fw-ohci.c 54.5 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/compiler.h>
22
#include <linux/delay.h>
A
Andrew Morton 已提交
23
#include <linux/dma-mapping.h>
S
Stefan Richter 已提交
24
#include <linux/gfp.h>
25 26 27
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
A
Al Viro 已提交
28
#include <linux/mm.h>
29 30
#include <linux/module.h>
#include <linux/pci.h>
S
Stefan Richter 已提交
31
#include <linux/spinlock.h>
A
Andrew Morton 已提交
32

S
Stefan Richter 已提交
33
#include <asm/page.h>
34
#include <asm/system.h>
35 36

#include "fw-ohci.h"
37
#include "fw-transaction.h"
38

39 40 41 42 43 44 45 46 47 48 49 50 51
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
52 53 54 55 56 57 58 59 60 61

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

62 63 64 65 66 67 68 69 70 71 72 73 74 75
struct db_descriptor {
	__le16 first_size;
	__le16 control;
	__le16 second_req_count;
	__le16 first_req_count;
	__le32 branch_address;
	__le16 second_res_count;
	__le16 first_res_count;
	__le32 reserved0;
	__le32 first_buffer;
	__le32 second_buffer;
	__le32 reserved1;
} __attribute__((aligned(16)));

76 77 78 79
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
80

81
struct ar_buffer {
82
	struct descriptor descriptor;
83 84 85
	struct ar_buffer *next;
	__le32 data[0];
};
86

87 88 89 90 91
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
92
	u32 regs;
93 94 95
	struct tasklet_struct tasklet;
};

96 97 98 99 100 101
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
struct context {
S
Stefan Richter 已提交
102
	struct fw_ohci *ohci;
103
	u32 regs;
S
Stefan Richter 已提交
104

105 106 107 108 109 110 111 112 113 114
	struct descriptor *buffer;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	struct descriptor *head_descriptor;
	struct descriptor *tail_descriptor;
	struct descriptor *tail_descriptor_last;
	struct descriptor *prev_descriptor;

	descriptor_callback_t callback;

S
Stefan Richter 已提交
115
	struct tasklet_struct tasklet;
116 117
};

118 119 120 121 122 123
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
124 125 126

struct iso_context {
	struct fw_iso_context base;
127
	struct context context;
128 129
	void *header;
	size_t header_length;
130 131 132 133 134 135 136
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

137
	u32 version;
138 139 140 141
	__iomem char *registers;
	dma_addr_t self_id_bus;
	__le32 *self_id_cpu;
	struct tasklet_struct bus_reset_tasklet;
142
	int node_id;
143 144
	int generation;
	int request_generation;
145
	u32 bus_seconds;
146

147 148 149 150
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
151 152 153 154 155 156 157 158 159 160 161 162
	spinlock_t lock;
	u32 self_id_buffer[512];

	/* Config rom buffers */
	__be32 *config_rom;
	dma_addr_t config_rom_bus;
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;
	u32 next_header;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
163 164
	struct context at_request_ctx;
	struct context at_response_ctx;
165 166 167 168 169 170 171

	u32 it_context_mask;
	struct iso_context *it_context_list;
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
};

A
Adrian Bunk 已提交
172
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
173 174 175 176
{
	return container_of(card, struct fw_ohci, card);
}

177 178 179 180 181 182
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

#define OHCI1394_MAX_AT_REQ_RETRIES	0x2
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define FW_OHCI_MAJOR			240
#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
198
#define OHCI_TCODE_PHY_PACKET		0x0e
199
#define OHCI_VERSION_1_1		0x010010
200 201
#define ISO_BUFFER_SIZE			(64 * 1024)
#define AT_BUFFER_SIZE			4096
202

203 204
static char ohci_driver_name[] = KBUILD_MODNAME;

A
Adrian Bunk 已提交
205
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
206 207 208 209
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
210
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
211 212 213 214
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
215
static inline void flush_writes(const struct fw_ohci *ohci)
216 217 218 219 220 221 222 223 224 225 226 227 228
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

static int
ohci_update_phy_reg(struct fw_card *card, int addr,
		    int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 val, old;

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
229
	flush_writes(ohci);
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
	msleep(2);
	val = reg_read(ohci, OHCI1394_PhyControl);
	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
		fw_error("failed to set phy reg bits.\n");
		return -EBUSY;
	}

	old = OHCI1394_PhyControl_ReadData(val);
	old = (old & ~clear_bits) | set_bits;
	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, old));

	return 0;
}

245
static int ar_context_add_page(struct ar_context *ctx)
246
{
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
	dma_addr_t ab_bus;
	size_t offset;

	ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
	if (ab == NULL)
		return -ENOMEM;

	ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
	if (dma_mapping_error(ab_bus)) {
		free_page((unsigned long) ab);
		return -ENOMEM;
	}

262
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
263 264 265
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
266 267 268 269 270 271 272 273
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

	dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);

274
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
275 276 277
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

278
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
279
	flush_writes(ctx->ohci);
280 281

	return 0;
282 283
}

284
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
285 286
{
	struct fw_ohci *ohci = ctx->ohci;
287 288 289
	struct fw_packet p;
	u32 status, length, tcode;

290 291 292
	p.header[0] = le32_to_cpu(buffer[0]);
	p.header[1] = le32_to_cpu(buffer[1]);
	p.header[2] = le32_to_cpu(buffer[2]);
293 294 295 296 297

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
298
		p.header[3] = (__force __u32) buffer[3];
299
		p.header_length = 16;
300
		p.payload_length = 0;
301 302 303
		break;

	case TCODE_READ_BLOCK_REQUEST :
304 305 306 307 308 309
		p.header[3] = le32_to_cpu(buffer[3]);
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
310 311 312
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
313
		p.header[3] = le32_to_cpu(buffer[3]);
314
		p.header_length = 16;
315
		p.payload_length = p.header[3] >> 16;
316 317 318 319
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
320
	case OHCI_TCODE_PHY_PACKET:
321
		p.header_length = 12;
322
		p.payload_length = 0;
323 324
		break;
	}
325

326 327 328 329 330 331 332 333 334 335
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
	status = le32_to_cpu(buffer[length]);

	p.ack        = ((status >> 16) & 0x1f) - 16;
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
336

337 338
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
339 340 341 342 343
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
344 345
	 * request.
	 */
346

347
	if (p.ack + 16 == 0x09)
348
		ohci->request_generation = (buffer[2] >> 16) & 0xff;
349
	else if (ctx == &ohci->ar_request_ctx)
350
		fw_core_handle_request(&ohci->card, &p);
351
	else
352
		fw_core_handle_response(&ohci->card, &p);
353

354 355
	return buffer + length + 1;
}
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;

371 372
		/*
		 * This descriptor is finished and we may have a
373
		 * packet split across this and the next buffer. We
374 375
		 * reuse the page for reassembling the split packet.
		 */
376 377 378

		offset = offsetof(struct ar_buffer, data);
		dma_unmap_single(ohci->card.device,
379 380
			le32_to_cpu(ab->descriptor.data_address) - offset,
			PAGE_SIZE, DMA_BIDIRECTIONAL);
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

		buffer = ab;
		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

		free_page((unsigned long)buffer);
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
406 407 408
}

static int
409
ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
410
{
411
	struct ar_buffer ab;
412

413 414 415
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
416 417
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

418 419 420 421 422
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

423 424 425 426 427 428 429 430 431 432
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
433
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
434 435

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
436
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
437
	flush_writes(ctx->ohci);
438
}
S
Stefan Richter 已提交
439

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct fw_ohci *ohci = ctx->ohci;
	struct descriptor *d, *last;
	u32 address;
	int z;

	dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
				ctx->buffer_size, DMA_TO_DEVICE);

	d    = ctx->tail_descriptor;
	last = ctx->tail_descriptor_last;

	while (last->branch_address != 0) {
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
457
		d = ctx->buffer + (address - ctx->buffer_bus) / sizeof(*d);
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
		last = (z == 2) ? d : d + z - 1;

		if (!ctx->callback(ctx, d, last))
			break;

		ctx->tail_descriptor      = d;
		ctx->tail_descriptor_last = last;
	}
}

static int
context_init(struct context *ctx, struct fw_ohci *ohci,
	     size_t buffer_size, u32 regs,
	     descriptor_callback_t callback)
{
	ctx->ohci = ohci;
	ctx->regs = regs;
	ctx->buffer_size = buffer_size;
	ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
	if (ctx->buffer == NULL)
		return -ENOMEM;

	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

	ctx->buffer_bus =
		dma_map_single(ohci->card.device, ctx->buffer,
			       buffer_size, DMA_TO_DEVICE);
	if (dma_mapping_error(ctx->buffer_bus)) {
		kfree(ctx->buffer);
		return -ENOMEM;
	}

	ctx->head_descriptor      = ctx->buffer;
	ctx->prev_descriptor      = ctx->buffer;
	ctx->tail_descriptor      = ctx->buffer;
	ctx->tail_descriptor_last = ctx->buffer;

496 497
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
498 499 500
	 * branch address and looks like it's been sent.  That way we
	 * have a descriptor to append DMA programs to.  Also, the
	 * ring buffer invariant is that it always has at least one
501 502
	 * element so that head == tail means buffer full.
	 */
503

504
	memset(ctx->head_descriptor, 0, sizeof(*ctx->head_descriptor));
505
	ctx->head_descriptor->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
506 507 508 509 510 511
	ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
	ctx->head_descriptor++;

	return 0;
}

512
static void
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
context_release(struct context *ctx)
{
	struct fw_card *card = &ctx->ohci->card;

	dma_unmap_single(card->device, ctx->buffer_bus,
			 ctx->buffer_size, DMA_TO_DEVICE);
	kfree(ctx->buffer);
}

static struct descriptor *
context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
{
	struct descriptor *d, *tail, *end;

	d = ctx->head_descriptor;
	tail = ctx->tail_descriptor;
529
	end = ctx->buffer + ctx->buffer_size / sizeof(*d);
530 531 532 533 534 535 536 537 538 539 540 541 542

	if (d + z <= tail) {
		goto has_space;
	} else if (d > tail && d + z <= end) {
		goto has_space;
	} else if (d > tail && ctx->buffer + z <= tail) {
		d = ctx->buffer;
		goto has_space;
	}

	return NULL;

 has_space:
543 544
	memset(d, 0, z * sizeof(*d));
	*d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
545 546 547 548

	return d;
}

549
static void context_run(struct context *ctx, u32 extra)
550 551 552
{
	struct fw_ohci *ohci = ctx->ohci;

553
	reg_write(ohci, COMMAND_PTR(ctx->regs),
554
		  le32_to_cpu(ctx->tail_descriptor_last->branch_address));
555 556
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
557 558 559 560 561 562 563 564
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;

565
	d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
566 567 568 569 570 571 572 573

	ctx->head_descriptor = d + z + extra;
	ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev_descriptor = z == 2 ? d : d + z - 1;

	dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
				   ctx->buffer_size, DMA_TO_DEVICE);

574
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
575 576 577 578 579 580
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
581
	int i;
582

583
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
584
	flush_writes(ctx->ohci);
585

586
	for (i = 0; i < 10; i++) {
587
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
588 589 590 591
		if ((reg & CONTEXT_ACTIVE) == 0)
			break;

		fw_notify("context_stop: still active (0x%08x)\n", reg);
592
		mdelay(1);
593
	}
594
}
595

596 597 598
struct driver_data {
	struct fw_packet *packet;
};
599

600 601
/*
 * This function apppends a packet to the DMA queue for transmission.
602
 * Must always be called with the ochi->lock held to ensure proper
603 604
 * generation handling and locking around packet queue manipulation.
 */
605 606
static int
at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
607 608
{
	struct fw_ohci *ohci = ctx->ohci;
609
	dma_addr_t d_bus, uninitialized_var(payload_bus);
610 611 612
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
613
	int z, tcode;
614
	u32 reg;
615

616 617 618 619
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
620 621
	}

622
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
623 624
	d[0].res_count = cpu_to_le16(packet->timestamp);

625 626
	/*
	 * The DMA format for asyncronous link packets is different
627 628
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
629 630
	 * which we need to prepend an extra quadlet.
	 */
631 632

	header = (__le32 *) &d[1];
633
	if (packet->header_length > 8) {
634 635 636 637 638
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
639 640 641

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
642
			header[3] = cpu_to_le32(packet->header[3]);
643
		else
644 645 646
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
647
	} else {
648 649 650 651 652
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
653 654
	}

655 656
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
657
	packet->driver_data = driver_data;
658 659 660 661 662 663 664 665 666 667 668 669 670 671
	
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
		if (dma_mapping_error(payload_bus)) {
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
672
	} else {
673 674
		last = &d[0];
		z = 2;
675 676
	}

677 678 679
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
680

681 682
	/* FIXME: Document how the locking works. */
	if (ohci->generation != packet->generation) {
683 684 685
		if (packet->payload_length > 0)
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
686 687 688 689 690
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
691

692
	/* If the context isn't already running, start it up. */
693
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
694
	if ((reg & CONTEXT_RUN) == 0)
695 696 697
		context_run(ctx, 0);

	return 0;
698 699
}

700 701 702
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
703
{
704
	struct driver_data *driver_data;
705
	struct fw_packet *packet;
706 707
	struct fw_ohci *ohci = context->ohci;
	dma_addr_t payload_bus;
708 709
	int evt;

710 711 712
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
713

714 715 716 717 718
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
719

720 721 722
	payload_bus = le32_to_cpu(last->data_address);
	if (payload_bus != 0)
		dma_unmap_single(ohci->card.device, payload_bus,
723 724
				 packet->payload_length, DMA_TO_DEVICE);

725 726
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
727

728 729 730 731 732
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
733

734
	case OHCI1394_evt_flushed:
735 736 737 738
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
739 740
		packet->ack = RCODE_GENERATION;
		break;
741

742
	case OHCI1394_evt_missing_ack:
743 744 745 746
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
747 748
		packet->ack = RCODE_NO_ACK;
		break;
749

750 751 752 753 754 755 756 757 758
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
759

760 761 762 763
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
764

765
	packet->callback(packet, &ohci->card, packet->ack);
766

767
	return 1;
768 769
}

770 771 772 773 774
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
775 776 777 778 779 780 781

static void
handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, i;

782
	tcode = HEADER_GET_TCODE(packet->header[0]);
783
	if (TCODE_IS_BLOCK_PACKET(tcode))
784
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

static void
handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

811 812
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
813
	payload = packet->payload;
814
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
840
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
841 842 843 844 845
 out:
	fw_core_handle_response(&ohci->card, &response);
}

static void
846
handle_local_request(struct context *ctx, struct fw_packet *packet)
847 848 849 850
{
	u64 offset;
	u32 csr;

851 852 853 854
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
855 856 857

	offset =
		((unsigned long long)
858
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
879 880 881 882 883

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
884
}
885

886
static void
887
at_context_transmit(struct context *ctx, struct fw_packet *packet)
888 889
{
	unsigned long flags;
890
	int retval;
891 892 893

	spin_lock_irqsave(&ctx->ohci->lock, flags);

894
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
895
	    ctx->ohci->generation == packet->generation) {
896 897 898
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
899
	}
900

901
	retval = at_context_queue_packet(ctx, packet);
902 903
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

904 905 906
	if (retval < 0)
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	
907 908 909 910 911
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
912
	int self_id_count, i, j, reg;
913 914
	int generation, new_generation;
	unsigned long flags;
915 916
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
917 918 919

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
920
		fw_notify("node ID not valid, new bus reset in progress\n");
921 922
		return;
	}
923 924 925 926 927 928
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
929

930 931
	/*
	 * The count in the SelfIDCount register is the number of
932 933
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
934 935
	 * bit extra to get the actual number of self IDs.
	 */
936 937 938

	self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
	generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
939
	rmb();
940 941 942 943 944 945

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
			fw_error("inconsistent self IDs\n");
		ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
	}
946
	rmb();
947

948 949
	/*
	 * Check the consistency of the self IDs we just read.  The
950 951 952 953 954 955 956 957 958
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
959 960
	 * of self IDs.
	 */
961 962 963 964 965 966 967 968 969 970 971 972

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
973 974
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
975 976
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

977 978
	/*
	 * This next bit is unrelated to the AT context stuff but we
979 980 981 982
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
983 984
	 * next_config_rom pointer so a new udpate can take place.
	 */
985 986

	if (ohci->next_config_rom != NULL) {
987 988
		free_rom     = ohci->config_rom;
		free_rom_bus = ohci->config_rom_bus;
989 990 991 992
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

993 994
		/*
		 * Restore config_rom image and manually update
995 996
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
997 998
		 * do that last.
		 */
999 1000 1001 1002 1003 1004 1005 1006
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
		ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
		reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1007 1008 1009 1010
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1011
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1012 1013 1014 1015 1016 1017
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1018
	u32 event, iso_event, cycle_time;
1019 1020 1021 1022
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1023
	if (!event || !~event)
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
		return IRQ_NONE;

	reg_write(ohci, OHCI1394_IntEventClear, event);

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1043
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1044 1045 1046 1047
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1048
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1049 1050 1051
		iso_event &= ~(1 << i);
	}

1052
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1053 1054 1055 1056
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1057
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1058 1059 1060
		iso_event &= ~(1 << i);
	}

1061 1062 1063
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1064 1065 1066 1067 1068 1069
	if (event & OHCI1394_cycle64Seconds) {
		cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		if ((cycle_time & 0x80000000) == 0)
			ohci->bus_seconds++;
	}

1070 1071 1072
	return IRQ_HANDLED;
}

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1089 1090 1091 1092 1093
static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
	 * full link enabled.
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
	msleep(50);

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskSet,
		  OHCI1394_selfIDComplete |
		  OHCI1394_RQPkt | OHCI1394_RSPkt |
		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		  OHCI1394_isochRx | OHCI1394_isochTx |
1137 1138
		  OHCI1394_postedWriteErr | OHCI1394_cycle64Seconds |
		  OHCI1394_masterIntEnable);
1139 1140 1141 1142 1143 1144

	/* Activate link_on bit and contender bit in our self ID packets.*/
	if (ohci_update_phy_reg(card, 4, 0,
				PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
		return -EIO;

1145 1146
	/*
	 * When the link is not yet enabled, the atomic config rom
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

	ohci->next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &ohci->next_config_rom_bus, GFP_KERNEL);
	if (ohci->next_config_rom == NULL)
		return -ENOMEM;

	memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
	fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);

	ohci->next_header = config_rom[0];
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
	reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

	if (request_irq(dev->irq, irq_handler,
1182
			IRQF_SHARED, ohci_driver_name, ohci)) {
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
		fw_error("Failed to allocate shared interrupt %d.\n",
			 dev->irq);
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1195 1196 1197 1198
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

static int
ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci;
	unsigned long flags;
1210
	int retval = -EBUSY;
1211 1212 1213 1214 1215
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;

	ohci = fw_ohci(card);

1216 1217
	/*
	 * When the OHCI controller is enabled, the config rom update
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
		fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
				  length * 4);

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1264
		retval = 0;
1265 1266 1267 1268
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1269 1270
	/*
	 * Now initiate a bus reset to have the changes take
1271 1272 1273
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1274 1275
	 * takes effect.
	 */
1276 1277
	if (retval == 0)
		fw_core_initiate_bus_reset(&ohci->card, 1);
1278 1279 1280
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298

	return retval;
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1299 1300 1301
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1302 1303 1304
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
	int retval = -ENOENT;
1305

1306
	tasklet_disable(&ctx->tasklet);
1307

1308 1309
	if (packet->ack != 0)
		goto out;
1310

1311 1312 1313 1314
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
	retval = 0;
1315

1316 1317
 out:
	tasklet_enable(&ctx->tasklet);
1318

1319
	return retval;
1320 1321
}

1322 1323 1324 1325 1326
static int
ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
{
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1327
	int n, retval = 0;
1328

1329 1330 1331 1332
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
1333 1334 1335 1336 1337 1338 1339 1340

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
		retval = -ESTALE;
		goto out;
	}

1341 1342 1343 1344
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
1345 1346 1347 1348 1349 1350 1351

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1352 1353
	flush_writes(ohci);
 out:
1354
	spin_unlock_irqrestore(&ohci->lock, flags);
1355 1356
	return retval;
}
S
Stefan Richter 已提交
1357

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
static u64
ohci_get_bus_time(struct fw_card *card)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 cycle_time;
	u64 bus_time;

	cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
	bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;

	return bus_time;
}

1371 1372 1373
static int handle_ir_dualbuffer_packet(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
1374
{
1375 1376 1377
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
	struct db_descriptor *db = (struct db_descriptor *) d;
1378
	__le32 *ir_header;
1379
	size_t header_length;
1380 1381
	void *p, *end;
	int i;
1382

1383 1384 1385 1386
	if (db->first_res_count > 0 && db->second_res_count > 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;

1387 1388 1389 1390 1391 1392 1393
	header_length = le16_to_cpu(db->first_req_count) -
		le16_to_cpu(db->first_res_count);

	i = ctx->header_length;
	p = db + 1;
	end = p + header_length;
	while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1394 1395
		/*
		 * The iso header is byteswapped to little endian by
1396 1397 1398
		 * the controller, but the remaining header quadlets
		 * are big endian.  We want to present all the headers
		 * as big endian, so we have to swap the first
1399 1400
		 * quadlet.
		 */
1401 1402
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
		memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1403 1404 1405 1406 1407
		i += ctx->base.header_size;
		p += ctx->base.header_size + 4;
	}

	ctx->header_length = i;
1408

1409
	if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1410 1411 1412
		ir_header = (__le32 *) (db + 1);
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
1413
				   ctx->header_length, ctx->header,
1414
				   ctx->base.callback_data);
1415 1416
		ctx->header_length = 0;
	}
1417

1418
	return 1;
1419 1420
}

1421 1422 1423
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1424
{
1425 1426
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
S
Stefan Richter 已提交
1427

1428 1429 1430 1431
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;

1432
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1433 1434
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
				   0, NULL, ctx->base.callback_data);
1435 1436

	return 1;
1437 1438
}

1439
static struct fw_iso_context *
1440
ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1441 1442 1443
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
1444
	descriptor_callback_t callback;
1445
	u32 *mask, regs;
1446
	unsigned long flags;
1447
	int index, retval = -ENOMEM;
1448 1449 1450 1451

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
1452
		callback = handle_it_packet;
1453
	} else {
S
Stefan Richter 已提交
1454 1455
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
1456
		callback = handle_ir_dualbuffer_packet;
1457 1458
	}

1459
	/* FIXME: We need a fallback for pre 1.1 OHCI. */
1460 1461
	if (callback == handle_ir_dualbuffer_packet &&
	    ohci->version < OHCI_VERSION_1_1)
1462
		return ERR_PTR(-ENOSYS);
1463

1464 1465 1466 1467 1468 1469 1470 1471 1472
	spin_lock_irqsave(&ohci->lock, flags);
	index = ffs(*mask) - 1;
	if (index >= 0)
		*mask &= ~(1 << index);
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
1473 1474 1475 1476 1477
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

1478
	ctx = &list[index];
1479
	memset(ctx, 0, sizeof(*ctx));
1480 1481 1482 1483 1484
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

1485
	retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
1486
			      regs, callback);
1487 1488
	if (retval < 0)
		goto out_with_header;
1489 1490

	return &ctx->base;
1491 1492 1493 1494 1495 1496 1497 1498 1499

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

	return ERR_PTR(retval);
1500 1501
}

1502 1503
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
1504
{
S
Stefan Richter 已提交
1505
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1506
	struct fw_ohci *ohci = ctx->context.ohci;
1507
	u32 control, match;
1508 1509
	int index;

1510 1511
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
1512 1513 1514
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1515
				(cycle & 0x7fff) << 16;
1516

1517 1518
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1519
		context_run(&ctx->context, match);
1520 1521
	} else {
		index = ctx - ohci->ir_context_list;
1522 1523 1524 1525 1526 1527
		control = IR_CONTEXT_DUAL_BUFFER_MODE | IR_CONTEXT_ISOCH_HEADER;
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
1528

1529 1530
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1531
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1532
		context_run(&ctx->context, control);
1533
	}
1534 1535 1536 1537

	return 0;
}

1538 1539 1540
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
1541
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

1557 1558 1559
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
1560
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1561 1562 1563
	unsigned long flags;
	int index;

1564 1565
	ohci_stop_iso(base);
	context_release(&ctx->context);
1566
	free_page((unsigned long)ctx->header);
1567

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

static int
1582 1583 1584 1585
ohci_queue_iso_transmit(struct fw_iso_context *base,
			struct fw_iso_packet *packet,
			struct fw_iso_buffer *buffer,
			unsigned long payload)
1586
{
S
Stefan Richter 已提交
1587
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1588
	struct descriptor *d, *last, *pd;
1589 1590
	struct fw_iso_packet *p;
	__le32 *header;
1591
	dma_addr_t d_bus, page_bus;
1592 1593
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
1594
	int page, end_page, i, length, offset;
1595

1596 1597 1598 1599
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
1600 1601

	p = packet;
1602
	payload_index = payload;
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
1621
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1622

1623 1624 1625
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
1626 1627

	if (!p->skip) {
1628
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1629 1630 1631
		d[0].req_count = cpu_to_le16(8);

		header = (__le32 *) &d[1];
1632 1633 1634 1635 1636
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
1637
		header[1] =
1638
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1639 1640 1641 1642 1643
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
1644
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
1657 1658 1659

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
1660 1661 1662 1663 1664

		payload_index += length;
	}

	if (p->interrupt)
1665
		irq = DESCRIPTOR_IRQ_ALWAYS;
1666
	else
1667
		irq = DESCRIPTOR_NO_IRQ;
1668

1669
	last = z == 2 ? d : d + z - 1;
1670 1671 1672
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
1673
				     irq);
1674

1675
	context_append(&ctx->context, d, z, header_z);
1676 1677 1678

	return 0;
}
S
Stefan Richter 已提交
1679

1680
static int
1681 1682 1683 1684
ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
				  struct fw_iso_packet *packet,
				  struct fw_iso_buffer *buffer,
				  unsigned long payload)
1685 1686 1687 1688 1689 1690 1691
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct db_descriptor *db = NULL;
	struct descriptor *d;
	struct fw_iso_packet *p;
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, length, rest;
1692
	int page, offset, packet_count, header_size;
S
Stefan Richter 已提交
1693

1694 1695 1696 1697
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
1698

1699 1700 1701 1702 1703 1704
	if (packet->skip) {
		d = context_get_descriptors(&ctx->context, 2, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		db = (struct db_descriptor *) d;
1705 1706 1707
		db->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_BRANCH_ALWAYS |
					  DESCRIPTOR_WAIT);
1708 1709 1710
		db->first_size = cpu_to_le16(ctx->base.header_size + 4);
		context_append(&ctx->context, d, 2, 0);
	}
1711

1712 1713 1714
	p = packet;
	z = 2;

1715 1716 1717 1718
	/*
	 * The OHCI controller puts the status word in the header
	 * buffer too, so we need 4 extra bytes per packet.
	 */
1719 1720 1721
	packet_count = p->header_length / ctx->base.header_size;
	header_size = packet_count * (ctx->base.header_size + 4);

1722
	/* Get header size in number of descriptors. */
1723
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
	rest     = p->payload_length;

	/* FIXME: OHCI 1.0 doesn't support dual buffer receive */
	/* FIXME: make packet-per-buffer/dual-buffer a context option */
	while (rest > 0) {
		d = context_get_descriptors(&ctx->context,
					    z + header_z, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		db = (struct db_descriptor *) d;
1737 1738
		db->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_BRANCH_ALWAYS);
1739 1740
		db->first_size = cpu_to_le16(ctx->base.header_size + 4);
		db->first_req_count = cpu_to_le16(header_size);
1741
		db->first_res_count = db->first_req_count;
1742
		db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
S
Stefan Richter 已提交
1743

1744 1745 1746 1747 1748
		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;

1749 1750
		db->second_req_count = cpu_to_le16(length);
		db->second_res_count = db->second_req_count;
1751 1752 1753
		page_bus = page_private(buffer->pages[page]);
		db->second_buffer = cpu_to_le32(page_bus + offset);

1754
		if (p->interrupt && length == rest)
1755
			db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1756

1757 1758 1759 1760 1761 1762
		context_append(&ctx->context, d, z, header_z);
		offset = (offset + length) & ~PAGE_MASK;
		rest -= length;
		page++;
	}

1763 1764
	return 0;
}
1765

1766 1767 1768 1769 1770 1771
static int
ohci_queue_iso(struct fw_iso_context *base,
	       struct fw_iso_packet *packet,
	       struct fw_iso_buffer *buffer,
	       unsigned long payload)
{
1772 1773
	struct iso_context *ctx = container_of(base, struct iso_context, base);

1774 1775
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
		return ohci_queue_iso_transmit(base, packet, buffer, payload);
1776
	else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
1777 1778
		return ohci_queue_iso_receive_dualbuffer(base, packet,
							 buffer, payload);
1779 1780
	else
		/* FIXME: Implement fallback for OHCI 1.0 controllers. */
1781
		return -ENOSYS;
1782 1783
}

1784
static const struct fw_card_driver ohci_driver = {
1785 1786 1787 1788 1789 1790
	.name			= ohci_driver_name,
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
1791
	.cancel_packet		= ohci_cancel_packet,
1792
	.enable_phys_dma	= ohci_enable_phys_dma,
1793
	.get_bus_time		= ohci_get_bus_time,
1794 1795 1796 1797

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
1798
	.start_iso		= ohci_start_iso,
1799
	.stop_iso		= ohci_stop_iso,
1800 1801 1802 1803 1804 1805
};

static int __devinit
pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
{
	struct fw_ohci *ohci;
1806
	u32 bus_options, max_receive, link_speed;
1807
	u64 guid;
1808
	int err;
1809 1810
	size_t size;

1811
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
1812 1813 1814 1815 1816 1817 1818
	if (ohci == NULL) {
		fw_error("Could not malloc fw_ohci data.\n");
		return -ENOMEM;
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

1819 1820
	err = pci_enable_device(dev);
	if (err) {
1821
		fw_error("Failed to enable OHCI hardware.\n");
1822
		goto fail_put_card;
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

1834 1835
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
1836
		fw_error("MMIO resource unavailable\n");
1837
		goto fail_disable;
1838 1839 1840 1841 1842
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
1843 1844
		err = -ENXIO;
		goto fail_iomem;
1845 1846 1847 1848 1849 1850 1851 1852
	}

	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

1853 1854
	context_init(&ohci->at_request_ctx, ohci, AT_BUFFER_SIZE,
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
1855

1856 1857
	context_init(&ohci->at_response_ctx, ohci, AT_BUFFER_SIZE,
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
		fw_error("Out of memory for it/ir contexts.\n");
1873 1874
		err = -ENOMEM;
		goto fail_registers;
1875 1876 1877 1878 1879 1880 1881 1882 1883
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
		fw_error("Out of memory for self ID buffer.\n");
1884 1885
		err = -ENOMEM;
		goto fail_registers;
1886 1887 1888 1889 1890 1891 1892 1893
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

1894 1895 1896
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
	if (err < 0)
		goto fail_self_id;
1897

1898
	ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1899
	fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
1900
		  dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
1901 1902 1903 1904 1905 1906
	if (ohci->version < OHCI_VERSION_1_1) {
		fw_notify("    Isochronous I/O is not yet implemented for "
			  "OHCI 1.0 chips.\n");
		fw_notify("    Cameras, audio devices etc. won't work on "
			  "this controller with this driver version.\n");
	}
1907
	return 0;
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
 fail_registers:
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
 fail_put_card:
	fw_card_put(&ohci->card);

	return err;
1924 1925 1926 1927 1928 1929 1930
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
1931 1932
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
1933 1934
	fw_core_remove_card(&ohci->card);

1935 1936 1937 1938
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
1939 1940 1941

	software_reset(ohci);
	free_irq(dev->irq, ohci);
1942 1943 1944 1945 1946 1947 1948 1949
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
	fw_card_put(&ohci->card);
1950 1951 1952 1953

	fw_notify("Removed fw-ohci device.\n");
}

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
#ifdef CONFIG_PM
static int pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
	struct fw_ohci *ohci = pci_get_drvdata(pdev);
	int err;

	software_reset(ohci);
	free_irq(pdev->irq, ohci);
	err = pci_save_state(pdev);
	if (err) {
1964
		fw_error("pci_save_state failed\n");
1965 1966 1967
		return err;
	}
	err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
1968 1969
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982

	return 0;
}

static int pci_resume(struct pci_dev *pdev)
{
	struct fw_ohci *ohci = pci_get_drvdata(pdev);
	int err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
	err = pci_enable_device(pdev);
	if (err) {
1983
		fw_error("pci_enable_device failed\n");
1984 1985 1986 1987 1988 1989 1990
		return err;
	}

	return ohci_enable(&ohci->card, ohci->config_rom, CONFIG_ROM_SIZE);
}
#endif

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
static struct pci_device_id pci_table[] = {
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
2003 2004 2005 2006
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
2007 2008 2009 2010 2011 2012
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

2013 2014 2015 2016 2017
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);