tlb.c 12.7 KB
Newer Older
G
Glauber Costa 已提交
1 2 3 4 5 6
#include <linux/init.h>

#include <linux/mm.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
7
#include <linux/export.h>
8
#include <linux/cpu.h>
G
Glauber Costa 已提交
9 10 11

#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
12
#include <asm/cache.h>
T
Tejun Heo 已提交
13
#include <asm/apic.h>
T
Tejun Heo 已提交
14
#include <asm/uv/uv.h>
15
#include <linux/debugfs.h>
16

G
Glauber Costa 已提交
17 18 19 20 21 22 23 24 25 26 27
/*
 *	Smarter SMP flushing macros.
 *		c/o Linus Torvalds.
 *
 *	These mean you can really definitely utterly forget about
 *	writing to user space from interrupts. (Its not allowed anyway).
 *
 *	Optimizations Manfred Spraul <manfred@colorfullife.com>
 *
 *	More scalable flush, from Andi Kleen
 *
28
 *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
G
Glauber Costa 已提交
29 30
 */

31 32
#ifdef CONFIG_SMP

33 34 35 36 37
struct flush_tlb_info {
	struct mm_struct *flush_mm;
	unsigned long flush_start;
	unsigned long flush_end;
};
38

G
Glauber Costa 已提交
39 40 41 42 43 44
/*
 * We cannot call mmdrop() because we are in interrupt context,
 * instead update mm->cpu_vm_mask.
 */
void leave_mm(int cpu)
{
45
	struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
46
	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
G
Glauber Costa 已提交
47
		BUG();
48 49 50
	if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
		cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
		load_cr3(swapper_pg_dir);
51 52 53 54 55 56 57
		/*
		 * This gets called in the idle path where RCU
		 * functions differently.  Tracing normally
		 * uses RCU, so we have to call the tracepoint
		 * specially here.
		 */
		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
58
	}
G
Glauber Costa 已提交
59 60 61
}
EXPORT_SYMBOL_GPL(leave_mm);

62 63 64 65
#endif /* CONFIG_SMP */

void switch_mm(struct mm_struct *prev, struct mm_struct *next,
	       struct task_struct *tsk)
66 67 68 69 70 71 72 73 74 75
{
	unsigned long flags;

	local_irq_save(flags);
	switch_mm_irqs_off(prev, next, tsk);
	local_irq_restore(flags);
}

void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
			struct task_struct *tsk)
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
{
	unsigned cpu = smp_processor_id();

	if (likely(prev != next)) {
#ifdef CONFIG_SMP
		this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
		this_cpu_write(cpu_tlbstate.active_mm, next);
#endif
		cpumask_set_cpu(cpu, mm_cpumask(next));

		/*
		 * Re-load page tables.
		 *
		 * This logic has an ordering constraint:
		 *
		 *  CPU 0: Write to a PTE for 'next'
		 *  CPU 0: load bit 1 in mm_cpumask.  if nonzero, send IPI.
		 *  CPU 1: set bit 1 in next's mm_cpumask
		 *  CPU 1: load from the PTE that CPU 0 writes (implicit)
		 *
		 * We need to prevent an outcome in which CPU 1 observes
		 * the new PTE value and CPU 0 observes bit 1 clear in
		 * mm_cpumask.  (If that occurs, then the IPI will never
		 * be sent, and CPU 0's TLB will contain a stale entry.)
		 *
		 * The bad outcome can occur if either CPU's load is
		 * reordered before that CPU's store, so both CPUs must
		 * execute full barriers to prevent this from happening.
		 *
		 * Thus, switch_mm needs a full barrier between the
		 * store to mm_cpumask and any operation that could load
		 * from next->pgd.  TLB fills are special and can happen
		 * due to instruction fetches or for no reason at all,
		 * and neither LOCK nor MFENCE orders them.
		 * Fortunately, load_cr3() is serializing and gives the
		 * ordering guarantee we need.
		 *
		 */
		load_cr3(next->pgd);

		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);

		/* Stop flush ipis for the previous mm */
		cpumask_clear_cpu(cpu, mm_cpumask(prev));

		/* Load per-mm CR4 state */
		load_mm_cr4(next);

#ifdef CONFIG_MODIFY_LDT_SYSCALL
		/*
		 * Load the LDT, if the LDT is different.
		 *
		 * It's possible that prev->context.ldt doesn't match
		 * the LDT register.  This can happen if leave_mm(prev)
		 * was called and then modify_ldt changed
		 * prev->context.ldt but suppressed an IPI to this CPU.
		 * In this case, prev->context.ldt != NULL, because we
		 * never set context.ldt to NULL while the mm still
		 * exists.  That means that next->context.ldt !=
		 * prev->context.ldt, because mms never share an LDT.
		 */
		if (unlikely(prev->context.ldt != next->context.ldt))
			load_mm_ldt(next);
#endif
	}
#ifdef CONFIG_SMP
	  else {
		this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
		BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next);

		if (!cpumask_test_cpu(cpu, mm_cpumask(next))) {
			/*
			 * On established mms, the mm_cpumask is only changed
			 * from irq context, from ptep_clear_flush() while in
			 * lazy tlb mode, and here. Irqs are blocked during
			 * schedule, protecting us from simultaneous changes.
			 */
			cpumask_set_cpu(cpu, mm_cpumask(next));

			/*
			 * We were in lazy tlb mode and leave_mm disabled
			 * tlb flush IPI delivery. We must reload CR3
			 * to make sure to use no freed page tables.
			 *
			 * As above, load_cr3() is serializing and orders TLB
			 * fills with respect to the mm_cpumask write.
			 */
			load_cr3(next->pgd);
			trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
			load_mm_cr4(next);
			load_mm_ldt(next);
		}
	}
#endif
}

#ifdef CONFIG_SMP

G
Glauber Costa 已提交
174 175 176 177 178
/*
 * The flush IPI assumes that a thread switch happens in this order:
 * [cpu0: the cpu that switches]
 * 1) switch_mm() either 1a) or 1b)
 * 1a) thread switch to a different mm
179 180 181 182
 * 1a1) set cpu_tlbstate to TLBSTATE_OK
 *	Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
 *	if cpu0 was in lazy tlb mode.
 * 1a2) update cpu active_mm
G
Glauber Costa 已提交
183
 *	Now cpu0 accepts tlb flushes for the new mm.
184
 * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
G
Glauber Costa 已提交
185 186
 *	Now the other cpus will send tlb flush ipis.
 * 1a4) change cr3.
187 188 189 190
 * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
 *	Stop ipi delivery for the old mm. This is not synchronized with
 *	the other cpus, but flush_tlb_func ignore flush ipis for the wrong
 *	mm, and in the worst case we perform a superfluous tlb flush.
G
Glauber Costa 已提交
191
 * 1b) thread switch without mm change
192 193
 *	cpu active_mm is correct, cpu0 already handles flush ipis.
 * 1b1) set cpu_tlbstate to TLBSTATE_OK
G
Glauber Costa 已提交
194 195 196 197 198 199 200 201 202 203 204 205
 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
 *	Atomically set the bit [other cpus will start sending flush ipis],
 *	and test the bit.
 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
 * 2) switch %%esp, ie current
 *
 * The interrupt must handle 2 special cases:
 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
 *   runs in kernel space, the cpu could load tlb entries for user space
 *   pages.
 *
206
 * The good news is that cpu_tlbstate is local to each cpu, no
G
Glauber Costa 已提交
207 208 209 210
 * write/read ordering problems.
 */

/*
211
 * TLB flush funcation:
G
Glauber Costa 已提交
212 213
 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
 * 2) Leave the mm if we are in the lazy tlb mode.
T
Tejun Heo 已提交
214
 */
215
static void flush_tlb_func(void *info)
G
Glauber Costa 已提交
216
{
217
	struct flush_tlb_info *f = info;
G
Glauber Costa 已提交
218

219 220
	inc_irq_stat(irq_tlb_count);

221
	if (f->flush_mm && f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
222
		return;
G
Glauber Costa 已提交
223

224
	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
225
	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
226
		if (f->flush_end == TLB_FLUSH_ALL) {
227
			local_flush_tlb();
228 229
			trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL);
		} else {
230
			unsigned long addr;
231
			unsigned long nr_pages =
232
				(f->flush_end - f->flush_start) / PAGE_SIZE;
233 234 235 236
			addr = f->flush_start;
			while (addr < f->flush_end) {
				__flush_tlb_single(addr);
				addr += PAGE_SIZE;
237
			}
238
			trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages);
239 240 241
		}
	} else
		leave_mm(smp_processor_id());
G
Glauber Costa 已提交
242 243 244

}

245
void native_flush_tlb_others(const struct cpumask *cpumask,
246 247
				 struct mm_struct *mm, unsigned long start,
				 unsigned long end)
248
{
249
	struct flush_tlb_info info;
250 251 252

	if (end == 0)
		end = start + PAGE_SIZE;
253 254 255 256
	info.flush_mm = mm;
	info.flush_start = start;
	info.flush_end = end;

257
	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
258 259 260 261 262 263
	if (end == TLB_FLUSH_ALL)
		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
	else
		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
				(end - start) >> PAGE_SHIFT);

264
	if (is_uv_system()) {
T
Tejun Heo 已提交
265
		unsigned int cpu;
266

267
		cpu = smp_processor_id();
268
		cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
T
Tejun Heo 已提交
269
		if (cpumask)
270 271
			smp_call_function_many(cpumask, flush_tlb_func,
								&info, 1);
272
		return;
273
	}
274
	smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
G
Glauber Costa 已提交
275 276 277 278 279 280 281 282
}

void flush_tlb_current_task(void)
{
	struct mm_struct *mm = current->mm;

	preempt_disable();

283
	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
284 285

	/* This is an implicit full barrier that synchronizes with switch_mm. */
G
Glauber Costa 已提交
286
	local_flush_tlb();
287

288
	trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
289
	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
290
		flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
G
Glauber Costa 已提交
291 292 293
	preempt_enable();
}

294 295 296 297 298 299 300 301 302 303
/*
 * See Documentation/x86/tlb.txt for details.  We choose 33
 * because it is large enough to cover the vast majority (at
 * least 95%) of allocations, and is small enough that we are
 * confident it will not cause too much overhead.  Each single
 * flush is about 100 ns, so this caps the maximum overhead at
 * _about_ 3,000 ns.
 *
 * This is in units of pages.
 */
304
static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
305

306 307 308 309
void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
				unsigned long end, unsigned long vmflag)
{
	unsigned long addr;
310 311
	/* do a global flush by default */
	unsigned long base_pages_to_flush = TLB_FLUSH_ALL;
312 313

	preempt_disable();
314 315 316 317
	if (current->active_mm != mm) {
		/* Synchronize with switch_mm. */
		smp_mb();

318
		goto out;
319
	}
320

321 322
	if (!current->mm) {
		leave_mm(smp_processor_id());
323 324 325 326

		/* Synchronize with switch_mm. */
		smp_mb();

327
		goto out;
328
	}
G
Glauber Costa 已提交
329

330 331
	if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB))
		base_pages_to_flush = (end - start) >> PAGE_SHIFT;
332

333 334 335 336
	/*
	 * Both branches below are implicit full barriers (MOV to CR or
	 * INVLPG) that synchronize with switch_mm.
	 */
337 338
	if (base_pages_to_flush > tlb_single_page_flush_ceiling) {
		base_pages_to_flush = TLB_FLUSH_ALL;
339
		count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
340
		local_flush_tlb();
D
Dave Hansen 已提交
341
	} else {
342
		/* flush range by one by one 'invlpg' */
D
Dave Hansen 已提交
343
		for (addr = start; addr < end;	addr += PAGE_SIZE) {
344
			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
345
			__flush_tlb_single(addr);
D
Dave Hansen 已提交
346
		}
347
	}
348
	trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush);
349
out:
350
	if (base_pages_to_flush == TLB_FLUSH_ALL) {
351 352 353
		start = 0UL;
		end = TLB_FLUSH_ALL;
	}
354
	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
355
		flush_tlb_others(mm_cpumask(mm), mm, start, end);
G
Glauber Costa 已提交
356 357 358
	preempt_enable();
}

359
void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
G
Glauber Costa 已提交
360 361 362 363 364 365
{
	struct mm_struct *mm = vma->vm_mm;

	preempt_disable();

	if (current->active_mm == mm) {
366 367 368 369 370
		if (current->mm) {
			/*
			 * Implicit full barrier (INVLPG) that synchronizes
			 * with switch_mm.
			 */
371
			__flush_tlb_one(start);
372
		} else {
G
Glauber Costa 已提交
373
			leave_mm(smp_processor_id());
374 375 376 377

			/* Synchronize with switch_mm. */
			smp_mb();
		}
G
Glauber Costa 已提交
378 379
	}

380
	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
381
		flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
G
Glauber Costa 已提交
382 383 384 385 386 387

	preempt_enable();
}

static void do_flush_tlb_all(void *info)
{
388
	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
G
Glauber Costa 已提交
389
	__flush_tlb_all();
390
	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
391
		leave_mm(smp_processor_id());
G
Glauber Costa 已提交
392 393 394 395
}

void flush_tlb_all(void)
{
396
	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
397
	on_each_cpu(do_flush_tlb_all, NULL, 1);
G
Glauber Costa 已提交
398
}
399

400 401 402 403 404 405
static void do_kernel_range_flush(void *info)
{
	struct flush_tlb_info *f = info;
	unsigned long addr;

	/* flush range by one by one 'invlpg' */
406
	for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
407 408 409 410 411 412 413
		__flush_tlb_single(addr);
}

void flush_tlb_kernel_range(unsigned long start, unsigned long end)
{

	/* Balance as user space task's flush, a bit conservative */
414 415
	if (end == TLB_FLUSH_ALL ||
	    (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
416
		on_each_cpu(do_flush_tlb_all, NULL, 1);
417 418
	} else {
		struct flush_tlb_info info;
419 420 421 422 423
		info.flush_start = start;
		info.flush_end = end;
		on_each_cpu(do_kernel_range_flush, &info, 1);
	}
}
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469

static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
			     size_t count, loff_t *ppos)
{
	char buf[32];
	unsigned int len;

	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
}

static ssize_t tlbflush_write_file(struct file *file,
		 const char __user *user_buf, size_t count, loff_t *ppos)
{
	char buf[32];
	ssize_t len;
	int ceiling;

	len = min(count, sizeof(buf) - 1);
	if (copy_from_user(buf, user_buf, len))
		return -EFAULT;

	buf[len] = '\0';
	if (kstrtoint(buf, 0, &ceiling))
		return -EINVAL;

	if (ceiling < 0)
		return -EINVAL;

	tlb_single_page_flush_ceiling = ceiling;
	return count;
}

static const struct file_operations fops_tlbflush = {
	.read = tlbflush_read_file,
	.write = tlbflush_write_file,
	.llseek = default_llseek,
};

static int __init create_tlb_single_page_flush_ceiling(void)
{
	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
			    arch_debugfs_dir, NULL, &fops_tlbflush);
	return 0;
}
late_initcall(create_tlb_single_page_flush_ceiling);
470 471

#endif /* CONFIG_SMP */