mmzone.h 37.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
#ifndef _LINUX_MMZONE_H
#define _LINUX_MMZONE_H

#ifndef __ASSEMBLY__
C
Christoph Lameter 已提交
5
#ifndef __GENERATING_BOUNDS_H
L
Linus Torvalds 已提交
6 7 8 9

#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/wait.h>
10
#include <linux/bitops.h>
L
Linus Torvalds 已提交
11 12 13 14
#include <linux/cache.h>
#include <linux/threads.h>
#include <linux/numa.h>
#include <linux/init.h>
15
#include <linux/seqlock.h>
16
#include <linux/nodemask.h>
17
#include <linux/pageblock-flags.h>
18
#include <generated/bounds.h>
A
Arun Sharma 已提交
19
#include <linux/atomic.h>
R
Ralf Baechle 已提交
20
#include <asm/page.h>
L
Linus Torvalds 已提交
21 22 23 24 25 26 27

/* Free memory management - zoned buddy allocator.  */
#ifndef CONFIG_FORCE_MAX_ZONEORDER
#define MAX_ORDER 11
#else
#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
#endif
28
#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
L
Linus Torvalds 已提交
29

A
Andy Whitcroft 已提交
30 31 32 33 34 35 36 37
/*
 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
 * costly to service.  That is between allocation orders which should
 * coelesce naturally under reasonable reclaim pressure and those which
 * will not.
 */
#define PAGE_ALLOC_COSTLY_ORDER 3

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
enum {
	MIGRATE_UNMOVABLE,
	MIGRATE_RECLAIMABLE,
	MIGRATE_MOVABLE,
	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
	MIGRATE_RESERVE = MIGRATE_PCPTYPES,
#ifdef CONFIG_CMA
	/*
	 * MIGRATE_CMA migration type is designed to mimic the way
	 * ZONE_MOVABLE works.  Only movable pages can be allocated
	 * from MIGRATE_CMA pageblocks and page allocator never
	 * implicitly change migration type of MIGRATE_CMA pageblock.
	 *
	 * The way to use it is to change migratetype of a range of
	 * pageblocks to MIGRATE_CMA which can be done by
	 * __free_pageblock_cma() function.  What is important though
	 * is that a range of pageblocks must be aligned to
	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
	 * a single pageblock.
	 */
	MIGRATE_CMA,
#endif
	MIGRATE_ISOLATE,	/* can't allocate from here */
	MIGRATE_TYPES
};

#ifdef CONFIG_CMA
#  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
66
#  define cma_wmark_pages(zone)	zone->min_cma_pages
67 68
#else
#  define is_migrate_cma(migratetype) false
69
#  define cma_wmark_pages(zone) 0
70
#endif
71 72 73 74 75

#define for_each_migratetype_order(order, type) \
	for (order = 0; order < MAX_ORDER; order++) \
		for (type = 0; type < MIGRATE_TYPES; type++)

76 77 78 79 80 81 82
extern int page_group_by_mobility_disabled;

static inline int get_pageblock_migratetype(struct page *page)
{
	return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
}

L
Linus Torvalds 已提交
83
struct free_area {
84
	struct list_head	free_list[MIGRATE_TYPES];
L
Linus Torvalds 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98
	unsigned long		nr_free;
};

struct pglist_data;

/*
 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
 * So add a wild amount of padding here to ensure that they fall into separate
 * cachelines.  There are very few zone structures in the machine, so space
 * consumption is not a concern here.
 */
#if defined(CONFIG_SMP)
struct zone_padding {
	char x[0];
99
} ____cacheline_internodealigned_in_smp;
L
Linus Torvalds 已提交
100 101 102 103 104
#define ZONE_PADDING(name)	struct zone_padding name;
#else
#define ZONE_PADDING(name)
#endif

105
enum zone_stat_item {
106
	/* First 128 byte cacheline (assuming 64 bit words) */
107
	NR_FREE_PAGES,
108
	NR_LRU_BASE,
109 110 111 112
	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
L
Lee Schermerhorn 已提交
113
	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
N
Nick Piggin 已提交
114
	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
115 116
	NR_ANON_PAGES,	/* Mapped anonymous pages */
	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
117
			   only modified from process context */
118
	NR_FILE_PAGES,
119
	NR_FILE_DIRTY,
120
	NR_WRITEBACK,
121 122 123
	NR_SLAB_RECLAIMABLE,
	NR_SLAB_UNRECLAIMABLE,
	NR_PAGETABLE,		/* used for pagetables */
124 125
	NR_KERNEL_STACK,
	/* Second 128 byte cacheline */
126
	NR_UNSTABLE_NFS,	/* NFS unstable pages */
127
	NR_BOUNCE,
128
	NR_VMSCAN_WRITE,
129
	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
130
	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
K
KOSAKI Motohiro 已提交
131 132
	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
133
	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
134 135
	NR_DIRTIED,		/* page dirtyings since bootup */
	NR_WRITTEN,		/* page writings since bootup */
136 137 138 139 140 141 142 143
#ifdef CONFIG_NUMA
	NUMA_HIT,		/* allocated in intended node */
	NUMA_MISS,		/* allocated in non intended node */
	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
	NUMA_LOCAL,		/* allocation from local node */
	NUMA_OTHER,		/* allocation from other node */
#endif
144
	NR_ANON_TRANSPARENT_HUGEPAGES,
145 146
	NR_VM_ZONE_STAT_ITEMS };

147 148 149 150 151 152 153 154 155 156 157 158 159
/*
 * We do arithmetic on the LRU lists in various places in the code,
 * so it is important to keep the active lists LRU_ACTIVE higher in
 * the array than the corresponding inactive lists, and to keep
 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
 *
 * This has to be kept in sync with the statistics in zone_stat_item
 * above and the descriptions in vmstat_text in mm/vmstat.c
 */
#define LRU_BASE 0
#define LRU_ACTIVE 1
#define LRU_FILE 2

160
enum lru_list {
161 162 163 164
	LRU_INACTIVE_ANON = LRU_BASE,
	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
L
Lee Schermerhorn 已提交
165 166 167
	LRU_UNEVICTABLE,
	NR_LRU_LISTS
};
168

H
Hugh Dickins 已提交
169
#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
170

H
Hugh Dickins 已提交
171
#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
L
Lee Schermerhorn 已提交
172

H
Hugh Dickins 已提交
173
static inline int is_file_lru(enum lru_list lru)
174
{
H
Hugh Dickins 已提交
175
	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
176 177
}

H
Hugh Dickins 已提交
178
static inline int is_active_lru(enum lru_list lru)
179
{
H
Hugh Dickins 已提交
180
	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
181 182
}

H
Hugh Dickins 已提交
183
static inline int is_unevictable_lru(enum lru_list lru)
L
Lee Schermerhorn 已提交
184
{
H
Hugh Dickins 已提交
185
	return (lru == LRU_UNEVICTABLE);
L
Lee Schermerhorn 已提交
186 187
}

188 189 190 191
struct lruvec {
	struct list_head lists[NR_LRU_LISTS];
};

192 193 194 195 196 197
/* Mask used at gathering information at once (see memcontrol.c) */
#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON)
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

198 199 200 201
/* Isolate inactive pages */
#define ISOLATE_INACTIVE	((__force isolate_mode_t)0x1)
/* Isolate active pages */
#define ISOLATE_ACTIVE		((__force isolate_mode_t)0x2)
202 203
/* Isolate clean file */
#define ISOLATE_CLEAN		((__force isolate_mode_t)0x4)
204 205
/* Isolate unmapped file */
#define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x8)
206 207
/* Isolate for asynchronous migration */
#define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x10)
208 209 210 211

/* LRU Isolation modes. */
typedef unsigned __bitwise__ isolate_mode_t;

212 213 214 215 216 217 218 219 220 221 222
enum zone_watermarks {
	WMARK_MIN,
	WMARK_LOW,
	WMARK_HIGH,
	NR_WMARK
};

#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])

L
Linus Torvalds 已提交
223 224 225 226
struct per_cpu_pages {
	int count;		/* number of pages in the list */
	int high;		/* high watermark, emptying needed */
	int batch;		/* chunk size for buddy add/remove */
227 228 229

	/* Lists of pages, one per migrate type stored on the pcp-lists */
	struct list_head lists[MIGRATE_PCPTYPES];
L
Linus Torvalds 已提交
230 231 232
};

struct per_cpu_pageset {
233
	struct per_cpu_pages pcp;
234 235 236
#ifdef CONFIG_NUMA
	s8 expire;
#endif
237
#ifdef CONFIG_SMP
238
	s8 stat_threshold;
239 240
	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
#endif
241
};
242

C
Christoph Lameter 已提交
243 244
#endif /* !__GENERATING_BOUNDS.H */

245
enum zone_type {
246
#ifdef CONFIG_ZONE_DMA
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
	/*
	 * ZONE_DMA is used when there are devices that are not able
	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
	 * carve out the portion of memory that is needed for these devices.
	 * The range is arch specific.
	 *
	 * Some examples
	 *
	 * Architecture		Limit
	 * ---------------------------
	 * parisc, ia64, sparc	<4G
	 * s390			<2G
	 * arm			Various
	 * alpha		Unlimited or 0-16MB.
	 *
	 * i386, x86_64 and multiple other arches
	 * 			<16M.
	 */
	ZONE_DMA,
266
#endif
267
#ifdef CONFIG_ZONE_DMA32
268 269 270 271 272 273
	/*
	 * x86_64 needs two ZONE_DMAs because it supports devices that are
	 * only able to do DMA to the lower 16M but also 32 bit devices that
	 * can only do DMA areas below 4G.
	 */
	ZONE_DMA32,
274
#endif
275 276 277 278 279 280
	/*
	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
	 * performed on pages in ZONE_NORMAL if the DMA devices support
	 * transfers to all addressable memory.
	 */
	ZONE_NORMAL,
281
#ifdef CONFIG_HIGHMEM
282 283 284 285 286 287 288 289 290
	/*
	 * A memory area that is only addressable by the kernel through
	 * mapping portions into its own address space. This is for example
	 * used by i386 to allow the kernel to address the memory beyond
	 * 900MB. The kernel will set up special mappings (page
	 * table entries on i386) for each page that the kernel needs to
	 * access.
	 */
	ZONE_HIGHMEM,
291
#endif
M
Mel Gorman 已提交
292
	ZONE_MOVABLE,
C
Christoph Lameter 已提交
293
	__MAX_NR_ZONES
294
};
L
Linus Torvalds 已提交
295

C
Christoph Lameter 已提交
296 297
#ifndef __GENERATING_BOUNDS_H

L
Linus Torvalds 已提交
298 299 300 301 302
/*
 * When a memory allocation must conform to specific limitations (such
 * as being suitable for DMA) the caller will pass in hints to the
 * allocator in the gfp_mask, in the zone modifier bits.  These bits
 * are used to select a priority ordered list of memory zones which
303
 * match the requested limits. See gfp_zone() in include/linux/gfp.h
L
Linus Torvalds 已提交
304
 */
305

C
Christoph Lameter 已提交
306
#if MAX_NR_ZONES < 2
307
#define ZONES_SHIFT 0
C
Christoph Lameter 已提交
308
#elif MAX_NR_ZONES <= 2
309
#define ZONES_SHIFT 1
C
Christoph Lameter 已提交
310
#elif MAX_NR_ZONES <= 4
311
#define ZONES_SHIFT 2
312 313
#else
#error ZONES_SHIFT -- too many zones configured adjust calculation
314
#endif
L
Linus Torvalds 已提交
315

316 317 318 319 320 321 322 323 324 325 326 327 328
struct zone_reclaim_stat {
	/*
	 * The pageout code in vmscan.c keeps track of how many of the
	 * mem/swap backed and file backed pages are refeferenced.
	 * The higher the rotated/scanned ratio, the more valuable
	 * that cache is.
	 *
	 * The anon LRU stats live in [0], file LRU stats in [1]
	 */
	unsigned long		recent_rotated[2];
	unsigned long		recent_scanned[2];
};

L
Linus Torvalds 已提交
329 330
struct zone {
	/* Fields commonly accessed by the page allocator */
331 332 333 334

	/* zone watermarks, access with *_wmark_pages(zone) macros */
	unsigned long watermark[NR_WMARK];

335 336 337 338 339 340 341
	/*
	 * When free pages are below this point, additional steps are taken
	 * when reading the number of free pages to avoid per-cpu counter
	 * drift allowing watermarks to be breached
	 */
	unsigned long percpu_drift_mark;

L
Linus Torvalds 已提交
342 343 344 345 346 347 348 349 350 351
	/*
	 * We don't know if the memory that we're going to allocate will be freeable
	 * or/and it will be released eventually, so to avoid totally wasting several
	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
	 * to run OOM on the lower zones despite there's tons of freeable ram
	 * on the higher zones). This array is recalculated at runtime if the
	 * sysctl_lowmem_reserve_ratio sysctl changes.
	 */
	unsigned long		lowmem_reserve[MAX_NR_ZONES];

352 353 354 355 356 357
	/*
	 * This is a per-zone reserve of pages that should not be
	 * considered dirtyable memory.
	 */
	unsigned long		dirty_balance_reserve;

358
#ifdef CONFIG_NUMA
359
	int node;
360 361 362
	/*
	 * zone reclaim becomes active if more unmapped pages exist.
	 */
363
	unsigned long		min_unmapped_pages;
364
	unsigned long		min_slab_pages;
365
#endif
366
	struct per_cpu_pageset __percpu *pageset;
L
Linus Torvalds 已提交
367 368 369 370
	/*
	 * free areas of different sizes
	 */
	spinlock_t		lock;
371
	int                     all_unreclaimable; /* All pages pinned */
372 373 374
#ifdef CONFIG_MEMORY_HOTPLUG
	/* see spanned/present_pages for more description */
	seqlock_t		span_seqlock;
375 376 377 378 379 380 381
#endif
#ifdef CONFIG_CMA
	/*
	 * CMA needs to increase watermark levels during the allocation
	 * process to make sure that the system is not starved.
	 */
	unsigned long		min_cma_pages;
382
#endif
L
Linus Torvalds 已提交
383 384
	struct free_area	free_area[MAX_ORDER];

385 386
#ifndef CONFIG_SPARSEMEM
	/*
387
	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
388 389 390 391 392
	 * In SPARSEMEM, this map is stored in struct mem_section
	 */
	unsigned long		*pageblock_flags;
#endif /* CONFIG_SPARSEMEM */

393 394 395 396 397 398 399 400
#ifdef CONFIG_COMPACTION
	/*
	 * On compaction failure, 1<<compact_defer_shift compactions
	 * are skipped before trying again. The number attempted since
	 * last failure is tracked with compact_considered.
	 */
	unsigned int		compact_considered;
	unsigned int		compact_defer_shift;
401
	int			compact_order_failed;
402
#endif
L
Linus Torvalds 已提交
403 404 405 406

	ZONE_PADDING(_pad1_)

	/* Fields commonly accessed by the page reclaim scanner */
407 408
	spinlock_t		lru_lock;
	struct lruvec		lruvec;
409

410
	struct zone_reclaim_stat reclaim_stat;
411

L
Linus Torvalds 已提交
412
	unsigned long		pages_scanned;	   /* since last reclaim */
413
	unsigned long		flags;		   /* zone flags, see below */
M
Martin Hicks 已提交
414

415 416
	/* Zone statistics */
	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
417

418 419 420 421 422 423
	/*
	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
	 * this zone's LRU.  Maintained by the pageout code.
	 */
	unsigned int inactive_ratio;

L
Linus Torvalds 已提交
424 425 426 427 428 429

	ZONE_PADDING(_pad2_)
	/* Rarely used or read-mostly fields */

	/*
	 * wait_table		-- the array holding the hash table
430
	 * wait_table_hash_nr_entries	-- the size of the hash table array
L
Linus Torvalds 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
	 *
	 * The purpose of all these is to keep track of the people
	 * waiting for a page to become available and make them
	 * runnable again when possible. The trouble is that this
	 * consumes a lot of space, especially when so few things
	 * wait on pages at a given time. So instead of using
	 * per-page waitqueues, we use a waitqueue hash table.
	 *
	 * The bucket discipline is to sleep on the same queue when
	 * colliding and wake all in that wait queue when removing.
	 * When something wakes, it must check to be sure its page is
	 * truly available, a la thundering herd. The cost of a
	 * collision is great, but given the expected load of the
	 * table, they should be so rare as to be outweighed by the
	 * benefits from the saved space.
	 *
	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
	 * primary users of these fields, and in mm/page_alloc.c
	 * free_area_init_core() performs the initialization of them.
	 */
	wait_queue_head_t	* wait_table;
453
	unsigned long		wait_table_hash_nr_entries;
L
Linus Torvalds 已提交
454 455 456 457 458 459 460 461 462
	unsigned long		wait_table_bits;

	/*
	 * Discontig memory support fields.
	 */
	struct pglist_data	*zone_pgdat;
	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
	unsigned long		zone_start_pfn;

463 464 465 466 467 468 469 470 471 472
	/*
	 * zone_start_pfn, spanned_pages and present_pages are all
	 * protected by span_seqlock.  It is a seqlock because it has
	 * to be read outside of zone->lock, and it is done in the main
	 * allocator path.  But, it is written quite infrequently.
	 *
	 * The lock is declared along with zone->lock because it is
	 * frequently read in proximity to zone->lock.  It's good to
	 * give them a chance of being in the same cacheline.
	 */
L
Linus Torvalds 已提交
473 474 475 476 477 478
	unsigned long		spanned_pages;	/* total size, including holes */
	unsigned long		present_pages;	/* amount of memory (excluding holes) */

	/*
	 * rarely used fields:
	 */
479
	const char		*name;
480
} ____cacheline_internodealigned_in_smp;
L
Linus Torvalds 已提交
481

482 483
typedef enum {
	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
D
David Rientjes 已提交
484
	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
485 486 487
	ZONE_CONGESTED,			/* zone has many dirty pages backed by
					 * a congested BDI
					 */
488 489 490 491 492 493
} zone_flags_t;

static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
{
	set_bit(flag, &zone->flags);
}
494 495 496 497 498 499

static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
{
	return test_and_set_bit(flag, &zone->flags);
}

500 501 502 503 504
static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
{
	clear_bit(flag, &zone->flags);
}

505 506 507 508 509
static inline int zone_is_reclaim_congested(const struct zone *zone)
{
	return test_bit(ZONE_CONGESTED, &zone->flags);
}

510 511 512 513
static inline int zone_is_reclaim_locked(const struct zone *zone)
{
	return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
}
514

D
David Rientjes 已提交
515 516 517 518
static inline int zone_is_oom_locked(const struct zone *zone)
{
	return test_bit(ZONE_OOM_LOCKED, &zone->flags);
}
519

L
Linus Torvalds 已提交
520 521 522 523 524 525 526
/*
 * The "priority" of VM scanning is how much of the queues we will scan in one
 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 * queues ("queue_length >> 12") during an aging round.
 */
#define DEF_PRIORITY 12

527 528 529 530
/* Maximum number of zones on a zonelist */
#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)

#ifdef CONFIG_NUMA
531 532

/*
533
 * The NUMA zonelists are doubled because we need zonelists that restrict the
534 535
 * allocations to a single node for GFP_THISNODE.
 *
536 537
 * [0]	: Zonelist with fallback
 * [1]	: No fallback (GFP_THISNODE)
538
 */
539
#define MAX_ZONELISTS 2
540 541


542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
/*
 * We cache key information from each zonelist for smaller cache
 * footprint when scanning for free pages in get_page_from_freelist().
 *
 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
 *    up short of free memory since the last time (last_fullzone_zap)
 *    we zero'd fullzones.
 * 2) The array z_to_n[] maps each zone in the zonelist to its node
 *    id, so that we can efficiently evaluate whether that node is
 *    set in the current tasks mems_allowed.
 *
 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
 * indexed by a zones offset in the zonelist zones[] array.
 *
 * The get_page_from_freelist() routine does two scans.  During the
 * first scan, we skip zones whose corresponding bit in 'fullzones'
 * is set or whose corresponding node in current->mems_allowed (which
 * comes from cpusets) is not set.  During the second scan, we bypass
 * this zonelist_cache, to ensure we look methodically at each zone.
 *
 * Once per second, we zero out (zap) fullzones, forcing us to
 * reconsider nodes that might have regained more free memory.
 * The field last_full_zap is the time we last zapped fullzones.
 *
 * This mechanism reduces the amount of time we waste repeatedly
 * reexaming zones for free memory when they just came up low on
 * memory momentarilly ago.
 *
 * The zonelist_cache struct members logically belong in struct
 * zonelist.  However, the mempolicy zonelists constructed for
 * MPOL_BIND are intentionally variable length (and usually much
 * shorter).  A general purpose mechanism for handling structs with
 * multiple variable length members is more mechanism than we want
 * here.  We resort to some special case hackery instead.
 *
 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
 * part because they are shorter), so we put the fixed length stuff
 * at the front of the zonelist struct, ending in a variable length
 * zones[], as is needed by MPOL_BIND.
 *
 * Then we put the optional zonelist cache on the end of the zonelist
 * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
 * the fixed length portion at the front of the struct.  This pointer
 * both enables us to find the zonelist cache, and in the case of
 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
 * to know that the zonelist cache is not there.
 *
 * The end result is that struct zonelists come in two flavors:
 *  1) The full, fixed length version, shown below, and
 *  2) The custom zonelists for MPOL_BIND.
 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
 *
 * Even though there may be multiple CPU cores on a node modifying
 * fullzones or last_full_zap in the same zonelist_cache at the same
 * time, we don't lock it.  This is just hint data - if it is wrong now
 * and then, the allocator will still function, perhaps a bit slower.
 */


struct zonelist_cache {
	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
603
	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
604 605 606
	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
};
#else
607
#define MAX_ZONELISTS 1
608 609 610
struct zonelist_cache;
#endif

611 612 613 614 615 616 617 618 619
/*
 * This struct contains information about a zone in a zonelist. It is stored
 * here to avoid dereferences into large structures and lookups of tables
 */
struct zoneref {
	struct zone *zone;	/* Pointer to actual zone */
	int zone_idx;		/* zone_idx(zoneref->zone) */
};

L
Linus Torvalds 已提交
620 621 622 623 624 625
/*
 * One allocation request operates on a zonelist. A zonelist
 * is a list of zones, the first one is the 'goal' of the
 * allocation, the other zones are fallback zones, in decreasing
 * priority.
 *
626 627
 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
 * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
628 629 630 631 632 633 634 635
 * *
 * To speed the reading of the zonelist, the zonerefs contain the zone index
 * of the entry being read. Helper functions to access information given
 * a struct zoneref are
 *
 * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
 * zonelist_zone_idx()	- Return the index of the zone for an entry
 * zonelist_node_idx()	- Return the index of the node for an entry
L
Linus Torvalds 已提交
636 637
 */
struct zonelist {
638
	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
639
	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
640 641 642
#ifdef CONFIG_NUMA
	struct zonelist_cache zlcache;			     // optional ...
#endif
L
Linus Torvalds 已提交
643 644
};

T
Tejun Heo 已提交
645
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
646 647 648 649 650
struct node_active_region {
	unsigned long start_pfn;
	unsigned long end_pfn;
	int nid;
};
T
Tejun Heo 已提交
651
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
L
Linus Torvalds 已提交
652

653 654 655 656 657
#ifndef CONFIG_DISCONTIGMEM
/* The array of struct pages - for discontigmem use pgdat->lmem_map */
extern struct page *mem_map;
#endif

L
Linus Torvalds 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671
/*
 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
 * (mostly NUMA machines?) to denote a higher-level memory zone than the
 * zone denotes.
 *
 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 * it's memory layout.
 *
 * Memory statistics and page replacement data structures are maintained on a
 * per-zone basis.
 */
struct bootmem_data;
typedef struct pglist_data {
	struct zone node_zones[MAX_NR_ZONES];
672
	struct zonelist node_zonelists[MAX_ZONELISTS];
L
Linus Torvalds 已提交
673
	int nr_zones;
674
#ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
L
Linus Torvalds 已提交
675
	struct page *node_mem_map;
676 677 678
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
	struct page_cgroup *node_page_cgroup;
#endif
A
Andy Whitcroft 已提交
679
#endif
680
#ifndef CONFIG_NO_BOOTMEM
L
Linus Torvalds 已提交
681
	struct bootmem_data *bdata;
682
#endif
683 684 685 686 687 688 689 690 691 692
#ifdef CONFIG_MEMORY_HOTPLUG
	/*
	 * Must be held any time you expect node_start_pfn, node_present_pages
	 * or node_spanned_pages stay constant.  Holding this will also
	 * guarantee that any pfn_valid() stays that way.
	 *
	 * Nests above zone->lock and zone->size_seqlock.
	 */
	spinlock_t node_size_lock;
#endif
L
Linus Torvalds 已提交
693 694 695 696 697 698 699 700
	unsigned long node_start_pfn;
	unsigned long node_present_pages; /* total number of physical pages */
	unsigned long node_spanned_pages; /* total size of physical page
					     range, including holes */
	int node_id;
	wait_queue_head_t kswapd_wait;
	struct task_struct *kswapd;
	int kswapd_max_order;
701
	enum zone_type classzone_idx;
L
Linus Torvalds 已提交
702 703 704 705
} pg_data_t;

#define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
#define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
A
Andy Whitcroft 已提交
706
#ifdef CONFIG_FLAT_NODE_MEM_MAP
707
#define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
A
Andy Whitcroft 已提交
708 709 710
#else
#define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
#endif
711
#define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
L
Linus Torvalds 已提交
712

713 714 715 716 717 718 719
#define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)

#define node_end_pfn(nid) ({\
	pg_data_t *__pgdat = NODE_DATA(nid);\
	__pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
})

720 721
#include <linux/memory_hotplug.h>

722
extern struct mutex zonelists_mutex;
723
void build_all_zonelists(void *data);
724
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
725 726 727
bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
		int classzone_idx, int alloc_flags);
bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
R
Rohit Seth 已提交
728
		int classzone_idx, int alloc_flags);
D
Dave Hansen 已提交
729 730 731 732
enum memmap_context {
	MEMMAP_EARLY,
	MEMMAP_HOTPLUG,
};
733
extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
D
Dave Hansen 已提交
734 735
				     unsigned long size,
				     enum memmap_context context);
736

L
Linus Torvalds 已提交
737 738 739 740 741 742
#ifdef CONFIG_HAVE_MEMORY_PRESENT
void memory_present(int nid, unsigned long start, unsigned long end);
#else
static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
#endif

743 744 745 746 747 748
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
int local_memory_node(int node_id);
#else
static inline int local_memory_node(int node_id) { return node_id; };
#endif

L
Linus Torvalds 已提交
749 750 751 752 753 754 755 756 757
#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
#endif

/*
 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 */
#define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)

758 759 760 761 762
static inline int populated_zone(struct zone *zone)
{
	return (!!zone->present_pages);
}

M
Mel Gorman 已提交
763 764 765 766
extern int movable_zone;

static inline int zone_movable_is_highmem(void)
{
T
Tejun Heo 已提交
767
#if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE)
M
Mel Gorman 已提交
768 769 770 771 772 773
	return movable_zone == ZONE_HIGHMEM;
#else
	return 0;
#endif
}

774
static inline int is_highmem_idx(enum zone_type idx)
L
Linus Torvalds 已提交
775
{
776
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
777 778
	return (idx == ZONE_HIGHMEM ||
		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
779 780 781
#else
	return 0;
#endif
L
Linus Torvalds 已提交
782 783
}

784
static inline int is_normal_idx(enum zone_type idx)
L
Linus Torvalds 已提交
785 786 787
{
	return (idx == ZONE_NORMAL);
}
N
Nick Piggin 已提交
788

L
Linus Torvalds 已提交
789 790 791 792 793 794 795 796
/**
 * is_highmem - helper function to quickly check if a struct zone is a 
 *              highmem zone or not.  This is an attempt to keep references
 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 * @zone - pointer to struct zone variable
 */
static inline int is_highmem(struct zone *zone)
{
797
#ifdef CONFIG_HIGHMEM
798 799 800 801
	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
		zone_movable_is_highmem());
802 803 804
#else
	return 0;
#endif
L
Linus Torvalds 已提交
805 806 807 808 809 810 811
}

static inline int is_normal(struct zone *zone)
{
	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
}

N
Nick Piggin 已提交
812 813
static inline int is_dma32(struct zone *zone)
{
814
#ifdef CONFIG_ZONE_DMA32
N
Nick Piggin 已提交
815
	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
816 817 818
#else
	return 0;
#endif
N
Nick Piggin 已提交
819 820 821 822
}

static inline int is_dma(struct zone *zone)
{
823
#ifdef CONFIG_ZONE_DMA
N
Nick Piggin 已提交
824
	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
825 826 827
#else
	return 0;
#endif
N
Nick Piggin 已提交
828 829
}

L
Linus Torvalds 已提交
830 831
/* These two functions are used to setup the per zone pages min values */
struct ctl_table;
832
int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
L
Linus Torvalds 已提交
833 834
					void __user *, size_t *, loff_t *);
extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
835
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
L
Linus Torvalds 已提交
836
					void __user *, size_t *, loff_t *);
837
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
838
					void __user *, size_t *, loff_t *);
839
int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
840
			void __user *, size_t *, loff_t *);
841
int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
842
			void __user *, size_t *, loff_t *);
L
Linus Torvalds 已提交
843

844
extern int numa_zonelist_order_handler(struct ctl_table *, int,
845
			void __user *, size_t *, loff_t *);
846 847 848
extern char numa_zonelist_order[];
#define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */

849
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
850 851 852 853 854

extern struct pglist_data contig_page_data;
#define NODE_DATA(nid)		(&contig_page_data)
#define NODE_MEM_MAP(nid)	mem_map

855
#else /* CONFIG_NEED_MULTIPLE_NODES */
L
Linus Torvalds 已提交
856 857 858

#include <asm/mmzone.h>

859
#endif /* !CONFIG_NEED_MULTIPLE_NODES */
860

861 862 863
extern struct pglist_data *first_online_pgdat(void);
extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
extern struct zone *next_zone(struct zone *zone);
864 865

/**
866
 * for_each_online_pgdat - helper macro to iterate over all online nodes
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
 * @pgdat - pointer to a pg_data_t variable
 */
#define for_each_online_pgdat(pgdat)			\
	for (pgdat = first_online_pgdat();		\
	     pgdat;					\
	     pgdat = next_online_pgdat(pgdat))
/**
 * for_each_zone - helper macro to iterate over all memory zones
 * @zone - pointer to struct zone variable
 *
 * The user only needs to declare the zone variable, for_each_zone
 * fills it in.
 */
#define for_each_zone(zone)			        \
	for (zone = (first_online_pgdat())->node_zones; \
	     zone;					\
	     zone = next_zone(zone))

885 886 887 888 889 890 891 892
#define for_each_populated_zone(zone)		        \
	for (zone = (first_online_pgdat())->node_zones; \
	     zone;					\
	     zone = next_zone(zone))			\
		if (!populated_zone(zone))		\
			; /* do nothing */		\
		else

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
static inline struct zone *zonelist_zone(struct zoneref *zoneref)
{
	return zoneref->zone;
}

static inline int zonelist_zone_idx(struct zoneref *zoneref)
{
	return zoneref->zone_idx;
}

static inline int zonelist_node_idx(struct zoneref *zoneref)
{
#ifdef CONFIG_NUMA
	/* zone_to_nid not available in this context */
	return zoneref->zone->node;
#else
	return 0;
#endif /* CONFIG_NUMA */
}

913 914 915 916 917 918 919 920 921
/**
 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
 * @z - The cursor used as a starting point for the search
 * @highest_zoneidx - The zone index of the highest zone to return
 * @nodes - An optional nodemask to filter the zonelist with
 * @zone - The first suitable zone found is returned via this parameter
 *
 * This function returns the next zone at or below a given zone index that is
 * within the allowed nodemask using a cursor as the starting point for the
922 923 924
 * search. The zoneref returned is a cursor that represents the current zone
 * being examined. It should be advanced by one before calling
 * next_zones_zonelist again.
925 926 927 928 929
 */
struct zoneref *next_zones_zonelist(struct zoneref *z,
					enum zone_type highest_zoneidx,
					nodemask_t *nodes,
					struct zone **zone);
930

931 932 933 934 935 936 937 938 939
/**
 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
 * @zonelist - The zonelist to search for a suitable zone
 * @highest_zoneidx - The zone index of the highest zone to return
 * @nodes - An optional nodemask to filter the zonelist with
 * @zone - The first suitable zone found is returned via this parameter
 *
 * This function returns the first zone at or below a given zone index that is
 * within the allowed nodemask. The zoneref returned is a cursor that can be
940 941
 * used to iterate the zonelist with next_zones_zonelist by advancing it by
 * one before calling.
942
 */
943
static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
944 945 946
					enum zone_type highest_zoneidx,
					nodemask_t *nodes,
					struct zone **zone)
947
{
948 949
	return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
								zone);
950 951
}

952 953 954 955 956 957 958 959 960 961 962 963 964 965
/**
 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
 * @zone - The current zone in the iterator
 * @z - The current pointer within zonelist->zones being iterated
 * @zlist - The zonelist being iterated
 * @highidx - The zone index of the highest zone to return
 * @nodemask - Nodemask allowed by the allocator
 *
 * This iterator iterates though all zones at or below a given zone index and
 * within a given nodemask
 */
#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
		zone;							\
966
		z = next_zones_zonelist(++z, highidx, nodemask, &zone))	\
967 968 969 970 971 972 973 974 975 976 977

/**
 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
 * @zone - The current zone in the iterator
 * @z - The current pointer within zonelist->zones being iterated
 * @zlist - The zonelist being iterated
 * @highidx - The zone index of the highest zone to return
 *
 * This iterator iterates though all zones at or below a given zone index.
 */
#define for_each_zone_zonelist(zone, z, zlist, highidx) \
978
	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
979

A
Andy Whitcroft 已提交
980 981 982 983
#ifdef CONFIG_SPARSEMEM
#include <asm/sparsemem.h>
#endif

984
#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
T
Tejun Heo 已提交
985
	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
986 987 988 989
static inline unsigned long early_pfn_to_nid(unsigned long pfn)
{
	return 0;
}
990 991
#endif

992 993 994 995
#ifdef CONFIG_FLATMEM
#define pfn_to_nid(pfn)		(0)
#endif

A
Andy Whitcroft 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
#ifdef CONFIG_SPARSEMEM

/*
 * SECTION_SHIFT    		#bits space required to store a section #
 *
 * PA_SECTION_SHIFT		physical address to/from section number
 * PFN_SECTION_SHIFT		pfn to/from section number
 */
#define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)

#define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
#define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)

#define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)

#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
#define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))

1014
#define SECTION_BLOCKFLAGS_BITS \
1015
	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1016

A
Andy Whitcroft 已提交
1017 1018 1019 1020
#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
#error Allocator MAX_ORDER exceeds SECTION_SIZE
#endif

1021 1022 1023
#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)

1024 1025 1026
#define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
#define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)

A
Andy Whitcroft 已提交
1027
struct page;
1028
struct page_cgroup;
A
Andy Whitcroft 已提交
1029
struct mem_section {
A
Andy Whitcroft 已提交
1030 1031 1032 1033 1034
	/*
	 * This is, logically, a pointer to an array of struct
	 * pages.  However, it is stored with some other magic.
	 * (see sparse.c::sparse_init_one_section())
	 *
1035 1036 1037 1038
	 * Additionally during early boot we encode node id of
	 * the location of the section here to guide allocation.
	 * (see sparse.c::memory_present())
	 *
A
Andy Whitcroft 已提交
1039 1040 1041 1042
	 * Making it a UL at least makes someone do a cast
	 * before using it wrong.
	 */
	unsigned long section_mem_map;
1043 1044 1045

	/* See declaration of similar field in struct zone */
	unsigned long *pageblock_flags;
1046 1047 1048 1049 1050 1051 1052 1053
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
	/*
	 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
	 * section. (see memcontrol.h/page_cgroup.h about this.)
	 */
	struct page_cgroup *page_cgroup;
	unsigned long pad;
#endif
A
Andy Whitcroft 已提交
1054 1055
};

1056 1057 1058 1059 1060
#ifdef CONFIG_SPARSEMEM_EXTREME
#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
#else
#define SECTIONS_PER_ROOT	1
#endif
B
Bob Picco 已提交
1061

1062
#define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1063
#define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1064
#define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
B
Bob Picco 已提交
1065

1066 1067
#ifdef CONFIG_SPARSEMEM_EXTREME
extern struct mem_section *mem_section[NR_SECTION_ROOTS];
B
Bob Picco 已提交
1068
#else
1069 1070
extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
#endif
A
Andy Whitcroft 已提交
1071

A
Andy Whitcroft 已提交
1072 1073
static inline struct mem_section *__nr_to_section(unsigned long nr)
{
1074 1075 1076
	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
		return NULL;
	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
A
Andy Whitcroft 已提交
1077
}
1078
extern int __section_nr(struct mem_section* ms);
1079
extern unsigned long usemap_size(void);
A
Andy Whitcroft 已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

/*
 * We use the lower bits of the mem_map pointer to store
 * a little bit of information.  There should be at least
 * 3 bits here due to 32-bit alignment.
 */
#define	SECTION_MARKED_PRESENT	(1UL<<0)
#define SECTION_HAS_MEM_MAP	(1UL<<1)
#define SECTION_MAP_LAST_BIT	(1UL<<2)
#define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1090
#define SECTION_NID_SHIFT	2
A
Andy Whitcroft 已提交
1091 1092 1093 1094 1095 1096 1097 1098

static inline struct page *__section_mem_map_addr(struct mem_section *section)
{
	unsigned long map = section->section_mem_map;
	map &= SECTION_MAP_MASK;
	return (struct page *)map;
}

1099
static inline int present_section(struct mem_section *section)
A
Andy Whitcroft 已提交
1100
{
B
Bob Picco 已提交
1101
	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
A
Andy Whitcroft 已提交
1102 1103
}

1104 1105 1106 1107 1108 1109
static inline int present_section_nr(unsigned long nr)
{
	return present_section(__nr_to_section(nr));
}

static inline int valid_section(struct mem_section *section)
A
Andy Whitcroft 已提交
1110
{
B
Bob Picco 已提交
1111
	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
A
Andy Whitcroft 已提交
1112 1113 1114 1115 1116 1117 1118
}

static inline int valid_section_nr(unsigned long nr)
{
	return valid_section(__nr_to_section(nr));
}

A
Andy Whitcroft 已提交
1119 1120
static inline struct mem_section *__pfn_to_section(unsigned long pfn)
{
A
Andy Whitcroft 已提交
1121
	return __nr_to_section(pfn_to_section_nr(pfn));
A
Andy Whitcroft 已提交
1122 1123
}

1124
#ifndef CONFIG_HAVE_ARCH_PFN_VALID
A
Andy Whitcroft 已提交
1125 1126 1127 1128
static inline int pfn_valid(unsigned long pfn)
{
	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
		return 0;
A
Andy Whitcroft 已提交
1129
	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
A
Andy Whitcroft 已提交
1130
}
1131
#endif
A
Andy Whitcroft 已提交
1132

1133 1134 1135 1136 1137 1138 1139
static inline int pfn_present(unsigned long pfn)
{
	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
		return 0;
	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
}

A
Andy Whitcroft 已提交
1140 1141 1142 1143 1144 1145
/*
 * These are _only_ used during initialisation, therefore they
 * can use __initdata ...  They could have names to indicate
 * this restriction.
 */
#ifdef CONFIG_NUMA
1146 1147 1148 1149 1150
#define pfn_to_nid(pfn)							\
({									\
	unsigned long __pfn_to_nid_pfn = (pfn);				\
	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
})
1151 1152
#else
#define pfn_to_nid(pfn)		(0)
A
Andy Whitcroft 已提交
1153 1154 1155 1156 1157 1158
#endif

#define early_pfn_valid(pfn)	pfn_valid(pfn)
void sparse_init(void);
#else
#define sparse_init()	do {} while (0)
1159
#define sparse_index_init(_sec, _nid)  do {} while (0)
A
Andy Whitcroft 已提交
1160 1161
#endif /* CONFIG_SPARSEMEM */

1162
#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1163
bool early_pfn_in_nid(unsigned long pfn, int nid);
1164 1165 1166 1167
#else
#define early_pfn_in_nid(pfn, nid)	(1)
#endif

A
Andy Whitcroft 已提交
1168 1169 1170 1171 1172 1173 1174
#ifndef early_pfn_valid
#define early_pfn_valid(pfn)	(1)
#endif

void memory_present(int nid, unsigned long start, unsigned long end);
unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
/*
 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
 * pfn_valid_within() should be used in this case; we optimise this away
 * when we have no holes within a MAX_ORDER_NR_PAGES block.
 */
#ifdef CONFIG_HOLES_IN_ZONE
#define pfn_valid_within(pfn) pfn_valid(pfn)
#else
#define pfn_valid_within(pfn) (1)
#endif

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
/*
 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
 * associated with it or not. In FLATMEM, it is expected that holes always
 * have valid memmap as long as there is valid PFNs either side of the hole.
 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
 * entire section.
 *
 * However, an ARM, and maybe other embedded architectures in the future
 * free memmap backing holes to save memory on the assumption the memmap is
 * never used. The page_zone linkages are then broken even though pfn_valid()
 * returns true. A walker of the full memmap must then do this additional
 * check to ensure the memmap they are looking at is sane by making sure
 * the zone and PFN linkages are still valid. This is expensive, but walkers
 * of the full memmap are extremely rare.
 */
int memmap_valid_within(unsigned long pfn,
					struct page *page, struct zone *zone);
#else
static inline int memmap_valid_within(unsigned long pfn,
					struct page *page, struct zone *zone)
{
	return 1;
}
#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */

C
Christoph Lameter 已提交
1213
#endif /* !__GENERATING_BOUNDS.H */
L
Linus Torvalds 已提交
1214 1215
#endif /* !__ASSEMBLY__ */
#endif /* _LINUX_MMZONE_H */