perf_event_intel.c 81.7 KB
Newer Older
1
/*
2 3 4 5
 * Per core/cpu state
 *
 * Used to coordinate shared registers between HT threads or
 * among events on a single PMU.
6
 */
7

8 9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

10 11 12 13
#include <linux/stddef.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
14
#include <linux/export.h>
15

16
#include <asm/cpufeature.h>
17 18 19 20
#include <asm/hardirq.h>
#include <asm/apic.h>

#include "perf_event.h"
21

22
/*
23
 * Intel PerfMon, used on Core and later.
24
 */
25
static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
26
{
27 28 29 30 31 32 33 34
	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
35 36
};

37
static struct event_constraint intel_core_event_constraints[] __read_mostly =
38 39 40 41 42 43 44 45 46 47
{
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
	EVENT_CONSTRAINT_END
};

48
static struct event_constraint intel_core2_event_constraints[] __read_mostly =
49
{
50 51
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
52
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
53 54 55 56 57 58 59 60
	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
61
	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
62 63 64 65
	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
	EVENT_CONSTRAINT_END
};

66
static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
67
{
68 69
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
70
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
71 72 73 74 75 76 77 78 79 80 81
	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
	EVENT_CONSTRAINT_END
};

82
static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
83
{
84 85
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
86
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
87 88 89
	EVENT_EXTRA_END
};

90
static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
91
{
92 93
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
94
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
95 96 97
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
98
	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
99 100 101
	EVENT_CONSTRAINT_END
};

102
static struct event_constraint intel_snb_event_constraints[] __read_mostly =
103 104 105
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
106
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
107 108 109 110
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
111 112 113
	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
114 115
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
116 117 118
	EVENT_CONSTRAINT_END
};

119 120 121 122 123 124 125 126
static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
127
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
128 129 130 131 132 133
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
134 135 136 137 138 139 140 141 142
	/*
	 * Errata BV98 -- MEM_*_RETIRED events can leak between counters of SMT
	 * siblings; disable these events because they can corrupt unrelated
	 * counters.
	 */
	INTEL_EVENT_CONSTRAINT(0xd0, 0x0), /* MEM_UOPS_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd1, 0x0), /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd2, 0x0), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd3, 0x0), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
143 144 145
	EVENT_CONSTRAINT_END
};

146
static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
147
{
148 149 150
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
151
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
152 153 154
	EVENT_EXTRA_END
};

155 156 157 158 159
static struct event_constraint intel_v1_event_constraints[] __read_mostly =
{
	EVENT_CONSTRAINT_END
};

160
static struct event_constraint intel_gen_event_constraints[] __read_mostly =
161
{
162 163
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
164
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
165 166 167
	EVENT_CONSTRAINT_END
};

168 169 170 171 172 173 174 175
static struct event_constraint intel_slm_event_constraints[] __read_mostly =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
	EVENT_CONSTRAINT_END
};

176
static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
177 178 179
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
180
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
181 182 183 184
	EVENT_EXTRA_END
};

static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
185 186 187
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
188
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
189 190 191
	EVENT_EXTRA_END
};

192 193 194
EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
195 196 197 198 199 200 201 202

struct attribute *nhm_events_attrs[] = {
	EVENT_PTR(mem_ld_nhm),
	NULL,
};

struct attribute *snb_events_attrs[] = {
	EVENT_PTR(mem_ld_snb),
203
	EVENT_PTR(mem_st_snb),
204 205 206
	NULL,
};

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
static struct event_constraint intel_hsw_event_constraints[] = {
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
	INTEL_EVENT_CONSTRAINT(0x08a3, 0x4),
	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
	INTEL_EVENT_CONSTRAINT(0x0ca3, 0x4),
	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
	INTEL_EVENT_CONSTRAINT(0x04a3, 0xf),
	EVENT_CONSTRAINT_END
};

223 224 225 226 227 228 229 230 231
struct event_constraint intel_bdw_event_constraints[] = {
	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
	INTEL_EVENT_CONSTRAINT(0xa3, 0x4),	/* CYCLE_ACTIVITY.* */
	EVENT_CONSTRAINT_END
};

232 233 234 235 236
static u64 intel_pmu_event_map(int hw_event)
{
	return intel_perfmon_event_map[hw_event];
}

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
#define SNB_DMND_DATA_RD	(1ULL << 0)
#define SNB_DMND_RFO		(1ULL << 1)
#define SNB_DMND_IFETCH		(1ULL << 2)
#define SNB_DMND_WB		(1ULL << 3)
#define SNB_PF_DATA_RD		(1ULL << 4)
#define SNB_PF_RFO		(1ULL << 5)
#define SNB_PF_IFETCH		(1ULL << 6)
#define SNB_LLC_DATA_RD		(1ULL << 7)
#define SNB_LLC_RFO		(1ULL << 8)
#define SNB_LLC_IFETCH		(1ULL << 9)
#define SNB_BUS_LOCKS		(1ULL << 10)
#define SNB_STRM_ST		(1ULL << 11)
#define SNB_OTHER		(1ULL << 15)
#define SNB_RESP_ANY		(1ULL << 16)
#define SNB_NO_SUPP		(1ULL << 17)
#define SNB_LLC_HITM		(1ULL << 18)
#define SNB_LLC_HITE		(1ULL << 19)
#define SNB_LLC_HITS		(1ULL << 20)
#define SNB_LLC_HITF		(1ULL << 21)
#define SNB_LOCAL		(1ULL << 22)
#define SNB_REMOTE		(0xffULL << 23)
#define SNB_SNP_NONE		(1ULL << 31)
#define SNB_SNP_NOT_NEEDED	(1ULL << 32)
#define SNB_SNP_MISS		(1ULL << 33)
#define SNB_NO_FWD		(1ULL << 34)
#define SNB_SNP_FWD		(1ULL << 35)
#define SNB_HITM		(1ULL << 36)
#define SNB_NON_DRAM		(1ULL << 37)

#define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
#define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
#define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)

#define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
				 SNB_HITM)

#define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
#define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)

#define SNB_L3_ACCESS		SNB_RESP_ANY
#define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)

static __initconst const u64 snb_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
	},
 },
};

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
static __initconst const u64 snb_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
350
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
351
		[ C(RESULT_ACCESS) ] = 0x01b7,
352 353
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
354 355
	},
	[ C(OP_WRITE) ] = {
356
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
357
		[ C(RESULT_ACCESS) ] = 0x01b7,
358 359
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
360 361
	},
	[ C(OP_PREFETCH) ] = {
362
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
363
		[ C(RESULT_ACCESS) ] = 0x01b7,
364 365
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
410 411
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
412 413
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
414 415
	},
	[ C(OP_WRITE) ] = {
416 417
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
418 419
	},
	[ C(OP_PREFETCH) ] = {
420 421
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
422 423 424
	},
 },

425 426
};

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
/*
 * Notes on the events:
 * - data reads do not include code reads (comparable to earlier tables)
 * - data counts include speculative execution (except L1 write, dtlb, bpu)
 * - remote node access includes remote memory, remote cache, remote mmio.
 * - prefetches are not included in the counts because they are not
 *   reliably counted.
 */

#define HSW_DEMAND_DATA_RD		BIT_ULL(0)
#define HSW_DEMAND_RFO			BIT_ULL(1)
#define HSW_ANY_RESPONSE		BIT_ULL(16)
#define HSW_SUPPLIER_NONE		BIT_ULL(17)
#define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
#define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
#define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
#define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
#define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
					 HSW_L3_MISS_REMOTE_HOP2P)
#define HSW_SNOOP_NONE			BIT_ULL(31)
#define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
#define HSW_SNOOP_MISS			BIT_ULL(33)
#define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
#define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
#define HSW_SNOOP_HITM			BIT_ULL(36)
#define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
#define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
#define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
#define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
#define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
#define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
#define HSW_LLC_ACCESS			HSW_ANY_RESPONSE

465 466 467 468 469 470
#define BDW_L3_MISS_LOCAL		BIT(26)
#define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
					 HSW_L3_MISS_REMOTE_HOP2P)


471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
static __initconst const u64 hsw_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

static __initconst const u64 hsw_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
				       HSW_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
				       HSW_L3_MISS|HSW_ANY_SNOOP,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
				       HSW_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
				       HSW_L3_MISS|HSW_ANY_SNOOP,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
				       HSW_L3_MISS_LOCAL_DRAM|
				       HSW_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
				       HSW_L3_MISS_REMOTE|
				       HSW_SNOOP_DRAM,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
				       HSW_L3_MISS_LOCAL_DRAM|
				       HSW_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
				       HSW_L3_MISS_REMOTE|
				       HSW_SNOOP_DRAM,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

623
static __initconst const u64 westmere_hw_cache_event_ids
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
658
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
659
		[ C(RESULT_ACCESS) ] = 0x01b7,
660 661
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
662
	},
663 664 665 666
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
667
	[ C(OP_WRITE) ] = {
668 669 670
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
671
		[ C(RESULT_MISS)   ] = 0x01b7,
672 673
	},
	[ C(OP_PREFETCH) ] = {
674
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
675
		[ C(RESULT_ACCESS) ] = 0x01b7,
676 677
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
722 723 724 725 726 727 728 729 730 731 732 733 734 735
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
736 737
};

738
/*
739 740
 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
 * See IA32 SDM Vol 3B 30.6.1.3
741 742
 */

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
#define NHM_DMND_DATA_RD	(1 << 0)
#define NHM_DMND_RFO		(1 << 1)
#define NHM_DMND_IFETCH		(1 << 2)
#define NHM_DMND_WB		(1 << 3)
#define NHM_PF_DATA_RD		(1 << 4)
#define NHM_PF_DATA_RFO		(1 << 5)
#define NHM_PF_IFETCH		(1 << 6)
#define NHM_OFFCORE_OTHER	(1 << 7)
#define NHM_UNCORE_HIT		(1 << 8)
#define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
#define NHM_OTHER_CORE_HITM	(1 << 10)
        			/* reserved */
#define NHM_REMOTE_CACHE_FWD	(1 << 12)
#define NHM_REMOTE_DRAM		(1 << 13)
#define NHM_LOCAL_DRAM		(1 << 14)
#define NHM_NON_DRAM		(1 << 15)

760 761
#define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
#define NHM_REMOTE		(NHM_REMOTE_DRAM)
762 763 764 765 766 767

#define NHM_DMND_READ		(NHM_DMND_DATA_RD)
#define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
#define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)

#define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
768
#define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
769
#define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
770 771 772 773 774 775 776 777

static __initconst const u64 nehalem_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
778 779
		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
780 781
	},
	[ C(OP_WRITE) ] = {
782 783
		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
784 785
	},
	[ C(OP_PREFETCH) ] = {
786 787
		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
788
	},
789 790 791
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
792 793
		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
794 795
	},
	[ C(OP_WRITE) ] = {
796 797
		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
798 799
	},
	[ C(OP_PREFETCH) ] = {
800 801
		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
802 803
	},
 },
804 805
};

806
static __initconst const u64 nehalem_hw_cache_event_ids
807 808 809 810 811 812
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
813 814
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
815 816
	},
	[ C(OP_WRITE) ] = {
817 818
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
841 842 843 844
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
845
	},
846 847 848 849
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
850
	[ C(OP_WRITE) ] = {
851 852 853 854
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
855 856
	},
	[ C(OP_PREFETCH) ] = {
857 858 859 860
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
905 906 907 908 909 910 911 912 913 914 915 916 917 918
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
919 920
};

921
static __initconst const u64 core2_hw_cache_event_ids
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

1012
static __initconst const u64 atom_hw_cache_event_ids
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

1103 1104 1105
static struct extra_reg intel_slm_extra_regs[] __read_mostly =
{
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1106 1107
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x768005ffffull, RSP_1),
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
	EVENT_EXTRA_END
};

#define SLM_DMND_READ		SNB_DMND_DATA_RD
#define SLM_DMND_WRITE		SNB_DMND_RFO
#define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)

#define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
#define SLM_LLC_ACCESS		SNB_RESP_ANY
#define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)

static __initconst const u64 slm_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = SLM_DMND_READ|SLM_LLC_MISS,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
	},
 },
};

static __initconst const u64 slm_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

1237 1238
static void intel_pmu_disable_all(void)
{
1239
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1240 1241 1242

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);

1243
	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1244
		intel_pmu_disable_bts();
1245 1246

	intel_pmu_pebs_disable_all();
1247
	intel_pmu_lbr_disable_all();
1248 1249
}

1250
static void intel_pmu_enable_all(int added)
1251
{
1252
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1253

1254 1255
	intel_pmu_pebs_enable_all();
	intel_pmu_lbr_enable_all();
1256 1257
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1258

1259
	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1260
		struct perf_event *event =
1261
			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1262 1263 1264 1265 1266 1267 1268 1269

		if (WARN_ON_ONCE(!event))
			return;

		intel_pmu_enable_bts(event->hw.config);
	}
}

1270 1271 1272 1273
/*
 * Workaround for:
 *   Intel Errata AAK100 (model 26)
 *   Intel Errata AAP53  (model 30)
1274
 *   Intel Errata BD53   (model 44)
1275
 *
1276 1277 1278 1279 1280 1281 1282
 * The official story:
 *   These chips need to be 'reset' when adding counters by programming the
 *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
 *   in sequence on the same PMC or on different PMCs.
 *
 * In practise it appears some of these events do in fact count, and
 * we need to programm all 4 events.
1283
 */
1284
static void intel_pmu_nhm_workaround(void)
1285
{
1286
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1287 1288 1289 1290 1291 1292 1293 1294
	static const unsigned long nhm_magic[4] = {
		0x4300B5,
		0x4300D2,
		0x4300B1,
		0x4300B1
	};
	struct perf_event *event;
	int i;
1295

1296 1297 1298 1299 1300 1301 1302 1303 1304
	/*
	 * The Errata requires below steps:
	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
	 *    the corresponding PMCx;
	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
	 */
1305

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	/*
	 * The real steps we choose are a little different from above.
	 * A) To reduce MSR operations, we don't run step 1) as they
	 *    are already cleared before this function is called;
	 * B) Call x86_perf_event_update to save PMCx before configuring
	 *    PERFEVTSELx with magic number;
	 * C) With step 5), we do clear only when the PERFEVTSELx is
	 *    not used currently.
	 * D) Call x86_perf_event_set_period to restore PMCx;
	 */
1316

1317 1318 1319 1320 1321 1322
	/* We always operate 4 pairs of PERF Counters */
	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];
		if (event)
			x86_perf_event_update(event);
	}
1323

1324 1325 1326 1327 1328 1329 1330
	for (i = 0; i < 4; i++) {
		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
	}

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1331

1332 1333 1334 1335 1336
	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];

		if (event) {
			x86_perf_event_set_period(event);
1337
			__x86_pmu_enable_event(&event->hw,
1338 1339 1340
					ARCH_PERFMON_EVENTSEL_ENABLE);
		} else
			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1341
	}
1342 1343 1344 1345 1346 1347
}

static void intel_pmu_nhm_enable_all(int added)
{
	if (added)
		intel_pmu_nhm_workaround();
1348 1349 1350
	intel_pmu_enable_all(added);
}

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
static inline u64 intel_pmu_get_status(void)
{
	u64 status;

	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);

	return status;
}

static inline void intel_pmu_ack_status(u64 ack)
{
	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
}

1365
static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1366
{
1367
	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1368 1369 1370 1371 1372 1373
	u64 ctrl_val, mask;

	mask = 0xfULL << (idx * 4);

	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
1374
	wrmsrl(hwc->config_base, ctrl_val);
1375 1376
}

1377 1378 1379 1380 1381
static inline bool event_is_checkpointed(struct perf_event *event)
{
	return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
}

1382
static void intel_pmu_disable_event(struct perf_event *event)
1383
{
1384
	struct hw_perf_event *hwc = &event->hw;
1385
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1386

1387
	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1388 1389 1390 1391 1392
		intel_pmu_disable_bts();
		intel_pmu_drain_bts_buffer();
		return;
	}

1393 1394
	cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
	cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1395
	cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1396

1397 1398 1399 1400
	/*
	 * must disable before any actual event
	 * because any event may be combined with LBR
	 */
1401
	if (needs_branch_stack(event))
1402 1403
		intel_pmu_lbr_disable(event);

1404
	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1405
		intel_pmu_disable_fixed(hwc);
1406 1407 1408
		return;
	}

1409
	x86_pmu_disable_event(event);
1410

P
Peter Zijlstra 已提交
1411
	if (unlikely(event->attr.precise_ip))
1412
		intel_pmu_pebs_disable(event);
1413 1414
}

1415
static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1416
{
1417
	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	u64 ctrl_val, bits, mask;

	/*
	 * Enable IRQ generation (0x8),
	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
	 * if requested:
	 */
	bits = 0x8ULL;
	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
		bits |= 0x2;
	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
		bits |= 0x1;

	/*
	 * ANY bit is supported in v3 and up
	 */
	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
		bits |= 0x4;

	bits <<= (idx * 4);
	mask = 0xfULL << (idx * 4);

	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
	ctrl_val |= bits;
1443
	wrmsrl(hwc->config_base, ctrl_val);
1444 1445
}

1446
static void intel_pmu_enable_event(struct perf_event *event)
1447
{
1448
	struct hw_perf_event *hwc = &event->hw;
1449
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1450

1451
	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
T
Tejun Heo 已提交
1452
		if (!__this_cpu_read(cpu_hw_events.enabled))
1453 1454 1455 1456 1457
			return;

		intel_pmu_enable_bts(hwc->config);
		return;
	}
1458 1459 1460 1461
	/*
	 * must enabled before any actual event
	 * because any event may be combined with LBR
	 */
1462
	if (needs_branch_stack(event))
1463
		intel_pmu_lbr_enable(event);
1464

1465 1466 1467 1468 1469
	if (event->attr.exclude_host)
		cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
	if (event->attr.exclude_guest)
		cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);

1470 1471 1472
	if (unlikely(event_is_checkpointed(event)))
		cpuc->intel_cp_status |= (1ull << hwc->idx);

1473
	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1474
		intel_pmu_enable_fixed(hwc);
1475 1476 1477
		return;
	}

P
Peter Zijlstra 已提交
1478
	if (unlikely(event->attr.precise_ip))
1479
		intel_pmu_pebs_enable(event);
1480

1481
	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1482 1483 1484 1485 1486 1487
}

/*
 * Save and restart an expired event. Called by NMI contexts,
 * so it has to be careful about preempting normal event ops:
 */
1488
int intel_pmu_save_and_restart(struct perf_event *event)
1489
{
1490
	x86_perf_event_update(event);
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	/*
	 * For a checkpointed counter always reset back to 0.  This
	 * avoids a situation where the counter overflows, aborts the
	 * transaction and is then set back to shortly before the
	 * overflow, and overflows and aborts again.
	 */
	if (unlikely(event_is_checkpointed(event))) {
		/* No race with NMIs because the counter should not be armed */
		wrmsrl(event->hw.event_base, 0);
		local64_set(&event->hw.prev_count, 0);
	}
1502
	return x86_perf_event_set_period(event);
1503 1504 1505 1506
}

static void intel_pmu_reset(void)
{
T
Tejun Heo 已提交
1507
	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1508 1509 1510
	unsigned long flags;
	int idx;

1511
	if (!x86_pmu.num_counters)
1512 1513 1514 1515
		return;

	local_irq_save(flags);

1516
	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1517

1518
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1519 1520
		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1521
	}
1522
	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1523
		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1524

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	if (ds)
		ds->bts_index = ds->bts_buffer_base;

	local_irq_restore(flags);
}

/*
 * This handler is triggered by the local APIC, so the APIC IRQ handling
 * rules apply:
 */
static int intel_pmu_handle_irq(struct pt_regs *regs)
{
	struct perf_sample_data data;
	struct cpu_hw_events *cpuc;
	int bit, loops;
1540
	u64 status;
1541
	int handled;
1542

1543
	cpuc = this_cpu_ptr(&cpu_hw_events);
1544

1545
	/*
1546 1547
	 * No known reason to not always do late ACK,
	 * but just in case do it opt-in.
1548
	 */
1549 1550
	if (!x86_pmu.late_ack)
		apic_write(APIC_LVTPC, APIC_DM_NMI);
1551
	intel_pmu_disable_all();
1552
	handled = intel_pmu_drain_bts_buffer();
1553
	status = intel_pmu_get_status();
1554 1555
	if (!status)
		goto done;
1556 1557 1558

	loops = 0;
again:
1559
	intel_pmu_ack_status(status);
1560
	if (++loops > 100) {
1561 1562 1563 1564 1565 1566
		static bool warned = false;
		if (!warned) {
			WARN(1, "perfevents: irq loop stuck!\n");
			perf_event_print_debug();
			warned = true;
		}
1567
		intel_pmu_reset();
1568
		goto done;
1569 1570 1571
	}

	inc_irq_stat(apic_perf_irqs);
1572

1573 1574
	intel_pmu_lbr_read();

1575 1576 1577 1578 1579 1580 1581 1582 1583
	/*
	 * CondChgd bit 63 doesn't mean any overflow status. Ignore
	 * and clear the bit.
	 */
	if (__test_and_clear_bit(63, (unsigned long *)&status)) {
		if (!status)
			goto done;
	}

1584 1585 1586
	/*
	 * PEBS overflow sets bit 62 in the global status register
	 */
1587 1588
	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
		handled++;
1589
		x86_pmu.drain_pebs(regs);
1590
	}
1591

1592
	/*
1593 1594 1595
	 * Checkpointed counters can lead to 'spurious' PMIs because the
	 * rollback caused by the PMI will have cleared the overflow status
	 * bit. Therefore always force probe these counters.
1596
	 */
1597
	status |= cpuc->intel_cp_status;
1598

1599
	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1600 1601
		struct perf_event *event = cpuc->events[bit];

1602 1603
		handled++;

1604 1605 1606 1607 1608 1609
		if (!test_bit(bit, cpuc->active_mask))
			continue;

		if (!intel_pmu_save_and_restart(event))
			continue;

1610
		perf_sample_data_init(&data, 0, event->hw.last_period);
1611

1612 1613 1614
		if (has_branch_stack(event))
			data.br_stack = &cpuc->lbr_stack;

1615
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
1616
			x86_pmu_stop(event, 0);
1617 1618 1619 1620 1621 1622 1623 1624 1625
	}

	/*
	 * Repeat if there is more work to be done:
	 */
	status = intel_pmu_get_status();
	if (status)
		goto again;

1626
done:
1627
	intel_pmu_enable_all(0);
1628 1629 1630 1631 1632 1633 1634
	/*
	 * Only unmask the NMI after the overflow counters
	 * have been reset. This avoids spurious NMIs on
	 * Haswell CPUs.
	 */
	if (x86_pmu.late_ack)
		apic_write(APIC_LVTPC, APIC_DM_NMI);
1635
	return handled;
1636 1637 1638
}

static struct event_constraint *
1639
intel_bts_constraints(struct perf_event *event)
1640
{
1641 1642
	struct hw_perf_event *hwc = &event->hw;
	unsigned int hw_event, bts_event;
1643

P
Peter Zijlstra 已提交
1644 1645 1646
	if (event->attr.freq)
		return NULL;

1647 1648
	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1649

1650
	if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1651
		return &bts_constraint;
1652

1653 1654 1655
	return NULL;
}

1656
static int intel_alt_er(int idx)
1657 1658
{
	if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
1659
		return idx;
1660

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
	if (idx == EXTRA_REG_RSP_0)
		return EXTRA_REG_RSP_1;

	if (idx == EXTRA_REG_RSP_1)
		return EXTRA_REG_RSP_0;

	return idx;
}

static void intel_fixup_er(struct perf_event *event, int idx)
{
	event->hw.extra_reg.idx = idx;

	if (idx == EXTRA_REG_RSP_0) {
1675
		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1676
		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
1677
		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1678 1679
	} else if (idx == EXTRA_REG_RSP_1) {
		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1680
		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
1681
		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1682 1683 1684
	}
}

1685 1686 1687 1688 1689 1690 1691
/*
 * manage allocation of shared extra msr for certain events
 *
 * sharing can be:
 * per-cpu: to be shared between the various events on a single PMU
 * per-core: per-cpu + shared by HT threads
 */
1692
static struct event_constraint *
1693
__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1694 1695
				   struct perf_event *event,
				   struct hw_perf_event_extra *reg)
1696
{
1697
	struct event_constraint *c = &emptyconstraint;
1698
	struct er_account *era;
1699
	unsigned long flags;
1700
	int idx = reg->idx;
1701

1702 1703 1704 1705 1706 1707
	/*
	 * reg->alloc can be set due to existing state, so for fake cpuc we
	 * need to ignore this, otherwise we might fail to allocate proper fake
	 * state for this extra reg constraint. Also see the comment below.
	 */
	if (reg->alloc && !cpuc->is_fake)
1708
		return NULL; /* call x86_get_event_constraint() */
1709

1710
again:
1711
	era = &cpuc->shared_regs->regs[idx];
1712 1713 1714 1715 1716
	/*
	 * we use spin_lock_irqsave() to avoid lockdep issues when
	 * passing a fake cpuc
	 */
	raw_spin_lock_irqsave(&era->lock, flags);
1717 1718 1719

	if (!atomic_read(&era->ref) || era->config == reg->config) {

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
		/*
		 * If its a fake cpuc -- as per validate_{group,event}() we
		 * shouldn't touch event state and we can avoid doing so
		 * since both will only call get_event_constraints() once
		 * on each event, this avoids the need for reg->alloc.
		 *
		 * Not doing the ER fixup will only result in era->reg being
		 * wrong, but since we won't actually try and program hardware
		 * this isn't a problem either.
		 */
		if (!cpuc->is_fake) {
			if (idx != reg->idx)
				intel_fixup_er(event, idx);

			/*
			 * x86_schedule_events() can call get_event_constraints()
			 * multiple times on events in the case of incremental
			 * scheduling(). reg->alloc ensures we only do the ER
			 * allocation once.
			 */
			reg->alloc = 1;
		}

1743 1744 1745 1746 1747 1748 1749
		/* lock in msr value */
		era->config = reg->config;
		era->reg = reg->reg;

		/* one more user */
		atomic_inc(&era->ref);

1750
		/*
1751 1752
		 * need to call x86_get_event_constraint()
		 * to check if associated event has constraints
1753
		 */
1754
		c = NULL;
1755 1756 1757 1758 1759 1760
	} else {
		idx = intel_alt_er(idx);
		if (idx != reg->idx) {
			raw_spin_unlock_irqrestore(&era->lock, flags);
			goto again;
		}
1761
	}
1762
	raw_spin_unlock_irqrestore(&era->lock, flags);
1763

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
	return c;
}

static void
__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
				   struct hw_perf_event_extra *reg)
{
	struct er_account *era;

	/*
1774 1775 1776 1777 1778 1779
	 * Only put constraint if extra reg was actually allocated. Also takes
	 * care of event which do not use an extra shared reg.
	 *
	 * Also, if this is a fake cpuc we shouldn't touch any event state
	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
	 * either since it'll be thrown out.
1780
	 */
1781
	if (!reg->alloc || cpuc->is_fake)
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
		return;

	era = &cpuc->shared_regs->regs[reg->idx];

	/* one fewer user */
	atomic_dec(&era->ref);

	/* allocate again next time */
	reg->alloc = 0;
}

static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
			      struct perf_event *event)
{
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
	struct event_constraint *c = NULL, *d;
	struct hw_perf_event_extra *xreg, *breg;

	xreg = &event->hw.extra_reg;
	if (xreg->idx != EXTRA_REG_NONE) {
		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
		if (c == &emptyconstraint)
			return c;
	}
	breg = &event->hw.branch_reg;
	if (breg->idx != EXTRA_REG_NONE) {
		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
		if (d == &emptyconstraint) {
			__intel_shared_reg_put_constraints(cpuc, xreg);
			c = d;
		}
	}
1814
	return c;
1815 1816
}

1817 1818 1819 1820 1821 1822 1823
struct event_constraint *
x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
{
	struct event_constraint *c;

	if (x86_pmu.event_constraints) {
		for_each_event_constraint(c, x86_pmu.event_constraints) {
1824 1825
			if ((event->hw.config & c->cmask) == c->code) {
				event->hw.flags |= c->flags;
1826
				return c;
1827
			}
1828 1829 1830 1831 1832 1833
		}
	}

	return &unconstrained;
}

1834 1835 1836 1837 1838
static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
{
	struct event_constraint *c;

1839 1840 1841 1842 1843
	c = intel_bts_constraints(event);
	if (c)
		return c;

	c = intel_pebs_constraints(event);
1844 1845 1846
	if (c)
		return c;

1847
	c = intel_shared_regs_constraints(cpuc, event);
1848 1849 1850
	if (c)
		return c;

1851 1852 1853
	return x86_get_event_constraints(cpuc, event);
}

1854 1855
static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1856 1857
					struct perf_event *event)
{
1858
	struct hw_perf_event_extra *reg;
1859

1860 1861 1862
	reg = &event->hw.extra_reg;
	if (reg->idx != EXTRA_REG_NONE)
		__intel_shared_reg_put_constraints(cpuc, reg);
1863 1864 1865 1866

	reg = &event->hw.branch_reg;
	if (reg->idx != EXTRA_REG_NONE)
		__intel_shared_reg_put_constraints(cpuc, reg);
1867
}
1868

1869 1870 1871 1872
static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
					struct perf_event *event)
{
	intel_put_shared_regs_event_constraints(cpuc, event);
1873 1874
}

1875
static void intel_pebs_aliases_core2(struct perf_event *event)
1876
{
1877
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use INST_RETIRED.ANY_P
		 * (0x00c0), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * INST_RETIRED.ANY_P counts the number of cycles that retires
		 * CNTMASK instructions. By setting CNTMASK to a value (16)
		 * larger than the maximum number of instructions that can be
		 * retired per cycle (4) and then inverting the condition, we
		 * count all cycles that retire 16 or less instructions, which
		 * is every cycle.
		 *
		 * Thereby we gain a PEBS capable cycle counter.
		 */
1896 1897
		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
}

static void intel_pebs_aliases_snb(struct perf_event *event)
{
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use UOPS_RETIRED.ALL
		 * (0x01c2), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * UOPS_RETIRED.ALL counts the number of cycles that retires
		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
		 * larger than the maximum number of micro-ops that can be
		 * retired per cycle (4) and then inverting the condition, we
		 * count all cycles that retire 16 or less micro-ops, which
		 * is every cycle.
		 *
		 * Thereby we gain a PEBS capable cycle counter.
		 */
		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
1925 1926 1927 1928

		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
}

static int intel_pmu_hw_config(struct perf_event *event)
{
	int ret = x86_pmu_hw_config(event);

	if (ret)
		return ret;

	if (event->attr.precise_ip && x86_pmu.pebs_aliases)
		x86_pmu.pebs_aliases(event);
1940

1941
	if (needs_branch_stack(event)) {
1942 1943 1944
		ret = intel_pmu_setup_lbr_filter(event);
		if (ret)
			return ret;
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955

		/*
		 * BTS is set up earlier in this path, so don't account twice
		 */
		if (!intel_pmu_has_bts(event)) {
			/* disallow lbr if conflicting events are present */
			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
				return -EBUSY;

			event->destroy = hw_perf_lbr_event_destroy;
		}
1956 1957
	}

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	if (event->attr.type != PERF_TYPE_RAW)
		return 0;

	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
		return 0;

	if (x86_pmu.version < 3)
		return -EINVAL;

	if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
		return -EACCES;

	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;

	return 0;
}

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
{
	if (x86_pmu.guest_get_msrs)
		return x86_pmu.guest_get_msrs(nr);
	*nr = 0;
	return NULL;
}
EXPORT_SYMBOL_GPL(perf_guest_get_msrs);

static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
{
1986
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1987 1988 1989 1990 1991
	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;

	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
1992 1993 1994 1995 1996 1997 1998 1999
	/*
	 * If PMU counter has PEBS enabled it is not enough to disable counter
	 * on a guest entry since PEBS memory write can overshoot guest entry
	 * and corrupt guest memory. Disabling PEBS solves the problem.
	 */
	arr[1].msr = MSR_IA32_PEBS_ENABLE;
	arr[1].host = cpuc->pebs_enabled;
	arr[1].guest = 0;
2000

2001
	*nr = 2;
2002 2003 2004 2005 2006
	return arr;
}

static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
{
2007
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
	int idx;

	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
		struct perf_event *event = cpuc->events[idx];

		arr[idx].msr = x86_pmu_config_addr(idx);
		arr[idx].host = arr[idx].guest = 0;

		if (!test_bit(idx, cpuc->active_mask))
			continue;

		arr[idx].host = arr[idx].guest =
			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;

		if (event->attr.exclude_host)
			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
		else if (event->attr.exclude_guest)
			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
	}

	*nr = x86_pmu.num_counters;
	return arr;
}

static void core_pmu_enable_event(struct perf_event *event)
{
	if (!event->attr.exclude_host)
		x86_pmu_enable_event(event);
}

static void core_pmu_enable_all(int added)
{
2041
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
	int idx;

	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;

		if (!test_bit(idx, cpuc->active_mask) ||
				cpuc->events[idx]->attr.exclude_host)
			continue;

		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
	}
}

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
static int hsw_hw_config(struct perf_event *event)
{
	int ret = intel_pmu_hw_config(event);

	if (ret)
		return ret;
	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
		return 0;
	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);

	/*
	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
	 * this combination.
	 */
	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
	      event->attr.precise_ip > 0))
		return -EOPNOTSUPP;

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
	if (event_is_checkpointed(event)) {
		/*
		 * Sampling of checkpointed events can cause situations where
		 * the CPU constantly aborts because of a overflow, which is
		 * then checkpointed back and ignored. Forbid checkpointing
		 * for sampling.
		 *
		 * But still allow a long sampling period, so that perf stat
		 * from KVM works.
		 */
		if (event->attr.sample_period > 0 &&
		    event->attr.sample_period < 0x7fffffff)
			return -EOPNOTSUPP;
	}
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
	return 0;
}

static struct event_constraint counter2_constraint =
			EVENT_CONSTRAINT(0, 0x4, 0);

static struct event_constraint *
hsw_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
{
	struct event_constraint *c = intel_get_event_constraints(cpuc, event);

	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
		if (c->idxmsk64 & (1U << 2))
			return &counter2_constraint;
		return &emptyconstraint;
	}

	return c;
}

2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
/*
 * Broadwell:
 *
 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
 * the two to enforce a minimum period of 128 (the smallest value that has bits
 * 0-5 cleared and >= 100).
 *
 * Because of how the code in x86_perf_event_set_period() works, the truncation
 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
 * to make up for the 'lost' events due to carrying the 'error' in period_left.
 *
 * Therefore the effective (average) period matches the requested period,
 * despite coarser hardware granularity.
 */
static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
{
	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
			X86_CONFIG(.event=0xc0, .umask=0x01)) {
		if (left < 128)
			left = 128;
		left &= ~0x3fu;
	}
	return left;
}

2136 2137 2138 2139 2140 2141 2142
PMU_FORMAT_ATTR(event,	"config:0-7"	);
PMU_FORMAT_ATTR(umask,	"config:8-15"	);
PMU_FORMAT_ATTR(edge,	"config:18"	);
PMU_FORMAT_ATTR(pc,	"config:19"	);
PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
PMU_FORMAT_ATTR(inv,	"config:23"	);
PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
2143 2144
PMU_FORMAT_ATTR(in_tx,  "config:32");
PMU_FORMAT_ATTR(in_tx_cp, "config:33");
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155

static struct attribute *intel_arch_formats_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_pc.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
	NULL,
};

2156 2157 2158 2159 2160 2161 2162
ssize_t intel_event_sysfs_show(char *page, u64 config)
{
	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);

	return x86_event_sysfs_show(page, config, event);
}

2163
static __initconst const struct x86_pmu core_pmu = {
2164 2165 2166
	.name			= "core",
	.handle_irq		= x86_pmu_handle_irq,
	.disable_all		= x86_pmu_disable_all,
2167 2168
	.enable_all		= core_pmu_enable_all,
	.enable			= core_pmu_enable_event,
2169
	.disable		= x86_pmu_disable_event,
2170
	.hw_config		= x86_pmu_hw_config,
2171
	.schedule_events	= x86_schedule_events,
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
	/*
	 * Intel PMCs cannot be accessed sanely above 32 bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL << 31) - 1,
	.get_event_constraints	= intel_get_event_constraints,
2184
	.put_event_constraints	= intel_put_event_constraints,
2185
	.event_constraints	= intel_core_event_constraints,
2186
	.guest_get_msrs		= core_guest_get_msrs,
2187
	.format_attrs		= intel_arch_formats_attr,
2188
	.events_sysfs_show	= intel_event_sysfs_show,
2189 2190
};

2191
struct intel_shared_regs *allocate_shared_regs(int cpu)
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
{
	struct intel_shared_regs *regs;
	int i;

	regs = kzalloc_node(sizeof(struct intel_shared_regs),
			    GFP_KERNEL, cpu_to_node(cpu));
	if (regs) {
		/*
		 * initialize the locks to keep lockdep happy
		 */
		for (i = 0; i < EXTRA_REG_MAX; i++)
			raw_spin_lock_init(&regs->regs[i].lock);

		regs->core_id = -1;
	}
	return regs;
}

2210 2211 2212 2213
static int intel_pmu_cpu_prepare(int cpu)
{
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);

2214
	if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
2215 2216
		return NOTIFY_OK;

2217 2218
	cpuc->shared_regs = allocate_shared_regs(cpu);
	if (!cpuc->shared_regs)
2219 2220 2221 2222 2223
		return NOTIFY_BAD;

	return NOTIFY_OK;
}

2224 2225
static void intel_pmu_cpu_starting(int cpu)
{
2226 2227 2228 2229
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
	int core_id = topology_core_id(cpu);
	int i;

2230 2231 2232 2233 2234 2235
	init_debug_store_on_cpu(cpu);
	/*
	 * Deal with CPUs that don't clear their LBRs on power-up.
	 */
	intel_pmu_lbr_reset();

2236 2237 2238
	cpuc->lbr_sel = NULL;

	if (!cpuc->shared_regs)
2239 2240
		return;

2241 2242 2243
	if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
		for_each_cpu(i, topology_thread_cpumask(cpu)) {
			struct intel_shared_regs *pc;
2244

2245 2246 2247 2248 2249 2250
			pc = per_cpu(cpu_hw_events, i).shared_regs;
			if (pc && pc->core_id == core_id) {
				cpuc->kfree_on_online = cpuc->shared_regs;
				cpuc->shared_regs = pc;
				break;
			}
2251
		}
2252 2253
		cpuc->shared_regs->core_id = core_id;
		cpuc->shared_regs->refcnt++;
2254 2255
	}

2256 2257
	if (x86_pmu.lbr_sel_map)
		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
2258 2259 2260 2261
}

static void intel_pmu_cpu_dying(int cpu)
{
2262
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2263
	struct intel_shared_regs *pc;
2264

2265
	pc = cpuc->shared_regs;
2266 2267 2268
	if (pc) {
		if (pc->core_id == -1 || --pc->refcnt == 0)
			kfree(pc);
2269
		cpuc->shared_regs = NULL;
2270 2271
	}

2272 2273 2274
	fini_debug_store_on_cpu(cpu);
}

2275 2276
PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");

2277 2278
PMU_FORMAT_ATTR(ldlat, "config1:0-15");

2279 2280 2281 2282 2283 2284 2285 2286
static struct attribute *intel_arch3_formats_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_pc.attr,
	&format_attr_any.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
2287 2288
	&format_attr_in_tx.attr,
	&format_attr_in_tx_cp.attr,
2289 2290

	&format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
2291
	&format_attr_ldlat.attr, /* PEBS load latency */
2292 2293 2294
	NULL,
};

2295
static __initconst const struct x86_pmu intel_pmu = {
2296 2297 2298 2299 2300 2301
	.name			= "Intel",
	.handle_irq		= intel_pmu_handle_irq,
	.disable_all		= intel_pmu_disable_all,
	.enable_all		= intel_pmu_enable_all,
	.enable			= intel_pmu_enable_event,
	.disable		= intel_pmu_disable_event,
2302
	.hw_config		= intel_pmu_hw_config,
2303
	.schedule_events	= x86_schedule_events,
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
	/*
	 * Intel PMCs cannot be accessed sanely above 32 bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL << 31) - 1,
2315
	.get_event_constraints	= intel_get_event_constraints,
2316
	.put_event_constraints	= intel_put_event_constraints,
2317
	.pebs_aliases		= intel_pebs_aliases_core2,
2318

2319
	.format_attrs		= intel_arch3_formats_attr,
2320
	.events_sysfs_show	= intel_event_sysfs_show,
2321

2322
	.cpu_prepare		= intel_pmu_cpu_prepare,
2323 2324
	.cpu_starting		= intel_pmu_cpu_starting,
	.cpu_dying		= intel_pmu_cpu_dying,
2325
	.guest_get_msrs		= intel_guest_get_msrs,
2326
	.sched_task		= intel_pmu_lbr_sched_task,
2327 2328
};

2329
static __init void intel_clovertown_quirk(void)
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
{
	/*
	 * PEBS is unreliable due to:
	 *
	 *   AJ67  - PEBS may experience CPL leaks
	 *   AJ68  - PEBS PMI may be delayed by one event
	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
	 *
	 * AJ67 could be worked around by restricting the OS/USR flags.
	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
	 *
	 * AJ106 could possibly be worked around by not allowing LBR
	 *       usage from PEBS, including the fixup.
	 * AJ68  could possibly be worked around by always programming
2345
	 *	 a pebs_event_reset[0] value and coping with the lost events.
2346 2347 2348 2349
	 *
	 * But taken together it might just make sense to not enable PEBS on
	 * these chips.
	 */
2350
	pr_warn("PEBS disabled due to CPU errata\n");
2351 2352 2353 2354
	x86_pmu.pebs = 0;
	x86_pmu.pebs_constraints = NULL;
}

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
static int intel_snb_pebs_broken(int cpu)
{
	u32 rev = UINT_MAX; /* default to broken for unknown models */

	switch (cpu_data(cpu).x86_model) {
	case 42: /* SNB */
		rev = 0x28;
		break;

	case 45: /* SNB-EP */
		switch (cpu_data(cpu).x86_mask) {
		case 6: rev = 0x618; break;
		case 7: rev = 0x70c; break;
		}
	}

	return (cpu_data(cpu).microcode < rev);
}

static void intel_snb_check_microcode(void)
{
	int pebs_broken = 0;
	int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if ((pebs_broken = intel_snb_pebs_broken(cpu)))
			break;
	}
	put_online_cpus();

	if (pebs_broken == x86_pmu.pebs_broken)
		return;

	/*
	 * Serialized by the microcode lock..
	 */
	if (x86_pmu.pebs_broken) {
		pr_info("PEBS enabled due to microcode update\n");
		x86_pmu.pebs_broken = 0;
	} else {
		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
		x86_pmu.pebs_broken = 1;
	}
}

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
/*
 * Under certain circumstances, access certain MSR may cause #GP.
 * The function tests if the input MSR can be safely accessed.
 */
static bool check_msr(unsigned long msr, u64 mask)
{
	u64 val_old, val_new, val_tmp;

	/*
	 * Read the current value, change it and read it back to see if it
	 * matches, this is needed to detect certain hardware emulators
	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
	 */
	if (rdmsrl_safe(msr, &val_old))
		return false;

	/*
	 * Only change the bits which can be updated by wrmsrl.
	 */
	val_tmp = val_old ^ mask;
	if (wrmsrl_safe(msr, val_tmp) ||
	    rdmsrl_safe(msr, &val_new))
		return false;

	if (val_new != val_tmp)
		return false;

	/* Here it's sure that the MSR can be safely accessed.
	 * Restore the old value and return.
	 */
	wrmsrl(msr, val_old);

	return true;
}

2436
static __init void intel_sandybridge_quirk(void)
2437
{
2438 2439
	x86_pmu.check_microcode = intel_snb_check_microcode;
	intel_snb_check_microcode();
2440 2441
}

2442 2443 2444 2445 2446 2447 2448 2449
static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
2450 2451
};

2452 2453 2454 2455 2456 2457 2458
static __init void intel_arch_events_quirk(void)
{
	int bit;

	/* disable event that reported as not presend by cpuid */
	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
2459 2460
		pr_warn("CPUID marked event: \'%s\' unavailable\n",
			intel_arch_events_map[bit].name);
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
	}
}

static __init void intel_nehalem_quirk(void)
{
	union cpuid10_ebx ebx;

	ebx.full = x86_pmu.events_maskl;
	if (ebx.split.no_branch_misses_retired) {
		/*
		 * Erratum AAJ80 detected, we work it around by using
		 * the BR_MISP_EXEC.ANY event. This will over-count
		 * branch-misses, but it's still much better than the
		 * architectural event which is often completely bogus:
		 */
		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
		ebx.split.no_branch_misses_retired = 0;
		x86_pmu.events_maskl = ebx.full;
2479
		pr_info("CPU erratum AAJ80 worked around\n");
2480 2481 2482
	}
}

2483 2484
EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
2485

2486
/* Haswell special events */
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
2499

2500
static struct attribute *hsw_events_attrs[] = {
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
	EVENT_PTR(tx_start),
	EVENT_PTR(tx_commit),
	EVENT_PTR(tx_abort),
	EVENT_PTR(tx_capacity),
	EVENT_PTR(tx_conflict),
	EVENT_PTR(el_start),
	EVENT_PTR(el_commit),
	EVENT_PTR(el_abort),
	EVENT_PTR(el_capacity),
	EVENT_PTR(el_conflict),
	EVENT_PTR(cycles_t),
	EVENT_PTR(cycles_ct),
2513 2514 2515 2516 2517
	EVENT_PTR(mem_ld_hsw),
	EVENT_PTR(mem_st_hsw),
	NULL
};

2518
__init int intel_pmu_init(void)
2519 2520 2521
{
	union cpuid10_edx edx;
	union cpuid10_eax eax;
2522
	union cpuid10_ebx ebx;
2523
	struct event_constraint *c;
2524
	unsigned int unused;
2525 2526
	struct extra_reg *er;
	int version, i;
2527 2528

	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
2529 2530 2531
		switch (boot_cpu_data.x86) {
		case 0x6:
			return p6_pmu_init();
2532 2533
		case 0xb:
			return knc_pmu_init();
2534 2535 2536
		case 0xf:
			return p4_pmu_init();
		}
2537 2538 2539 2540 2541 2542 2543
		return -ENODEV;
	}

	/*
	 * Check whether the Architectural PerfMon supports
	 * Branch Misses Retired hw_event or not.
	 */
2544 2545
	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
2546 2547 2548 2549 2550 2551 2552 2553 2554
		return -ENODEV;

	version = eax.split.version_id;
	if (version < 2)
		x86_pmu = core_pmu;
	else
		x86_pmu = intel_pmu;

	x86_pmu.version			= version;
2555 2556 2557
	x86_pmu.num_counters		= eax.split.num_counters;
	x86_pmu.cntval_bits		= eax.split.bit_width;
	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
2558

2559 2560 2561
	x86_pmu.events_maskl		= ebx.full;
	x86_pmu.events_mask_len		= eax.split.mask_length;

2562 2563
	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);

2564 2565 2566 2567 2568
	/*
	 * Quirk: v2 perfmon does not report fixed-purpose events, so
	 * assume at least 3 events:
	 */
	if (version > 1)
2569
		x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
2570

2571
	if (boot_cpu_has(X86_FEATURE_PDCM)) {
2572 2573 2574 2575 2576 2577
		u64 capabilities;

		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
		x86_pmu.intel_cap.capabilities = capabilities;
	}

2578 2579
	intel_ds_init();

2580 2581
	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */

2582 2583 2584 2585
	/*
	 * Install the hw-cache-events table:
	 */
	switch (boot_cpu_data.x86_model) {
2586
	case 14: /* 65nm Core "Yonah" */
2587 2588 2589
		pr_cont("Core events, ");
		break;

2590
	case 15: /* 65nm Core2 "Merom"          */
2591
		x86_add_quirk(intel_clovertown_quirk);
2592 2593 2594
	case 22: /* 65nm Core2 "Merom-L"        */
	case 23: /* 45nm Core2 "Penryn"         */
	case 29: /* 45nm Core2 "Dunnington (MP) */
2595 2596 2597
		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

2598 2599
		intel_pmu_lbr_init_core();

2600
		x86_pmu.event_constraints = intel_core2_event_constraints;
2601
		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
2602 2603 2604
		pr_cont("Core2 events, ");
		break;

2605 2606 2607
	case 30: /* 45nm Nehalem    */
	case 26: /* 45nm Nehalem-EP */
	case 46: /* 45nm Nehalem-EX */
2608 2609
		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
2610 2611
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
2612

2613 2614
		intel_pmu_lbr_init_nhm();

2615
		x86_pmu.event_constraints = intel_nehalem_event_constraints;
2616
		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
2617
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2618
		x86_pmu.extra_regs = intel_nehalem_extra_regs;
2619

2620 2621
		x86_pmu.cpu_events = nhm_events_attrs;

2622
		/* UOPS_ISSUED.STALLED_CYCLES */
2623 2624
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2625
		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2626 2627
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2628

2629
		x86_add_quirk(intel_nehalem_quirk);
2630

2631
		pr_cont("Nehalem events, ");
2632
		break;
2633

2634 2635 2636 2637 2638
	case 28: /* 45nm Atom "Pineview"   */
	case 38: /* 45nm Atom "Lincroft"   */
	case 39: /* 32nm Atom "Penwell"    */
	case 53: /* 32nm Atom "Cloverview" */
	case 54: /* 32nm Atom "Cedarview"  */
2639 2640 2641
		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

2642 2643
		intel_pmu_lbr_init_atom();

2644
		x86_pmu.event_constraints = intel_gen_event_constraints;
2645
		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
2646 2647 2648
		pr_cont("Atom events, ");
		break;

2649
	case 55: /* 22nm Atom "Silvermont"                */
2650
	case 76: /* 14nm Atom "Airmont"                   */
2651
	case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
			sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_atom();

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
		x86_pmu.extra_regs = intel_slm_extra_regs;
		x86_pmu.er_flags |= ERF_HAS_RSP_1;
		pr_cont("Silvermont events, ");
		break;

2666 2667 2668
	case 37: /* 32nm Westmere    */
	case 44: /* 32nm Westmere-EP */
	case 47: /* 32nm Westmere-EX */
2669 2670
		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
2671 2672
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
2673

2674 2675
		intel_pmu_lbr_init_nhm();

2676
		x86_pmu.event_constraints = intel_westmere_event_constraints;
2677
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2678
		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
2679
		x86_pmu.extra_regs = intel_westmere_extra_regs;
2680
		x86_pmu.er_flags |= ERF_HAS_RSP_1;
2681

2682 2683
		x86_pmu.cpu_events = nhm_events_attrs;

2684
		/* UOPS_ISSUED.STALLED_CYCLES */
2685 2686
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2687
		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2688 2689
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2690

2691 2692
		pr_cont("Westmere events, ");
		break;
2693

2694 2695
	case 42: /* 32nm SandyBridge         */
	case 45: /* 32nm SandyBridge-E/EN/EP */
2696
		x86_add_quirk(intel_sandybridge_quirk);
2697 2698
		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
2699 2700
		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
2701

2702
		intel_pmu_lbr_init_snb();
2703 2704

		x86_pmu.event_constraints = intel_snb_event_constraints;
2705
		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
2706
		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2707 2708 2709 2710
		if (boot_cpu_data.x86_model == 45)
			x86_pmu.extra_regs = intel_snbep_extra_regs;
		else
			x86_pmu.extra_regs = intel_snb_extra_regs;
2711
		/* all extra regs are per-cpu when HT is on */
2712 2713
		x86_pmu.er_flags |= ERF_HAS_RSP_1;
		x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2714

2715 2716
		x86_pmu.cpu_events = snb_events_attrs;

2717
		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2718 2719
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2720
		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
2721 2722
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
2723

2724 2725
		pr_cont("SandyBridge events, ");
		break;
2726 2727 2728

	case 58: /* 22nm IvyBridge       */
	case 62: /* 22nm IvyBridge-EP/EX */
2729 2730
		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
2731 2732 2733
		/* dTLB-load-misses on IVB is different than SNB */
		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */

2734 2735 2736 2737 2738
		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_snb();

2739
		x86_pmu.event_constraints = intel_ivb_event_constraints;
2740 2741
		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2742 2743 2744 2745
		if (boot_cpu_data.x86_model == 62)
			x86_pmu.extra_regs = intel_snbep_extra_regs;
		else
			x86_pmu.extra_regs = intel_snb_extra_regs;
2746 2747 2748 2749
		/* all extra regs are per-cpu when HT is on */
		x86_pmu.er_flags |= ERF_HAS_RSP_1;
		x86_pmu.er_flags |= ERF_NO_HT_SHARING;

2750 2751
		x86_pmu.cpu_events = snb_events_attrs;

2752 2753 2754 2755 2756 2757 2758
		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);

		pr_cont("IvyBridge events, ");
		break;

2759

2760 2761 2762 2763
	case 60: /* 22nm Haswell Core */
	case 63: /* 22nm Haswell Server */
	case 69: /* 22nm Haswell ULT */
	case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
2764
		x86_pmu.late_ack = true;
2765 2766
		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
2767

2768
		intel_pmu_lbr_init_hsw();
2769 2770

		x86_pmu.event_constraints = intel_hsw_event_constraints;
2771
		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
2772
		x86_pmu.extra_regs = intel_snbep_extra_regs;
2773
		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2774 2775 2776 2777 2778 2779
		/* all extra regs are per-cpu when HT is on */
		x86_pmu.er_flags |= ERF_HAS_RSP_1;
		x86_pmu.er_flags |= ERF_NO_HT_SHARING;

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = hsw_get_event_constraints;
2780
		x86_pmu.cpu_events = hsw_events_attrs;
2781
		x86_pmu.lbr_double_abort = true;
2782 2783 2784
		pr_cont("Haswell events, ");
		break;

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
	case 61: /* 14nm Broadwell Core-M */
	case 86: /* 14nm Broadwell Xeon D */
		x86_pmu.late_ack = true;
		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));

		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
									 BDW_L3_MISS|HSW_SNOOP_DRAM;
		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
									  HSW_SNOOP_DRAM;
		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;

		intel_pmu_lbr_init_snb();

		x86_pmu.event_constraints = intel_bdw_event_constraints;
		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
		x86_pmu.extra_regs = intel_snbep_extra_regs;
		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
		/* all extra regs are per-cpu when HT is on */
		x86_pmu.er_flags |= ERF_HAS_RSP_1;
		x86_pmu.er_flags |= ERF_NO_HT_SHARING;

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = hsw_get_event_constraints;
		x86_pmu.cpu_events = hsw_events_attrs;
2814
		x86_pmu.limit_period = bdw_limit_period;
2815 2816 2817
		pr_cont("Broadwell events, ");
		break;

2818
	default:
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
		switch (x86_pmu.version) {
		case 1:
			x86_pmu.event_constraints = intel_v1_event_constraints;
			pr_cont("generic architected perfmon v1, ");
			break;
		default:
			/*
			 * default constraints for v2 and up
			 */
			x86_pmu.event_constraints = intel_gen_event_constraints;
			pr_cont("generic architected perfmon, ");
			break;
		}
2832
	}
2833

2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
	}
	x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;

	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
	}

	x86_pmu.intel_ctrl |=
		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;

	if (x86_pmu.event_constraints) {
		/*
		 * event on fixed counter2 (REF_CYCLES) only works on this
		 * counter, so do not extend mask to generic counters
		 */
		for_each_event_constraint(c, x86_pmu.event_constraints) {
2856
			if (c->cmask != FIXED_EVENT_FLAGS
2857 2858 2859 2860 2861 2862 2863 2864 2865
			    || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
				continue;
			}

			c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
			c->weight += x86_pmu.num_counters;
		}
	}

2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
	/*
	 * Access LBR MSR may cause #GP under certain circumstances.
	 * E.g. KVM doesn't support LBR MSR
	 * Check all LBT MSR here.
	 * Disable LBR access if any LBR MSRs can not be accessed.
	 */
	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
		x86_pmu.lbr_nr = 0;
	for (i = 0; i < x86_pmu.lbr_nr; i++) {
		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
			x86_pmu.lbr_nr = 0;
	}

	/*
	 * Access extra MSR may cause #GP under certain circumstances.
	 * E.g. KVM doesn't support offcore event
	 * Check all extra_regs here.
	 */
	if (x86_pmu.extra_regs) {
		for (er = x86_pmu.extra_regs; er->msr; er++) {
			er->extra_msr_access = check_msr(er->msr, 0x1ffUL);
			/* Disable LBR select mapping */
			if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
				x86_pmu.lbr_sel_map = NULL;
		}
	}

2894 2895 2896 2897 2898 2899 2900
	/* Support full width counters using alternative MSR range */
	if (x86_pmu.intel_cap.full_width_write) {
		x86_pmu.max_period = x86_pmu.cntval_mask;
		x86_pmu.perfctr = MSR_IA32_PMC0;
		pr_cont("full-width counters, ");
	}

2901 2902
	return 0;
}