n2_core.c 52.4 KB
Newer Older
1 2
/* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
 *
3
 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/cpumask.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/crypto.h>
#include <crypto/md5.h>
#include <crypto/sha.h>
#include <crypto/aes.h>
#include <crypto/des.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/sched.h>

#include <crypto/internal/hash.h>
#include <crypto/scatterwalk.h>
#include <crypto/algapi.h>

#include <asm/hypervisor.h>
#include <asm/mdesc.h>

#include "n2_core.h"

#define DRV_MODULE_NAME		"n2_crypto"
34 35
#define DRV_MODULE_VERSION	"0.2"
#define DRV_MODULE_RELDATE	"July 28, 2011"
36

37
static char version[] =
38 39 40 41 42 43 44
	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";

MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
MODULE_DESCRIPTION("Niagara2 Crypto driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_MODULE_VERSION);

45
#define N2_CRA_PRIORITY		200
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241

static DEFINE_MUTEX(spu_lock);

struct spu_queue {
	cpumask_t		sharing;
	unsigned long		qhandle;

	spinlock_t		lock;
	u8			q_type;
	void			*q;
	unsigned long		head;
	unsigned long		tail;
	struct list_head	jobs;

	unsigned long		devino;

	char			irq_name[32];
	unsigned int		irq;

	struct list_head	list;
};

static struct spu_queue **cpu_to_cwq;
static struct spu_queue **cpu_to_mau;

static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
{
	if (q->q_type == HV_NCS_QTYPE_MAU) {
		off += MAU_ENTRY_SIZE;
		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
			off = 0;
	} else {
		off += CWQ_ENTRY_SIZE;
		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
			off = 0;
	}
	return off;
}

struct n2_request_common {
	struct list_head	entry;
	unsigned int		offset;
};
#define OFFSET_NOT_RUNNING	(~(unsigned int)0)

/* An async job request records the final tail value it used in
 * n2_request_common->offset, test to see if that offset is in
 * the range old_head, new_head, inclusive.
 */
static inline bool job_finished(struct spu_queue *q, unsigned int offset,
				unsigned long old_head, unsigned long new_head)
{
	if (old_head <= new_head) {
		if (offset > old_head && offset <= new_head)
			return true;
	} else {
		if (offset > old_head || offset <= new_head)
			return true;
	}
	return false;
}

/* When the HEAD marker is unequal to the actual HEAD, we get
 * a virtual device INO interrupt.  We should process the
 * completed CWQ entries and adjust the HEAD marker to clear
 * the IRQ.
 */
static irqreturn_t cwq_intr(int irq, void *dev_id)
{
	unsigned long off, new_head, hv_ret;
	struct spu_queue *q = dev_id;

	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
	       smp_processor_id(), q->qhandle);

	spin_lock(&q->lock);

	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);

	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
	       smp_processor_id(), new_head, hv_ret);

	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
		/* XXX ... XXX */
	}

	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
	if (hv_ret == HV_EOK)
		q->head = new_head;

	spin_unlock(&q->lock);

	return IRQ_HANDLED;
}

static irqreturn_t mau_intr(int irq, void *dev_id)
{
	struct spu_queue *q = dev_id;
	unsigned long head, hv_ret;

	spin_lock(&q->lock);

	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
	       smp_processor_id(), q->qhandle);

	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);

	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
	       smp_processor_id(), head, hv_ret);

	sun4v_ncs_sethead_marker(q->qhandle, head);

	spin_unlock(&q->lock);

	return IRQ_HANDLED;
}

static void *spu_queue_next(struct spu_queue *q, void *cur)
{
	return q->q + spu_next_offset(q, cur - q->q);
}

static int spu_queue_num_free(struct spu_queue *q)
{
	unsigned long head = q->head;
	unsigned long tail = q->tail;
	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
	unsigned long diff;

	if (head > tail)
		diff = head - tail;
	else
		diff = (end - tail) + head;

	return (diff / CWQ_ENTRY_SIZE) - 1;
}

static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
{
	int avail = spu_queue_num_free(q);

	if (avail >= num_entries)
		return q->q + q->tail;

	return NULL;
}

static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
{
	unsigned long hv_ret, new_tail;

	new_tail = spu_next_offset(q, last - q->q);

	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
	if (hv_ret == HV_EOK)
		q->tail = new_tail;
	return hv_ret;
}

static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
			     int enc_type, int auth_type,
			     unsigned int hash_len,
			     bool sfas, bool sob, bool eob, bool encrypt,
			     int opcode)
{
	u64 word = (len - 1) & CONTROL_LEN;

	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
	if (sfas)
		word |= CONTROL_STORE_FINAL_AUTH_STATE;
	if (sob)
		word |= CONTROL_START_OF_BLOCK;
	if (eob)
		word |= CONTROL_END_OF_BLOCK;
	if (encrypt)
		word |= CONTROL_ENCRYPT;
	if (hmac_key_len)
		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
	if (hash_len)
		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;

	return word;
}

#if 0
static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
{
	if (this_len >= 64 ||
	    qp->head != qp->tail)
		return true;
	return false;
}
#endif

242 243 244 245 246 247 248
struct n2_ahash_alg {
	struct list_head	entry;
	const char		*hash_zero;
	const u32		*hash_init;
	u8			hw_op_hashsz;
	u8			digest_size;
	u8			auth_type;
D
David S. Miller 已提交
249
	u8			hmac_type;
250 251 252 253 254 255 256 257 258 259 260 261 262
	struct ahash_alg	alg;
};

static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
{
	struct crypto_alg *alg = tfm->__crt_alg;
	struct ahash_alg *ahash_alg;

	ahash_alg = container_of(alg, struct ahash_alg, halg.base);

	return container_of(ahash_alg, struct n2_ahash_alg, alg);
}

D
David S. Miller 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
struct n2_hmac_alg {
	const char		*child_alg;
	struct n2_ahash_alg	derived;
};

static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
{
	struct crypto_alg *alg = tfm->__crt_alg;
	struct ahash_alg *ahash_alg;

	ahash_alg = container_of(alg, struct ahash_alg, halg.base);

	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
}

278
struct n2_hash_ctx {
279 280
	struct crypto_ahash		*fallback_tfm;
};
281

D
David S. Miller 已提交
282 283 284 285 286 287 288 289 290 291 292
#define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */

struct n2_hmac_ctx {
	struct n2_hash_ctx		base;

	struct crypto_shash		*child_shash;

	int				hash_key_len;
	unsigned char			hash_key[N2_HASH_KEY_MAX];
};

293
struct n2_hash_req_ctx {
294 295 296 297 298 299
	union {
		struct md5_state	md5;
		struct sha1_state	sha1;
		struct sha256_state	sha256;
	} u;

300
	struct ahash_request		fallback_req;
301 302 303 304
};

static int n2_hash_async_init(struct ahash_request *req)
{
305
	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
306 307 308
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);

309 310
	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
311

312
	return crypto_ahash_init(&rctx->fallback_req);
313 314 315 316
}

static int n2_hash_async_update(struct ahash_request *req)
{
317
	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
318 319 320
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);

321 322 323 324
	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
	rctx->fallback_req.nbytes = req->nbytes;
	rctx->fallback_req.src = req->src;
325

326
	return crypto_ahash_update(&rctx->fallback_req);
327 328 329 330
}

static int n2_hash_async_final(struct ahash_request *req)
{
331
	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
332 333 334
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);

335 336 337
	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
	rctx->fallback_req.result = req->result;
338

339
	return crypto_ahash_final(&rctx->fallback_req);
340 341 342 343
}

static int n2_hash_async_finup(struct ahash_request *req)
{
344
	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
345 346 347
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);

348 349 350 351 352
	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
	rctx->fallback_req.nbytes = req->nbytes;
	rctx->fallback_req.src = req->src;
	rctx->fallback_req.result = req->result;
353

354
	return crypto_ahash_finup(&rctx->fallback_req);
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
}

static int n2_hash_cra_init(struct crypto_tfm *tfm)
{
	const char *fallback_driver_name = tfm->__crt_alg->cra_name;
	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
	struct crypto_ahash *fallback_tfm;
	int err;

	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
					  CRYPTO_ALG_NEED_FALLBACK);
	if (IS_ERR(fallback_tfm)) {
		pr_warning("Fallback driver '%s' could not be loaded!\n",
			   fallback_driver_name);
		err = PTR_ERR(fallback_tfm);
		goto out;
	}

374 375 376 377
	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
					 crypto_ahash_reqsize(fallback_tfm)));

	ctx->fallback_tfm = fallback_tfm;
378 379 380 381 382 383 384 385 386 387 388
	return 0;

out:
	return err;
}

static void n2_hash_cra_exit(struct crypto_tfm *tfm)
{
	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);

389
	crypto_free_ahash(ctx->fallback_tfm);
390 391
}

D
David S. Miller 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
static int n2_hmac_cra_init(struct crypto_tfm *tfm)
{
	const char *fallback_driver_name = tfm->__crt_alg->cra_name;
	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
	struct crypto_ahash *fallback_tfm;
	struct crypto_shash *child_shash;
	int err;

	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
					  CRYPTO_ALG_NEED_FALLBACK);
	if (IS_ERR(fallback_tfm)) {
		pr_warning("Fallback driver '%s' could not be loaded!\n",
			   fallback_driver_name);
		err = PTR_ERR(fallback_tfm);
		goto out;
	}

	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
	if (IS_ERR(child_shash)) {
		pr_warning("Child shash '%s' could not be loaded!\n",
			   n2alg->child_alg);
		err = PTR_ERR(child_shash);
		goto out_free_fallback;
	}

	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
					 crypto_ahash_reqsize(fallback_tfm)));

	ctx->child_shash = child_shash;
	ctx->base.fallback_tfm = fallback_tfm;
	return 0;

out_free_fallback:
	crypto_free_ahash(fallback_tfm);

out:
	return err;
}

static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
{
	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);

	crypto_free_ahash(ctx->base.fallback_tfm);
	crypto_free_shash(ctx->child_shash);
}

static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
				unsigned int keylen)
{
	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
	struct crypto_shash *child_shash = ctx->child_shash;
	struct crypto_ahash *fallback_tfm;
	struct {
		struct shash_desc shash;
		char ctx[crypto_shash_descsize(child_shash)];
	} desc;
	int err, bs, ds;

	fallback_tfm = ctx->base.fallback_tfm;
	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
	if (err)
		return err;

	desc.shash.tfm = child_shash;
	desc.shash.flags = crypto_ahash_get_flags(tfm) &
		CRYPTO_TFM_REQ_MAY_SLEEP;

	bs = crypto_shash_blocksize(child_shash);
	ds = crypto_shash_digestsize(child_shash);
	BUG_ON(ds > N2_HASH_KEY_MAX);
	if (keylen > bs) {
		err = crypto_shash_digest(&desc.shash, key, keylen,
					  ctx->hash_key);
		if (err)
			return err;
		keylen = ds;
	} else if (keylen <= N2_HASH_KEY_MAX)
		memcpy(ctx->hash_key, key, keylen);

	ctx->hash_key_len = keylen;

	return err;
}

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
static unsigned long wait_for_tail(struct spu_queue *qp)
{
	unsigned long head, hv_ret;

	do {
		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
		if (hv_ret != HV_EOK) {
			pr_err("Hypervisor error on gethead\n");
			break;
		}
		if (head == qp->tail) {
			qp->head = head;
			break;
		}
	} while (1);
	return hv_ret;
}

static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
					      struct cwq_initial_entry *ent)
{
	unsigned long hv_ret = spu_queue_submit(qp, ent);

	if (hv_ret == HV_EOK)
		hv_ret = wait_for_tail(qp);

	return hv_ret;
}

509 510
static int n2_do_async_digest(struct ahash_request *req,
			      unsigned int auth_type, unsigned int digest_size,
D
David S. Miller 已提交
511 512
			      unsigned int result_size, void *hash_loc,
			      unsigned long auth_key, unsigned int auth_key_len)
513 514 515 516 517 518 519 520 521 522 523 524 525
{
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct cwq_initial_entry *ent;
	struct crypto_hash_walk walk;
	struct spu_queue *qp;
	unsigned long flags;
	int err = -ENODEV;
	int nbytes, cpu;

	/* The total effective length of the operation may not
	 * exceed 2^16.
	 */
	if (unlikely(req->nbytes > (1 << 16))) {
526
		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
527
		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
528 529 530

		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
		rctx->fallback_req.base.flags =
531
			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
532 533 534
		rctx->fallback_req.nbytes = req->nbytes;
		rctx->fallback_req.src = req->src;
		rctx->fallback_req.result = req->result;
535

536
		return crypto_ahash_digest(&rctx->fallback_req);
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	}

	nbytes = crypto_hash_walk_first(req, &walk);

	cpu = get_cpu();
	qp = cpu_to_cwq[cpu];
	if (!qp)
		goto out;

	spin_lock_irqsave(&qp->lock, flags);

	/* XXX can do better, improve this later by doing a by-hand scatterlist
	 * XXX walk, etc.
	 */
	ent = qp->q + qp->tail;

D
David S. Miller 已提交
553
	ent->control = control_word_base(nbytes, auth_key_len, 0,
554 555 556 557 558
					 auth_type, digest_size,
					 false, true, false, false,
					 OPCODE_INPLACE_BIT |
					 OPCODE_AUTH_MAC);
	ent->src_addr = __pa(walk.data);
D
David S. Miller 已提交
559
	ent->auth_key_addr = auth_key;
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
	ent->auth_iv_addr = __pa(hash_loc);
	ent->final_auth_state_addr = 0UL;
	ent->enc_key_addr = 0UL;
	ent->enc_iv_addr = 0UL;
	ent->dest_addr = __pa(hash_loc);

	nbytes = crypto_hash_walk_done(&walk, 0);
	while (nbytes > 0) {
		ent = spu_queue_next(qp, ent);

		ent->control = (nbytes - 1);
		ent->src_addr = __pa(walk.data);
		ent->auth_key_addr = 0UL;
		ent->auth_iv_addr = 0UL;
		ent->final_auth_state_addr = 0UL;
		ent->enc_key_addr = 0UL;
		ent->enc_iv_addr = 0UL;
		ent->dest_addr = 0UL;

		nbytes = crypto_hash_walk_done(&walk, 0);
	}
	ent->control |= CONTROL_END_OF_BLOCK;

	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
		err = -EINVAL;
	else
		err = 0;

	spin_unlock_irqrestore(&qp->lock, flags);

	if (!err)
		memcpy(req->result, hash_loc, result_size);
out:
	put_cpu();

	return err;
}

598
static int n2_hash_async_digest(struct ahash_request *req)
599
{
600
	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
601
	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
602
	int ds;
603

604
	ds = n2alg->digest_size;
605
	if (unlikely(req->nbytes == 0)) {
606
		memcpy(req->result, n2alg->hash_zero, ds);
607 608
		return 0;
	}
609
	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
610

611 612
	return n2_do_async_digest(req, n2alg->auth_type,
				  n2alg->hw_op_hashsz, ds,
D
David S. Miller 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
				  &rctx->u, 0UL, 0);
}

static int n2_hmac_async_digest(struct ahash_request *req)
{
	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
	int ds;

	ds = n2alg->derived.digest_size;
	if (unlikely(req->nbytes == 0) ||
	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);

		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
		rctx->fallback_req.base.flags =
			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
		rctx->fallback_req.nbytes = req->nbytes;
		rctx->fallback_req.src = req->src;
		rctx->fallback_req.result = req->result;

		return crypto_ahash_digest(&rctx->fallback_req);
	}
	memcpy(&rctx->u, n2alg->derived.hash_init,
	       n2alg->derived.hw_op_hashsz);

	return n2_do_async_digest(req, n2alg->derived.hmac_type,
				  n2alg->derived.hw_op_hashsz, ds,
				  &rctx->u,
				  __pa(&ctx->hash_key),
				  ctx->hash_key_len);
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
}

struct n2_cipher_context {
	int			key_len;
	int			enc_type;
	union {
		u8		aes[AES_MAX_KEY_SIZE];
		u8		des[DES_KEY_SIZE];
		u8		des3[3 * DES_KEY_SIZE];
		u8		arc4[258]; /* S-box, X, Y */
	} key;
};

#define N2_CHUNK_ARR_LEN	16

struct n2_crypto_chunk {
	struct list_head	entry;
	unsigned long		iv_paddr : 44;
	unsigned long		arr_len : 20;
	unsigned long		dest_paddr;
	unsigned long		dest_final;
	struct {
		unsigned long	src_paddr : 44;
		unsigned long	src_len : 20;
	} arr[N2_CHUNK_ARR_LEN];
};

struct n2_request_context {
	struct ablkcipher_walk	walk;
	struct list_head	chunk_list;
	struct n2_crypto_chunk	chunk;
	u8			temp_iv[16];
};

/* The SPU allows some level of flexibility for partial cipher blocks
 * being specified in a descriptor.
 *
 * It merely requires that every descriptor's length field is at least
 * as large as the cipher block size.  This means that a cipher block
 * can span at most 2 descriptors.  However, this does not allow a
 * partial block to span into the final descriptor as that would
 * violate the rule (since every descriptor's length must be at lest
 * the block size).  So, for example, assuming an 8 byte block size:
 *
 *	0xe --> 0xa --> 0x8
 *
 * is a valid length sequence, whereas:
 *
 *	0xe --> 0xb --> 0x7
 *
 * is not a valid sequence.
 */

struct n2_cipher_alg {
	struct list_head	entry;
	u8			enc_type;
	struct crypto_alg	alg;
};

static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
{
	struct crypto_alg *alg = tfm->__crt_alg;

	return container_of(alg, struct n2_cipher_alg, alg);
}

struct n2_cipher_request_context {
	struct ablkcipher_walk	walk;
};

static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
			 unsigned int keylen)
{
	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);

	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);

	switch (keylen) {
	case AES_KEYSIZE_128:
		ctx->enc_type |= ENC_TYPE_ALG_AES128;
		break;
	case AES_KEYSIZE_192:
		ctx->enc_type |= ENC_TYPE_ALG_AES192;
		break;
	case AES_KEYSIZE_256:
		ctx->enc_type |= ENC_TYPE_ALG_AES256;
		break;
	default:
		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}

	ctx->key_len = keylen;
	memcpy(ctx->key.aes, key, keylen);
	return 0;
}

static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
			 unsigned int keylen)
{
	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
	u32 tmp[DES_EXPKEY_WORDS];
	int err;

	ctx->enc_type = n2alg->enc_type;

	if (keylen != DES_KEY_SIZE) {
		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}

	err = des_ekey(tmp, key);
	if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
		tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
		return -EINVAL;
	}

	ctx->key_len = keylen;
	memcpy(ctx->key.des, key, keylen);
	return 0;
}

static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
			  unsigned int keylen)
{
	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);

	ctx->enc_type = n2alg->enc_type;

	if (keylen != (3 * DES_KEY_SIZE)) {
		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}
	ctx->key_len = keylen;
	memcpy(ctx->key.des3, key, keylen);
	return 0;
}

static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
			  unsigned int keylen)
{
	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
	u8 *s = ctx->key.arc4;
	u8 *x = s + 256;
	u8 *y = x + 1;
	int i, j, k;

	ctx->enc_type = n2alg->enc_type;

	j = k = 0;
	*x = 0;
	*y = 0;
	for (i = 0; i < 256; i++)
		s[i] = i;
	for (i = 0; i < 256; i++) {
		u8 a = s[i];
		j = (j + key[k] + a) & 0xff;
		s[i] = s[j];
		s[j] = a;
		if (++k >= keylen)
			k = 0;
	}

	return 0;
}

static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
{
	int this_len = nbytes;

	this_len -= (nbytes & (block_size - 1));
	return this_len > (1 << 16) ? (1 << 16) : this_len;
}

static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
			    struct spu_queue *qp, bool encrypt)
{
	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
	struct cwq_initial_entry *ent;
	bool in_place;
	int i;

	ent = spu_queue_alloc(qp, cp->arr_len);
	if (!ent) {
		pr_info("queue_alloc() of %d fails\n",
			cp->arr_len);
		return -EBUSY;
	}

	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);

	ent->control = control_word_base(cp->arr[0].src_len,
					 0, ctx->enc_type, 0, 0,
					 false, true, false, encrypt,
					 OPCODE_ENCRYPT |
					 (in_place ? OPCODE_INPLACE_BIT : 0));
	ent->src_addr = cp->arr[0].src_paddr;
	ent->auth_key_addr = 0UL;
	ent->auth_iv_addr = 0UL;
	ent->final_auth_state_addr = 0UL;
	ent->enc_key_addr = __pa(&ctx->key);
	ent->enc_iv_addr = cp->iv_paddr;
	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);

	for (i = 1; i < cp->arr_len; i++) {
		ent = spu_queue_next(qp, ent);

		ent->control = cp->arr[i].src_len - 1;
		ent->src_addr = cp->arr[i].src_paddr;
		ent->auth_key_addr = 0UL;
		ent->auth_iv_addr = 0UL;
		ent->final_auth_state_addr = 0UL;
		ent->enc_key_addr = 0UL;
		ent->enc_iv_addr = 0UL;
		ent->dest_addr = 0UL;
	}
	ent->control |= CONTROL_END_OF_BLOCK;

	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
}

static int n2_compute_chunks(struct ablkcipher_request *req)
{
	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
	struct ablkcipher_walk *walk = &rctx->walk;
	struct n2_crypto_chunk *chunk;
	unsigned long dest_prev;
	unsigned int tot_len;
	bool prev_in_place;
	int err, nbytes;

	ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
	err = ablkcipher_walk_phys(req, walk);
	if (err)
		return err;

	INIT_LIST_HEAD(&rctx->chunk_list);

	chunk = &rctx->chunk;
	INIT_LIST_HEAD(&chunk->entry);

	chunk->iv_paddr = 0UL;
	chunk->arr_len = 0;
	chunk->dest_paddr = 0UL;

	prev_in_place = false;
	dest_prev = ~0UL;
	tot_len = 0;

	while ((nbytes = walk->nbytes) != 0) {
		unsigned long dest_paddr, src_paddr;
		bool in_place;
		int this_len;

		src_paddr = (page_to_phys(walk->src.page) +
			     walk->src.offset);
		dest_paddr = (page_to_phys(walk->dst.page) +
			      walk->dst.offset);
		in_place = (src_paddr == dest_paddr);
		this_len = cipher_descriptor_len(nbytes, walk->blocksize);

		if (chunk->arr_len != 0) {
			if (in_place != prev_in_place ||
			    (!prev_in_place &&
			     dest_paddr != dest_prev) ||
			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
			    tot_len + this_len > (1 << 16)) {
				chunk->dest_final = dest_prev;
				list_add_tail(&chunk->entry,
					      &rctx->chunk_list);
				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
				if (!chunk) {
					err = -ENOMEM;
					break;
				}
				INIT_LIST_HEAD(&chunk->entry);
			}
		}
		if (chunk->arr_len == 0) {
			chunk->dest_paddr = dest_paddr;
			tot_len = 0;
		}
		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
		chunk->arr[chunk->arr_len].src_len = this_len;
		chunk->arr_len++;

		dest_prev = dest_paddr + this_len;
		prev_in_place = in_place;
		tot_len += this_len;

		err = ablkcipher_walk_done(req, walk, nbytes - this_len);
		if (err)
			break;
	}
	if (!err && chunk->arr_len != 0) {
		chunk->dest_final = dest_prev;
		list_add_tail(&chunk->entry, &rctx->chunk_list);
	}

	return err;
}

static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
{
	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
	struct n2_crypto_chunk *c, *tmp;

	if (final_iv)
		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);

	ablkcipher_walk_complete(&rctx->walk);
	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
		list_del(&c->entry);
		if (unlikely(c != &rctx->chunk))
			kfree(c);
	}

}

static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
{
	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
	struct crypto_tfm *tfm = req->base.tfm;
	int err = n2_compute_chunks(req);
	struct n2_crypto_chunk *c, *tmp;
	unsigned long flags, hv_ret;
	struct spu_queue *qp;

	if (err)
		return err;

	qp = cpu_to_cwq[get_cpu()];
	err = -ENODEV;
	if (!qp)
		goto out;

	spin_lock_irqsave(&qp->lock, flags);

	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
		if (err)
			break;
		list_del(&c->entry);
		if (unlikely(c != &rctx->chunk))
			kfree(c);
	}
	if (!err) {
		hv_ret = wait_for_tail(qp);
		if (hv_ret != HV_EOK)
			err = -EINVAL;
	}

	spin_unlock_irqrestore(&qp->lock, flags);

1009
out:
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	put_cpu();

	n2_chunk_complete(req, NULL);
	return err;
}

static int n2_encrypt_ecb(struct ablkcipher_request *req)
{
	return n2_do_ecb(req, true);
}

static int n2_decrypt_ecb(struct ablkcipher_request *req)
{
	return n2_do_ecb(req, false);
}

static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
{
	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
	struct crypto_tfm *tfm = req->base.tfm;
	unsigned long flags, hv_ret, iv_paddr;
	int err = n2_compute_chunks(req);
	struct n2_crypto_chunk *c, *tmp;
	struct spu_queue *qp;
	void *final_iv_addr;

	final_iv_addr = NULL;

	if (err)
		return err;

	qp = cpu_to_cwq[get_cpu()];
	err = -ENODEV;
	if (!qp)
		goto out;

	spin_lock_irqsave(&qp->lock, flags);

	if (encrypt) {
		iv_paddr = __pa(rctx->walk.iv);
		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
					 entry) {
			c->iv_paddr = iv_paddr;
			err = __n2_crypt_chunk(tfm, c, qp, true);
			if (err)
				break;
			iv_paddr = c->dest_final - rctx->walk.blocksize;
			list_del(&c->entry);
			if (unlikely(c != &rctx->chunk))
				kfree(c);
		}
		final_iv_addr = __va(iv_paddr);
	} else {
		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
						 entry) {
			if (c == &rctx->chunk) {
				iv_paddr = __pa(rctx->walk.iv);
			} else {
				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
					    tmp->arr[tmp->arr_len-1].src_len -
					    rctx->walk.blocksize);
			}
			if (!final_iv_addr) {
				unsigned long pa;

				pa = (c->arr[c->arr_len-1].src_paddr +
				      c->arr[c->arr_len-1].src_len -
				      rctx->walk.blocksize);
				final_iv_addr = rctx->temp_iv;
				memcpy(rctx->temp_iv, __va(pa),
				       rctx->walk.blocksize);
			}
			c->iv_paddr = iv_paddr;
			err = __n2_crypt_chunk(tfm, c, qp, false);
			if (err)
				break;
			list_del(&c->entry);
			if (unlikely(c != &rctx->chunk))
				kfree(c);
		}
	}
	if (!err) {
		hv_ret = wait_for_tail(qp);
		if (hv_ret != HV_EOK)
			err = -EINVAL;
	}

	spin_unlock_irqrestore(&qp->lock, flags);

1099
out:
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	put_cpu();

	n2_chunk_complete(req, err ? NULL : final_iv_addr);
	return err;
}

static int n2_encrypt_chaining(struct ablkcipher_request *req)
{
	return n2_do_chaining(req, true);
}

static int n2_decrypt_chaining(struct ablkcipher_request *req)
{
	return n2_do_chaining(req, false);
}

struct n2_cipher_tmpl {
	const char		*name;
	const char		*drv_name;
	u8			block_size;
	u8			enc_type;
	struct ablkcipher_alg	ablkcipher;
};

static const struct n2_cipher_tmpl cipher_tmpls[] = {
	/* ARC4: only ECB is supported (chaining bits ignored) */
	{	.name		= "ecb(arc4)",
		.drv_name	= "ecb-arc4",
		.block_size	= 1,
		.enc_type	= (ENC_TYPE_ALG_RC4_STREAM |
				   ENC_TYPE_CHAINING_ECB),
		.ablkcipher	= {
			.min_keysize	= 1,
			.max_keysize	= 256,
			.setkey		= n2_arc4_setkey,
			.encrypt	= n2_encrypt_ecb,
			.decrypt	= n2_decrypt_ecb,
		},
	},

	/* DES: ECB CBC and CFB are supported */
	{	.name		= "ecb(des)",
		.drv_name	= "ecb-des",
		.block_size	= DES_BLOCK_SIZE,
		.enc_type	= (ENC_TYPE_ALG_DES |
				   ENC_TYPE_CHAINING_ECB),
		.ablkcipher	= {
			.min_keysize	= DES_KEY_SIZE,
			.max_keysize	= DES_KEY_SIZE,
			.setkey		= n2_des_setkey,
			.encrypt	= n2_encrypt_ecb,
			.decrypt	= n2_decrypt_ecb,
		},
	},
	{	.name		= "cbc(des)",
		.drv_name	= "cbc-des",
		.block_size	= DES_BLOCK_SIZE,
		.enc_type	= (ENC_TYPE_ALG_DES |
				   ENC_TYPE_CHAINING_CBC),
		.ablkcipher	= {
			.ivsize		= DES_BLOCK_SIZE,
			.min_keysize	= DES_KEY_SIZE,
			.max_keysize	= DES_KEY_SIZE,
			.setkey		= n2_des_setkey,
			.encrypt	= n2_encrypt_chaining,
			.decrypt	= n2_decrypt_chaining,
		},
	},
	{	.name		= "cfb(des)",
		.drv_name	= "cfb-des",
		.block_size	= DES_BLOCK_SIZE,
		.enc_type	= (ENC_TYPE_ALG_DES |
				   ENC_TYPE_CHAINING_CFB),
		.ablkcipher	= {
			.min_keysize	= DES_KEY_SIZE,
			.max_keysize	= DES_KEY_SIZE,
			.setkey		= n2_des_setkey,
			.encrypt	= n2_encrypt_chaining,
			.decrypt	= n2_decrypt_chaining,
		},
	},

	/* 3DES: ECB CBC and CFB are supported */
	{	.name		= "ecb(des3_ede)",
		.drv_name	= "ecb-3des",
		.block_size	= DES_BLOCK_SIZE,
		.enc_type	= (ENC_TYPE_ALG_3DES |
				   ENC_TYPE_CHAINING_ECB),
		.ablkcipher	= {
			.min_keysize	= 3 * DES_KEY_SIZE,
			.max_keysize	= 3 * DES_KEY_SIZE,
			.setkey		= n2_3des_setkey,
			.encrypt	= n2_encrypt_ecb,
			.decrypt	= n2_decrypt_ecb,
		},
	},
	{	.name		= "cbc(des3_ede)",
		.drv_name	= "cbc-3des",
		.block_size	= DES_BLOCK_SIZE,
		.enc_type	= (ENC_TYPE_ALG_3DES |
				   ENC_TYPE_CHAINING_CBC),
		.ablkcipher	= {
			.ivsize		= DES_BLOCK_SIZE,
			.min_keysize	= 3 * DES_KEY_SIZE,
			.max_keysize	= 3 * DES_KEY_SIZE,
			.setkey		= n2_3des_setkey,
			.encrypt	= n2_encrypt_chaining,
			.decrypt	= n2_decrypt_chaining,
		},
	},
	{	.name		= "cfb(des3_ede)",
		.drv_name	= "cfb-3des",
		.block_size	= DES_BLOCK_SIZE,
		.enc_type	= (ENC_TYPE_ALG_3DES |
				   ENC_TYPE_CHAINING_CFB),
		.ablkcipher	= {
			.min_keysize	= 3 * DES_KEY_SIZE,
			.max_keysize	= 3 * DES_KEY_SIZE,
			.setkey		= n2_3des_setkey,
			.encrypt	= n2_encrypt_chaining,
			.decrypt	= n2_decrypt_chaining,
		},
	},
	/* AES: ECB CBC and CTR are supported */
	{	.name		= "ecb(aes)",
		.drv_name	= "ecb-aes",
		.block_size	= AES_BLOCK_SIZE,
		.enc_type	= (ENC_TYPE_ALG_AES128 |
				   ENC_TYPE_CHAINING_ECB),
		.ablkcipher	= {
			.min_keysize	= AES_MIN_KEY_SIZE,
			.max_keysize	= AES_MAX_KEY_SIZE,
			.setkey		= n2_aes_setkey,
			.encrypt	= n2_encrypt_ecb,
			.decrypt	= n2_decrypt_ecb,
		},
	},
	{	.name		= "cbc(aes)",
		.drv_name	= "cbc-aes",
		.block_size	= AES_BLOCK_SIZE,
		.enc_type	= (ENC_TYPE_ALG_AES128 |
				   ENC_TYPE_CHAINING_CBC),
		.ablkcipher	= {
			.ivsize		= AES_BLOCK_SIZE,
			.min_keysize	= AES_MIN_KEY_SIZE,
			.max_keysize	= AES_MAX_KEY_SIZE,
			.setkey		= n2_aes_setkey,
			.encrypt	= n2_encrypt_chaining,
			.decrypt	= n2_decrypt_chaining,
		},
	},
	{	.name		= "ctr(aes)",
		.drv_name	= "ctr-aes",
		.block_size	= AES_BLOCK_SIZE,
		.enc_type	= (ENC_TYPE_ALG_AES128 |
				   ENC_TYPE_CHAINING_COUNTER),
		.ablkcipher	= {
			.ivsize		= AES_BLOCK_SIZE,
			.min_keysize	= AES_MIN_KEY_SIZE,
			.max_keysize	= AES_MAX_KEY_SIZE,
			.setkey		= n2_aes_setkey,
			.encrypt	= n2_encrypt_chaining,
			.decrypt	= n2_encrypt_chaining,
		},
	},

};
#define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)

static LIST_HEAD(cipher_algs);

struct n2_hash_tmpl {
	const char	*name;
1273 1274 1275
	const char	*hash_zero;
	const u32	*hash_init;
	u8		hw_op_hashsz;
1276 1277
	u8		digest_size;
	u8		block_size;
1278
	u8		auth_type;
D
David S. Miller 已提交
1279
	u8		hmac_type;
1280 1281 1282 1283 1284
};

static const char md5_zero[MD5_DIGEST_SIZE] = {
	0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04,
	0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e,
1285
};
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
static const u32 md5_init[MD5_HASH_WORDS] = {
	cpu_to_le32(0x67452301),
	cpu_to_le32(0xefcdab89),
	cpu_to_le32(0x98badcfe),
	cpu_to_le32(0x10325476),
};
static const char sha1_zero[SHA1_DIGEST_SIZE] = {
	0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d, 0x32,
	0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90, 0xaf, 0xd8,
	0x07, 0x09
};
static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = {
	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
};
static const char sha256_zero[SHA256_DIGEST_SIZE] = {
	0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a,
	0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae,
	0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99,
	0x1b, 0x78, 0x52, 0xb8, 0x55
};
static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = {
	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
};
static const char sha224_zero[SHA224_DIGEST_SIZE] = {
	0xd1, 0x4a, 0x02, 0x8c, 0x2a, 0x3a, 0x2b, 0xc9, 0x47,
	0x61, 0x02, 0xbb, 0x28, 0x82, 0x34, 0xc4, 0x15, 0xa2,
	0xb0, 0x1f, 0x82, 0x8e, 0xa6, 0x2a, 0xc5, 0xb3, 0xe4,
	0x2f
};
static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = {
	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
};

1321 1322
static const struct n2_hash_tmpl hash_tmpls[] = {
	{ .name		= "md5",
1323 1324 1325
	  .hash_zero	= md5_zero,
	  .hash_init	= md5_init,
	  .auth_type	= AUTH_TYPE_MD5,
D
David S. Miller 已提交
1326
	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
1327
	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
1328 1329 1330
	  .digest_size	= MD5_DIGEST_SIZE,
	  .block_size	= MD5_HMAC_BLOCK_SIZE },
	{ .name		= "sha1",
1331 1332 1333
	  .hash_zero	= sha1_zero,
	  .hash_init	= sha1_init,
	  .auth_type	= AUTH_TYPE_SHA1,
D
David S. Miller 已提交
1334
	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
1335
	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
1336 1337 1338
	  .digest_size	= SHA1_DIGEST_SIZE,
	  .block_size	= SHA1_BLOCK_SIZE },
	{ .name		= "sha256",
1339 1340 1341
	  .hash_zero	= sha256_zero,
	  .hash_init	= sha256_init,
	  .auth_type	= AUTH_TYPE_SHA256,
D
David S. Miller 已提交
1342
	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
1343
	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1344 1345 1346
	  .digest_size	= SHA256_DIGEST_SIZE,
	  .block_size	= SHA256_BLOCK_SIZE },
	{ .name		= "sha224",
1347 1348 1349
	  .hash_zero	= sha224_zero,
	  .hash_init	= sha224_init,
	  .auth_type	= AUTH_TYPE_SHA256,
D
David S. Miller 已提交
1350
	  .hmac_type	= AUTH_TYPE_RESERVED,
1351
	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1352 1353 1354 1355 1356 1357
	  .digest_size	= SHA224_DIGEST_SIZE,
	  .block_size	= SHA224_BLOCK_SIZE },
};
#define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)

static LIST_HEAD(ahash_algs);
D
David S. Miller 已提交
1358
static LIST_HEAD(hmac_algs);
1359 1360 1361 1362 1363 1364 1365

static int algs_registered;

static void __n2_unregister_algs(void)
{
	struct n2_cipher_alg *cipher, *cipher_tmp;
	struct n2_ahash_alg *alg, *alg_tmp;
D
David S. Miller 已提交
1366
	struct n2_hmac_alg *hmac, *hmac_tmp;
1367 1368 1369 1370 1371 1372

	list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
		crypto_unregister_alg(&cipher->alg);
		list_del(&cipher->entry);
		kfree(cipher);
	}
D
David S. Miller 已提交
1373 1374 1375 1376 1377
	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
		crypto_unregister_ahash(&hmac->derived.alg);
		list_del(&hmac->derived.entry);
		kfree(hmac);
	}
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
		crypto_unregister_ahash(&alg->alg);
		list_del(&alg->entry);
		kfree(alg);
	}
}

static int n2_cipher_cra_init(struct crypto_tfm *tfm)
{
	tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
	return 0;
}

1391
static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
{
	struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
	struct crypto_alg *alg;
	int err;

	if (!p)
		return -ENOMEM;

	alg = &p->alg;

	snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
	snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
	alg->cra_priority = N2_CRA_PRIORITY;
1405 1406
	alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
			 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	alg->cra_blocksize = tmpl->block_size;
	p->enc_type = tmpl->enc_type;
	alg->cra_ctxsize = sizeof(struct n2_cipher_context);
	alg->cra_type = &crypto_ablkcipher_type;
	alg->cra_u.ablkcipher = tmpl->ablkcipher;
	alg->cra_init = n2_cipher_cra_init;
	alg->cra_module = THIS_MODULE;

	list_add(&p->entry, &cipher_algs);
	err = crypto_register_alg(alg);
	if (err) {
1418
		pr_err("%s alg registration failed\n", alg->cra_name);
1419 1420
		list_del(&p->entry);
		kfree(p);
1421 1422
	} else {
		pr_info("%s alg registered\n", alg->cra_name);
1423 1424 1425 1426
	}
	return err;
}

1427
static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
D
David S. Miller 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
{
	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
	struct ahash_alg *ahash;
	struct crypto_alg *base;
	int err;

	if (!p)
		return -ENOMEM;

	p->child_alg = n2ahash->alg.halg.base.cra_name;
	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
	INIT_LIST_HEAD(&p->derived.entry);

	ahash = &p->derived.alg;
	ahash->digest = n2_hmac_async_digest;
	ahash->setkey = n2_hmac_async_setkey;

	base = &ahash->halg.base;
	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);

	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
	base->cra_init = n2_hmac_cra_init;
	base->cra_exit = n2_hmac_cra_exit;

	list_add(&p->derived.entry, &hmac_algs);
	err = crypto_register_ahash(ahash);
	if (err) {
		pr_err("%s alg registration failed\n", base->cra_name);
		list_del(&p->derived.entry);
		kfree(p);
	} else {
		pr_info("%s alg registered\n", base->cra_name);
	}
	return err;
}

1465
static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
{
	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
	struct hash_alg_common *halg;
	struct crypto_alg *base;
	struct ahash_alg *ahash;
	int err;

	if (!p)
		return -ENOMEM;

1476 1477 1478
	p->hash_zero = tmpl->hash_zero;
	p->hash_init = tmpl->hash_init;
	p->auth_type = tmpl->auth_type;
D
David S. Miller 已提交
1479
	p->hmac_type = tmpl->hmac_type;
1480 1481 1482
	p->hw_op_hashsz = tmpl->hw_op_hashsz;
	p->digest_size = tmpl->digest_size;

1483 1484 1485 1486 1487
	ahash = &p->alg;
	ahash->init = n2_hash_async_init;
	ahash->update = n2_hash_async_update;
	ahash->final = n2_hash_async_final;
	ahash->finup = n2_hash_async_finup;
1488
	ahash->digest = n2_hash_async_digest;
1489 1490 1491 1492 1493 1494 1495 1496

	halg = &ahash->halg;
	halg->digestsize = tmpl->digest_size;

	base = &halg->base;
	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
	base->cra_priority = N2_CRA_PRIORITY;
1497 1498 1499
	base->cra_flags = CRYPTO_ALG_TYPE_AHASH |
			  CRYPTO_ALG_KERN_DRIVER_ONLY |
			  CRYPTO_ALG_NEED_FALLBACK;
1500 1501 1502 1503 1504 1505 1506 1507 1508
	base->cra_blocksize = tmpl->block_size;
	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
	base->cra_module = THIS_MODULE;
	base->cra_init = n2_hash_cra_init;
	base->cra_exit = n2_hash_cra_exit;

	list_add(&p->entry, &ahash_algs);
	err = crypto_register_ahash(ahash);
	if (err) {
1509
		pr_err("%s alg registration failed\n", base->cra_name);
1510 1511
		list_del(&p->entry);
		kfree(p);
1512 1513
	} else {
		pr_info("%s alg registered\n", base->cra_name);
1514
	}
D
David S. Miller 已提交
1515 1516
	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
		err = __n2_register_one_hmac(p);
1517 1518 1519
	return err;
}

1520
static int n2_register_algs(void)
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
{
	int i, err = 0;

	mutex_lock(&spu_lock);
	if (algs_registered++)
		goto out;

	for (i = 0; i < NUM_HASH_TMPLS; i++) {
		err = __n2_register_one_ahash(&hash_tmpls[i]);
		if (err) {
			__n2_unregister_algs();
			goto out;
		}
	}
	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
		err = __n2_register_one_cipher(&cipher_tmpls[i]);
		if (err) {
			__n2_unregister_algs();
			goto out;
		}
	}

out:
	mutex_unlock(&spu_lock);
	return err;
}

1548
static void n2_unregister_algs(void)
1549 1550 1551 1552 1553 1554 1555 1556 1557
{
	mutex_lock(&spu_lock);
	if (!--algs_registered)
		__n2_unregister_algs();
	mutex_unlock(&spu_lock);
}

/* To map CWQ queues to interrupt sources, the hypervisor API provides
 * a devino.  This isn't very useful to us because all of the
1558
 * interrupts listed in the device_node have been translated to
1559 1560 1561 1562 1563 1564 1565
 * Linux virtual IRQ cookie numbers.
 *
 * So we have to back-translate, going through the 'intr' and 'ino'
 * property tables of the n2cp MDESC node, matching it with the OF
 * 'interrupts' property entries, in order to to figure out which
 * devino goes to which already-translated IRQ.
 */
1566
static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
			     unsigned long dev_ino)
{
	const unsigned int *dev_intrs;
	unsigned int intr;
	int i;

	for (i = 0; i < ip->num_intrs; i++) {
		if (ip->ino_table[i].ino == dev_ino)
			break;
	}
	if (i == ip->num_intrs)
		return -ENODEV;

	intr = ip->ino_table[i].intr;

1582
	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1583 1584 1585
	if (!dev_intrs)
		return -ENODEV;

1586
	for (i = 0; i < dev->archdata.num_irqs; i++) {
1587 1588 1589 1590 1591 1592 1593
		if (dev_intrs[i] == intr)
			return i;
	}

	return -ENODEV;
}

1594
static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
		       const char *irq_name, struct spu_queue *p,
		       irq_handler_t handler)
{
	unsigned long herr;
	int index;

	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
	if (herr)
		return -EINVAL;

	index = find_devino_index(dev, ip, p->devino);
	if (index < 0)
		return index;

1609
	p->irq = dev->archdata.irqs[index];
1610 1611 1612

	sprintf(p->irq_name, "%s-%d", irq_name, index);

1613
	return request_irq(p->irq, handler, 0, p->irq_name, p);
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
}

static struct kmem_cache *queue_cache[2];

static void *new_queue(unsigned long q_type)
{
	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
}

static void free_queue(void *p, unsigned long q_type)
{
	return kmem_cache_free(queue_cache[q_type - 1], p);
}

static int queue_cache_init(void)
{
	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
		queue_cache[HV_NCS_QTYPE_MAU - 1] =
1632
			kmem_cache_create("mau_queue",
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
					  (MAU_NUM_ENTRIES *
					   MAU_ENTRY_SIZE),
					  MAU_ENTRY_SIZE, 0, NULL);
	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
		return -ENOMEM;

	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
			kmem_cache_create("cwq_queue",
					  (CWQ_NUM_ENTRIES *
					   CWQ_ENTRY_SIZE),
					  CWQ_ENTRY_SIZE, 0, NULL);
	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
		return -ENOMEM;
	}
	return 0;
}

static void queue_cache_destroy(void)
{
	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
}

static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
{
	cpumask_var_t old_allowed;
	unsigned long hv_ret;

	if (cpumask_empty(&p->sharing))
		return -EINVAL;

	if (!alloc_cpumask_var(&old_allowed, GFP_KERNEL))
		return -ENOMEM;

	cpumask_copy(old_allowed, &current->cpus_allowed);

	set_cpus_allowed_ptr(current, &p->sharing);

	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
				 CWQ_NUM_ENTRIES, &p->qhandle);
	if (!hv_ret)
		sun4v_ncs_sethead_marker(p->qhandle, 0);

	set_cpus_allowed_ptr(current, old_allowed);

	free_cpumask_var(old_allowed);

	return (hv_ret ? -EINVAL : 0);
}

static int spu_queue_setup(struct spu_queue *p)
{
	int err;

	p->q = new_queue(p->q_type);
	if (!p->q)
		return -ENOMEM;

	err = spu_queue_register(p, p->q_type);
	if (err) {
		free_queue(p->q, p->q_type);
		p->q = NULL;
	}

	return err;
}

static void spu_queue_destroy(struct spu_queue *p)
{
	unsigned long hv_ret;

	if (!p->q)
		return;

	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);

	if (!hv_ret)
		free_queue(p->q, p->q_type);
}

static void spu_list_destroy(struct list_head *list)
{
	struct spu_queue *p, *n;

	list_for_each_entry_safe(p, n, list, list) {
		int i;

		for (i = 0; i < NR_CPUS; i++) {
			if (cpu_to_cwq[i] == p)
				cpu_to_cwq[i] = NULL;
		}

		if (p->irq) {
			free_irq(p->irq, p);
			p->irq = 0;
		}
		spu_queue_destroy(p);
		list_del(&p->list);
		kfree(p);
	}
}

/* Walk the backward arcs of a CWQ 'exec-unit' node,
 * gathering cpu membership information.
 */
static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1741
			       struct platform_device *dev,
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
			       u64 node, struct spu_queue *p,
			       struct spu_queue **table)
{
	u64 arc;

	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
		u64 tgt = mdesc_arc_target(mdesc, arc);
		const char *name = mdesc_node_name(mdesc, tgt);
		const u64 *id;

		if (strcmp(name, "cpu"))
			continue;
		id = mdesc_get_property(mdesc, tgt, "id", NULL);
		if (table[*id] != NULL) {
			dev_err(&dev->dev, "%s: SPU cpu slot already set.\n",
1757
				dev->dev.of_node->full_name);
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
			return -EINVAL;
		}
		cpu_set(*id, p->sharing);
		table[*id] = p;
	}
	return 0;
}

/* Process an 'exec-unit' MDESC node of type 'cwq'.  */
static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1768
			    struct platform_device *dev, struct mdesc_handle *mdesc,
1769 1770 1771 1772 1773 1774 1775 1776 1777
			    u64 node, const char *iname, unsigned long q_type,
			    irq_handler_t handler, struct spu_queue **table)
{
	struct spu_queue *p;
	int err;

	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
	if (!p) {
		dev_err(&dev->dev, "%s: Could not allocate SPU queue.\n",
1778
			dev->dev.of_node->full_name);
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
		return -ENOMEM;
	}

	cpus_clear(p->sharing);
	spin_lock_init(&p->lock);
	p->q_type = q_type;
	INIT_LIST_HEAD(&p->jobs);
	list_add(&p->list, list);

	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
	if (err)
		return err;

	err = spu_queue_setup(p);
	if (err)
		return err;

	return spu_map_ino(dev, ip, iname, p, handler);
}

1799
static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
			  struct spu_mdesc_info *ip, struct list_head *list,
			  const char *exec_name, unsigned long q_type,
			  irq_handler_t handler, struct spu_queue **table)
{
	int err = 0;
	u64 node;

	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
		const char *type;

		type = mdesc_get_property(mdesc, node, "type", NULL);
		if (!type || strcmp(type, exec_name))
			continue;

		err = handle_exec_unit(ip, list, dev, mdesc, node,
				       exec_name, q_type, handler, table);
		if (err) {
			spu_list_destroy(list);
			break;
		}
	}

	return err;
}

1825 1826
static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
			 struct spu_mdesc_info *ip)
1827
{
1828 1829
	const u64 *ino;
	int ino_len;
1830 1831 1832
	int i;

	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1833 1834
	if (!ino) {
		printk("NO 'ino'\n");
1835
		return -ENODEV;
1836
	}
1837

1838
	ip->num_intrs = ino_len / sizeof(u64);
1839 1840 1841 1842 1843 1844 1845 1846
	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
				 ip->num_intrs),
				GFP_KERNEL);
	if (!ip->ino_table)
		return -ENOMEM;

	for (i = 0; i < ip->num_intrs; i++) {
		struct ino_blob *b = &ip->ino_table[i];
1847
		b->intr = i + 1;
1848 1849 1850 1851 1852 1853
		b->ino = ino[i];
	}

	return 0;
}

1854 1855 1856 1857
static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
				struct platform_device *dev,
				struct spu_mdesc_info *ip,
				const char *node_name)
1858 1859 1860 1861
{
	const unsigned int *reg;
	u64 node;

1862
	reg = of_get_property(dev->dev.of_node, "reg", NULL);
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	if (!reg)
		return -ENODEV;

	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
		const char *name;
		const u64 *chdl;

		name = mdesc_get_property(mdesc, node, "name", NULL);
		if (!name || strcmp(name, node_name))
			continue;
		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
		if (!chdl || (*chdl != *reg))
			continue;
		ip->cfg_handle = *chdl;
		return get_irq_props(mdesc, node, ip);
	}

	return -ENODEV;
}

static unsigned long n2_spu_hvapi_major;
static unsigned long n2_spu_hvapi_minor;

1886
static int n2_spu_hvapi_register(void)
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
{
	int err;

	n2_spu_hvapi_major = 2;
	n2_spu_hvapi_minor = 0;

	err = sun4v_hvapi_register(HV_GRP_NCS,
				   n2_spu_hvapi_major,
				   &n2_spu_hvapi_minor);

	if (!err)
		pr_info("Registered NCS HVAPI version %lu.%lu\n",
			n2_spu_hvapi_major,
			n2_spu_hvapi_minor);

	return err;
}

static void n2_spu_hvapi_unregister(void)
{
	sun4v_hvapi_unregister(HV_GRP_NCS);
}

static int global_ref;

1912
static int grab_global_resources(void)
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
{
	int err = 0;

	mutex_lock(&spu_lock);

	if (global_ref++)
		goto out;

	err = n2_spu_hvapi_register();
	if (err)
		goto out;

	err = queue_cache_init();
	if (err)
		goto out_hvapi_release;

	err = -ENOMEM;
	cpu_to_cwq = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
			     GFP_KERNEL);
	if (!cpu_to_cwq)
		goto out_queue_cache_destroy;

	cpu_to_mau = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
			     GFP_KERNEL);
	if (!cpu_to_mau)
		goto out_free_cwq_table;

	err = 0;

out:
	if (err)
		global_ref--;
	mutex_unlock(&spu_lock);
	return err;

out_free_cwq_table:
	kfree(cpu_to_cwq);
	cpu_to_cwq = NULL;

out_queue_cache_destroy:
	queue_cache_destroy();

out_hvapi_release:
	n2_spu_hvapi_unregister();
	goto out;
}

static void release_global_resources(void)
{
	mutex_lock(&spu_lock);
	if (!--global_ref) {
		kfree(cpu_to_cwq);
		cpu_to_cwq = NULL;

		kfree(cpu_to_mau);
		cpu_to_mau = NULL;

		queue_cache_destroy();
		n2_spu_hvapi_unregister();
	}
	mutex_unlock(&spu_lock);
}

1976
static struct n2_crypto *alloc_n2cp(void)
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
{
	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);

	if (np)
		INIT_LIST_HEAD(&np->cwq_list);

	return np;
}

static void free_n2cp(struct n2_crypto *np)
{
	if (np->cwq_info.ino_table) {
		kfree(np->cwq_info.ino_table);
		np->cwq_info.ino_table = NULL;
	}

	kfree(np);
}

1996
static void n2_spu_driver_version(void)
1997 1998 1999 2000 2001 2002 2003
{
	static int n2_spu_version_printed;

	if (n2_spu_version_printed++ == 0)
		pr_info("%s", version);
}

2004
static int n2_crypto_probe(struct platform_device *dev)
2005 2006 2007 2008 2009 2010 2011 2012
{
	struct mdesc_handle *mdesc;
	const char *full_name;
	struct n2_crypto *np;
	int err;

	n2_spu_driver_version();

2013
	full_name = dev->dev.of_node->full_name;
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
	pr_info("Found N2CP at %s\n", full_name);

	np = alloc_n2cp();
	if (!np) {
		dev_err(&dev->dev, "%s: Unable to allocate n2cp.\n",
			full_name);
		return -ENOMEM;
	}

	err = grab_global_resources();
	if (err) {
		dev_err(&dev->dev, "%s: Unable to grab "
			"global resources.\n", full_name);
		goto out_free_n2cp;
	}

	mdesc = mdesc_grab();

	if (!mdesc) {
		dev_err(&dev->dev, "%s: Unable to grab MDESC.\n",
			full_name);
		err = -ENODEV;
		goto out_free_global;
	}
	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
	if (err) {
		dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n",
			full_name);
		mdesc_release(mdesc);
		goto out_free_global;
	}

	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
			     cpu_to_cwq);
	mdesc_release(mdesc);

	if (err) {
		dev_err(&dev->dev, "%s: CWQ MDESC scan failed.\n",
			full_name);
		goto out_free_global;
	}

	err = n2_register_algs();
	if (err) {
		dev_err(&dev->dev, "%s: Unable to register algorithms.\n",
			full_name);
		goto out_free_spu_list;
	}

	dev_set_drvdata(&dev->dev, np);

	return 0;

out_free_spu_list:
	spu_list_destroy(&np->cwq_list);

out_free_global:
	release_global_resources();

out_free_n2cp:
	free_n2cp(np);

	return err;
}

2080
static int n2_crypto_remove(struct platform_device *dev)
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
{
	struct n2_crypto *np = dev_get_drvdata(&dev->dev);

	n2_unregister_algs();

	spu_list_destroy(&np->cwq_list);

	release_global_resources();

	free_n2cp(np);

	return 0;
}

2095
static struct n2_mau *alloc_ncp(void)
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
{
	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);

	if (mp)
		INIT_LIST_HEAD(&mp->mau_list);

	return mp;
}

static void free_ncp(struct n2_mau *mp)
{
	if (mp->mau_info.ino_table) {
		kfree(mp->mau_info.ino_table);
		mp->mau_info.ino_table = NULL;
	}

	kfree(mp);
}

2115
static int n2_mau_probe(struct platform_device *dev)
2116 2117 2118 2119 2120 2121 2122 2123
{
	struct mdesc_handle *mdesc;
	const char *full_name;
	struct n2_mau *mp;
	int err;

	n2_spu_driver_version();

2124
	full_name = dev->dev.of_node->full_name;
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
	pr_info("Found NCP at %s\n", full_name);

	mp = alloc_ncp();
	if (!mp) {
		dev_err(&dev->dev, "%s: Unable to allocate ncp.\n",
			full_name);
		return -ENOMEM;
	}

	err = grab_global_resources();
	if (err) {
		dev_err(&dev->dev, "%s: Unable to grab "
			"global resources.\n", full_name);
		goto out_free_ncp;
	}

	mdesc = mdesc_grab();

	if (!mdesc) {
		dev_err(&dev->dev, "%s: Unable to grab MDESC.\n",
			full_name);
		err = -ENODEV;
		goto out_free_global;
	}

	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
	if (err) {
		dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n",
			full_name);
		mdesc_release(mdesc);
		goto out_free_global;
	}

	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
			     cpu_to_mau);
	mdesc_release(mdesc);

	if (err) {
		dev_err(&dev->dev, "%s: MAU MDESC scan failed.\n",
			full_name);
		goto out_free_global;
	}

	dev_set_drvdata(&dev->dev, mp);

	return 0;

out_free_global:
	release_global_resources();

out_free_ncp:
	free_ncp(mp);

	return err;
}

2182
static int n2_mau_remove(struct platform_device *dev)
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
{
	struct n2_mau *mp = dev_get_drvdata(&dev->dev);

	spu_list_destroy(&mp->mau_list);

	release_global_resources();

	free_ncp(mp);

	return 0;
}

static struct of_device_id n2_crypto_match[] = {
	{
		.name = "n2cp",
		.compatible = "SUNW,n2-cwq",
	},
	{
		.name = "n2cp",
		.compatible = "SUNW,vf-cwq",
	},
2204 2205 2206 2207
	{
		.name = "n2cp",
		.compatible = "SUNW,kt-cwq",
	},
2208 2209 2210 2211 2212
	{},
};

MODULE_DEVICE_TABLE(of, n2_crypto_match);

2213
static struct platform_driver n2_crypto_driver = {
2214 2215 2216 2217 2218
	.driver = {
		.name		=	"n2cp",
		.owner		=	THIS_MODULE,
		.of_match_table	=	n2_crypto_match,
	},
2219
	.probe		=	n2_crypto_probe,
2220
	.remove		=	n2_crypto_remove,
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
};

static struct of_device_id n2_mau_match[] = {
	{
		.name = "ncp",
		.compatible = "SUNW,n2-mau",
	},
	{
		.name = "ncp",
		.compatible = "SUNW,vf-mau",
	},
2232 2233 2234 2235
	{
		.name = "ncp",
		.compatible = "SUNW,kt-mau",
	},
2236 2237 2238 2239 2240
	{},
};

MODULE_DEVICE_TABLE(of, n2_mau_match);

2241
static struct platform_driver n2_mau_driver = {
2242 2243 2244 2245 2246
	.driver = {
		.name		=	"ncp",
		.owner		=	THIS_MODULE,
		.of_match_table	=	n2_mau_match,
	},
2247
	.probe		=	n2_mau_probe,
2248
	.remove		=	n2_mau_remove,
2249 2250 2251 2252
};

static int __init n2_init(void)
{
2253
	int err = platform_driver_register(&n2_crypto_driver);
2254 2255

	if (!err) {
2256
		err = platform_driver_register(&n2_mau_driver);
2257
		if (err)
2258
			platform_driver_unregister(&n2_crypto_driver);
2259 2260 2261 2262 2263 2264
	}
	return err;
}

static void __exit n2_exit(void)
{
2265 2266
	platform_driver_unregister(&n2_mau_driver);
	platform_driver_unregister(&n2_crypto_driver);
2267 2268 2269 2270
}

module_init(n2_init);
module_exit(n2_exit);