) {
		gmap_unlink(mm, table, vmaddr);
		table = (unsigned long *) (__pa(table) | 3);
		tlb_remove_table(tlb, table);
		return;
	}
	bit = (__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t));
261
	spin_lock_bh(&mm->context.pgtable_lock);
262 263 264 265 266
	mask = atomic_xor_bits(&page->_mapcount, 0x11U << bit);
	if (mask & 3)
		list_add_tail(&page->lru, &mm->context.pgtable_list);
	else
		list_del(&page->lru);
267
	spin_unlock_bh(&mm->context.pgtable_lock);
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
	table = (unsigned long *) (__pa(table) | (1U << bit));
	tlb_remove_table(tlb, table);
}

static void __tlb_remove_table(void *_table)
{
	unsigned int mask = (unsigned long) _table & 3;
	void *table = (void *)((unsigned long) _table ^ mask);
	struct page *page = pfn_to_page(__pa(table) >> PAGE_SHIFT);

	switch (mask) {
	case 0:		/* pmd or pud */
		free_pages((unsigned long) table, 2);
		break;
	case 1:		/* lower 2K of a 4K page table */
	case 2:		/* higher 2K of a 4K page table */
		if (atomic_xor_bits(&page->_mapcount, mask << 4) != 0)
			break;
		/* fallthrough */
	case 3:		/* 4K page table with pgstes */
		pgtable_page_dtor(page);
		atomic_set(&page->_mapcount, -1);
		__free_page(page);
		break;
	}
}

static void tlb_remove_table_smp_sync(void *arg)
{
	/* Simply deliver the interrupt */
}

static void tlb_remove_table_one(void *table)
{
	/*
	 * This isn't an RCU grace period and hence the page-tables cannot be
	 * assumed to be actually RCU-freed.
	 *
	 * It is however sufficient for software page-table walkers that rely
	 * on IRQ disabling. See the comment near struct mmu_table_batch.
	 */
	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
	__tlb_remove_table(table);
}

static void tlb_remove_table_rcu(struct rcu_head *head)
{
	struct mmu_table_batch *batch;
	int i;

	batch = container_of(head, struct mmu_table_batch, rcu);

	for (i = 0; i < batch->nr; i++)
		__tlb_remove_table(batch->tables[i]);

	free_page((unsigned long)batch);
}

void tlb_table_flush(struct mmu_gather *tlb)
{
	struct mmu_table_batch **batch = &tlb->batch;

	if (*batch) {
		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
		*batch = NULL;
	}
}

void tlb_remove_table(struct mmu_gather *tlb, void *table)
{
	struct mmu_table_batch **batch = &tlb->batch;

	tlb->mm->context.flush_mm = 1;
	if (*batch == NULL) {
		*batch = (struct mmu_table_batch *)
			__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
		if (*batch == NULL) {
			__tlb_flush_mm_lazy(tlb->mm);
			tlb_remove_table_one(table);
			return;
		}
		(*batch)->nr = 0;
	}
	(*batch)->tables[(*batch)->nr++] = table;
	if ((*batch)->nr == MAX_TABLE_BATCH)
		tlb_flush_mmu(tlb);
}