cpuset.c 77.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46 47
#include <linux/sched.h>
#include <linux/seq_file.h>
48
#include <linux/security.h>
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
A
Arun Sharma 已提交
58
#include <linux/atomic.h>
59
#include <linux/mutex.h>
60 61
#include <linux/workqueue.h>
#include <linux/cgroup.h>
62
#include <linux/wait.h>
L
Linus Torvalds 已提交
63

64
struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
65

66 67 68 69 70 71 72 73 74
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
75
struct cpuset {
76 77
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
78
	unsigned long flags;		/* "unsigned long" so bitops work */
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
	/*
	 * On default hierarchy:
	 *
	 * The user-configured masks can only be changed by writing to
	 * cpuset.cpus and cpuset.mems, and won't be limited by the
	 * parent masks.
	 *
	 * The effective masks is the real masks that apply to the tasks
	 * in the cpuset. They may be changed if the configured masks are
	 * changed or hotplug happens.
	 *
	 * effective_mask == configured_mask & parent's effective_mask,
	 * and if it ends up empty, it will inherit the parent's mask.
	 *
	 *
	 * On legacy hierachy:
	 *
	 * The user-configured masks are always the same with effective masks.
	 */

100 101 102 103 104 105 106
	/* user-configured CPUs and Memory Nodes allow to tasks */
	cpumask_var_t cpus_allowed;
	nodemask_t mems_allowed;

	/* effective CPUs and Memory Nodes allow to tasks */
	cpumask_var_t effective_cpus;
	nodemask_t effective_mems;
L
Linus Torvalds 已提交
107

108 109 110 111 112 113 114 115 116 117 118 119
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

120
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
121

122 123 124 125 126 127
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
128 129
	/* partition number for rebuild_sched_domains() */
	int pn;
130

131 132
	/* for custom sched domain */
	int relax_domain_level;
L
Linus Torvalds 已提交
133 134
};

135
static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
136
{
137
	return css ? container_of(css, struct cpuset, css) : NULL;
138 139 140 141 142
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
143
	return css_cs(task_css(task, cpuset_cgrp_id));
144 145
}

146
static inline struct cpuset *parent_cs(struct cpuset *cs)
T
Tejun Heo 已提交
147
{
T
Tejun Heo 已提交
148
	return css_cs(cs->css.parent);
T
Tejun Heo 已提交
149 150
}

151 152 153 154 155 156 157 158 159 160 161 162 163
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
164 165
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
166
	CS_ONLINE,
L
Linus Torvalds 已提交
167 168
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
169
	CS_MEM_HARDWALL,
170
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
171
	CS_SCHED_LOAD_BALANCE,
172 173
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
174 175 176
} cpuset_flagbits_t;

/* convenient tests for these bits */
T
Tejun Heo 已提交
177 178 179 180 181
static inline bool is_cpuset_online(const struct cpuset *cs)
{
	return test_bit(CS_ONLINE, &cs->flags);
}

L
Linus Torvalds 已提交
182 183
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
184
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
185 186 187 188
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
189
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
190 191
}

192 193 194 195 196
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
197 198 199 200 201
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

202 203
static inline int is_memory_migrate(const struct cpuset *cs)
{
204
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
205 206
}

207 208 209 210 211 212 213 214 215 216
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
217
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
218 219
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
220 221
};

222 223 224
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
225
 * @pos_css: used for iteration
226 227 228 229 230
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
231 232 233
#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
	css_for_each_child((pos_css), &(parent_cs)->css)		\
		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
234

235 236 237
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
238
 * @pos_css: used for iteration
239 240 241
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
242
 * with RCU read locked.  The caller may modify @pos_css by calling
243 244
 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 * iteration and the first node to be visited.
245
 */
246 247 248
#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
249

L
Linus Torvalds 已提交
250
/*
251 252 253 254 255 256 257 258 259 260 261 262 263 264
 * There are two global mutexes guarding cpuset structures - cpuset_mutex
 * and callback_mutex.  The latter may nest inside the former.  We also
 * require taking task_lock() when dereferencing a task's cpuset pointer.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold both mutexes to modify cpusets.  If a task holds
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
 * is the only task able to also acquire callback_mutex and be able to
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
 * callback routines can briefly acquire callback_mutex to query cpusets.
 * Once it is ready to make the changes, it takes callback_mutex, blocking
 * everyone else.
265 266
 *
 * Calls to the kernel memory allocator can not be made while holding
267
 * callback_mutex, as that would risk double tripping on callback_mutex
268 269 270
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
271
 * If a task is only holding callback_mutex, then it has read-only
272 273
 * access to cpusets.
 *
274 275 276
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
277
 *
278
 * The cpuset_common_file_read() handlers only hold callback_mutex across
279 280 281
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
282 283
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
284 285
 */

286
static DEFINE_MUTEX(cpuset_mutex);
287
static DEFINE_MUTEX(callback_mutex);
288

289 290 291 292 293 294
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

295 296
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

297 298
/*
 * This is ugly, but preserves the userspace API for existing cpuset
299
 * users. If someone tries to mount the "cpuset" filesystem, we
300 301
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
302 303
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
304
{
305
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
306
	struct dentry *ret = ERR_PTR(-ENODEV);
307 308 309 310
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
311 312
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
313 314 315
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
316 317 318 319
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
320
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
321 322 323
};

/*
324
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
325
 * are online.  If none are online, walk up the cpuset hierarchy
326 327
 * until we find one that does have some online cpus.  The top
 * cpuset always has some cpus online.
L
Linus Torvalds 已提交
328 329
 *
 * One way or another, we guarantee to return some non-empty subset
330
 * of cpu_online_mask.
L
Linus Torvalds 已提交
331
 *
332
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
333
 */
334
static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
L
Linus Torvalds 已提交
335
{
336
	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
T
Tejun Heo 已提交
337
		cs = parent_cs(cs);
338
	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
L
Linus Torvalds 已提交
339 340 341 342
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
343 344
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
345
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
346 347
 *
 * One way or another, we guarantee to return some non-empty subset
348
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
349
 *
350
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
351
 */
352
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
L
Linus Torvalds 已提交
353
{
354
	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
T
Tejun Heo 已提交
355
		cs = parent_cs(cs);
356
	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
357 358
}

359 360 361
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
362
 * Called with callback_mutex/cpuset_mutex held
363 364 365 366 367 368 369 370 371 372 373 374 375 376
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
		tsk->flags |= PF_SPREAD_PAGE;
	else
		tsk->flags &= ~PF_SPREAD_PAGE;
	if (is_spread_slab(cs))
		tsk->flags |= PF_SPREAD_SLAB;
	else
		tsk->flags &= ~PF_SPREAD_SLAB;
}

L
Linus Torvalds 已提交
377 378 379 380 381
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
382
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
383 384 385 386
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
387
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
388 389 390 391 392
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

393 394 395 396
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
397
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
398
{
399 400 401 402 403 404
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

405 406 407 408
	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
		goto free_cpus;
409

410 411
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
412
	return trial;
413 414 415 416 417 418

free_cpus:
	free_cpumask_var(trial->cpus_allowed);
free_cs:
	kfree(trial);
	return NULL;
419 420 421 422 423 424 425 426
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
427
	free_cpumask_var(trial->effective_cpus);
428
	free_cpumask_var(trial->cpus_allowed);
429 430 431
	kfree(trial);
}

L
Linus Torvalds 已提交
432 433 434 435 436 437 438
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
439
 * cpuset_mutex held.
L
Linus Torvalds 已提交
440 441 442 443 444 445 446 447 448 449 450 451
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

452
static int validate_change(struct cpuset *cur, struct cpuset *trial)
L
Linus Torvalds 已提交
453
{
454
	struct cgroup_subsys_state *css;
L
Linus Torvalds 已提交
455
	struct cpuset *c, *par;
456 457 458
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
459 460

	/* Each of our child cpusets must be a subset of us */
461
	ret = -EBUSY;
462
	cpuset_for_each_child(c, css, cur)
463 464
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
465 466

	/* Remaining checks don't apply to root cpuset */
467
	ret = 0;
468
	if (cur == &top_cpuset)
469
		goto out;
L
Linus Torvalds 已提交
470

T
Tejun Heo 已提交
471
	par = parent_cs(cur);
472

473
	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
474
	ret = -EACCES;
475
	if (!cgroup_on_dfl(cur->css.cgroup) && !is_cpuset_subset(trial, par))
476
		goto out;
L
Linus Torvalds 已提交
477

478 479 480 481
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
482
	ret = -EINVAL;
483
	cpuset_for_each_child(c, css, par) {
L
Linus Torvalds 已提交
484 485
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
486
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
487
			goto out;
L
Linus Torvalds 已提交
488 489 490
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
491
			goto out;
L
Linus Torvalds 已提交
492 493
	}

494 495
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
496
	 * be changed to have empty cpus_allowed or mems_allowed.
497
	 */
498
	ret = -ENOSPC;
499
	if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
500 501 502 503 504 505 506
		if (!cpumask_empty(cur->cpus_allowed) &&
		    cpumask_empty(trial->cpus_allowed))
			goto out;
		if (!nodes_empty(cur->mems_allowed) &&
		    nodes_empty(trial->mems_allowed))
			goto out;
	}
507

508 509 510 511
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
512 513
}

514
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
515
/*
516
 * Helper routine for generate_sched_domains().
517
 * Do cpusets a, b have overlapping effective cpus_allowed masks?
P
Paul Jackson 已提交
518 519 520
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
521
	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
P
Paul Jackson 已提交
522 523
}

524 525 526 527 528 529 530 531
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

532 533
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
534
{
535
	struct cpuset *cp;
536
	struct cgroup_subsys_state *pos_css;
537

538
	rcu_read_lock();
539
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
540 541 542
		if (cp == root_cs)
			continue;

543 544
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
545
			pos_css = css_rightmost_descendant(pos_css);
546
			continue;
547
		}
548 549 550 551

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
552
	rcu_read_unlock();
553 554
}

P
Paul Jackson 已提交
555
/*
556 557 558 559 560
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
561
 * The output of this function needs to be passed to kernel/sched/core.c
562 563 564
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
565
 *
L
Li Zefan 已提交
566
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
567 568 569 570 571 572 573
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
574
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
575 576
 *
 * The three key local variables below are:
577
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
578 579 580 581 582 583 584 585 586 587 588 589
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
590
 *	   the kernel/sched/core.c routine partition_sched_domains() in a
P
Paul Jackson 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
609
static int generate_sched_domains(cpumask_var_t **domains,
610
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
611 612 613 614 615
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
616
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
617
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
618
	int ndoms = 0;		/* number of sched domains in result */
619
	int nslot;		/* next empty doms[] struct cpumask slot */
620
	struct cgroup_subsys_state *pos_css;
P
Paul Jackson 已提交
621 622

	doms = NULL;
623
	dattr = NULL;
624
	csa = NULL;
P
Paul Jackson 已提交
625 626 627

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
628 629
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
630
		if (!doms)
631 632
			goto done;

633 634 635
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
636
			update_domain_attr_tree(dattr, &top_cpuset);
637
		}
638
		cpumask_copy(doms[0], top_cpuset.effective_cpus);
639 640

		goto done;
P
Paul Jackson 已提交
641 642
	}

643
	csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
P
Paul Jackson 已提交
644 645 646 647
	if (!csa)
		goto done;
	csn = 0;

648
	rcu_read_lock();
649
	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
650 651
		if (cp == &top_cpuset)
			continue;
652
		/*
653 654 655 656 657 658
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
659
		 */
660 661
		if (!cpumask_empty(cp->cpus_allowed) &&
		    !is_sched_load_balance(cp))
662
			continue;
663

664 665 666 667
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
668
		pos_css = css_rightmost_descendant(pos_css);
669 670
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

699 700 701 702
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
703
	doms = alloc_sched_domains(ndoms);
704
	if (!doms)
705 706 707 708 709 710
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
711
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
712 713 714

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
715
		struct cpumask *dp;
P
Paul Jackson 已提交
716 717
		int apn = a->pn;

718 719 720 721 722
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

723
		dp = doms[nslot];
724 725 726 727

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
728 729
				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
					nslot, ndoms, csn, i, apn);
730
				warnings--;
P
Paul Jackson 已提交
731
			}
732 733
			continue;
		}
P
Paul Jackson 已提交
734

735
		cpumask_clear(dp);
736 737 738 739 740 741
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
742
				cpumask_or(dp, dp, b->effective_cpus);
743 744 745 746 747
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
748 749
			}
		}
750
		nslot++;
P
Paul Jackson 已提交
751 752 753
	}
	BUG_ON(nslot != ndoms);

754 755 756
done:
	kfree(csa);

757 758 759 760 761 762 763
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

764 765 766 767 768 769 770 771
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
772 773 774 775 776
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
777
 *
778
 * Call with cpuset_mutex held.  Takes get_online_cpus().
779
 */
780
static void rebuild_sched_domains_locked(void)
781 782
{
	struct sched_domain_attr *attr;
783
	cpumask_var_t *doms;
784 785
	int ndoms;

786
	lockdep_assert_held(&cpuset_mutex);
787
	get_online_cpus();
788

789 790 791 792 793
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
794
	if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
795 796
		goto out;

797 798 799 800 801
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
802
out:
803
	put_online_cpus();
804
}
805
#else /* !CONFIG_SMP */
806
static void rebuild_sched_domains_locked(void)
807 808 809
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
810

811 812
void rebuild_sched_domains(void)
{
813
	mutex_lock(&cpuset_mutex);
814
	rebuild_sched_domains_locked();
815
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
816 817
}

818 819 820 821
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 *
822 823 824
 * Iterate through each task of @cs updating its cpus_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
825
 */
826
static void update_tasks_cpumask(struct cpuset *cs)
827
{
828 829 830 831 832
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
833
		set_cpus_allowed_ptr(task, cs->effective_cpus);
834
	css_task_iter_end(&it);
835 836
}

837
/*
838 839 840 841 842 843
 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_cpus: temp variable for calculating new effective_cpus
 *
 * When congifured cpumask is changed, the effective cpumasks of this cpuset
 * and all its descendants need to be updated.
844
 *
845
 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
846 847 848
 *
 * Called with cpuset_mutex held
 */
849
static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
850 851
{
	struct cpuset *cp;
852
	struct cgroup_subsys_state *pos_css;
853
	bool need_rebuild_sched_domains = false;
854 855

	rcu_read_lock();
856 857 858 859 860
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);

861 862 863 864 865 866 867
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some CPUs.
		 */
		if (cpumask_empty(new_cpus))
			cpumask_copy(new_cpus, parent->effective_cpus);

868 869 870 871
		/* Skip the whole subtree if the cpumask remains the same. */
		if (cpumask_equal(new_cpus, cp->effective_cpus)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
872
		}
873

874
		if (!css_tryget_online(&cp->css))
875 876 877
			continue;
		rcu_read_unlock();

878 879 880 881 882 883 884
		mutex_lock(&callback_mutex);
		cpumask_copy(cp->effective_cpus, new_cpus);
		mutex_unlock(&callback_mutex);

		WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));

885
		update_tasks_cpumask(cp);
886

887 888 889 890 891 892 893 894
		/*
		 * If the effective cpumask of any non-empty cpuset is changed,
		 * we need to rebuild sched domains.
		 */
		if (!cpumask_empty(cp->cpus_allowed) &&
		    is_sched_load_balance(cp))
			need_rebuild_sched_domains = true;

895 896 897 898
		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
899 900 901

	if (need_rebuild_sched_domains)
		rebuild_sched_domains_locked();
902 903
}

C
Cliff Wickman 已提交
904 905 906
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
907
 * @trialcs: trial cpuset
C
Cliff Wickman 已提交
908 909
 * @buf: buffer of cpu numbers written to this cpuset
 */
910 911
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
912
{
C
Cliff Wickman 已提交
913
	int retval;
L
Linus Torvalds 已提交
914

915
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
916 917 918
	if (cs == &top_cpuset)
		return -EACCES;

919
	/*
920
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
921 922 923
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
924
	 */
925
	if (!*buf) {
926
		cpumask_clear(trialcs->cpus_allowed);
927
	} else {
928
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
929 930
		if (retval < 0)
			return retval;
931

932 933
		if (!cpumask_subset(trialcs->cpus_allowed,
				    top_cpuset.cpus_allowed))
934
			return -EINVAL;
935
	}
P
Paul Jackson 已提交
936

P
Paul Menage 已提交
937
	/* Nothing to do if the cpus didn't change */
938
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
939
		return 0;
C
Cliff Wickman 已提交
940

941 942 943 944
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

945
	mutex_lock(&callback_mutex);
946
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
947
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
948

949 950
	/* use trialcs->cpus_allowed as a temp variable */
	update_cpumasks_hier(cs, trialcs->cpus_allowed);
951
	return 0;
L
Linus Torvalds 已提交
952 953
}

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	tsk->mems_allowed = *to;

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

977
	rcu_read_lock();
978
	guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed);
979
	rcu_read_unlock();
980 981
}

982
/*
983 984 985 986 987 988 989 990 991 992 993
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 * we structure updates as setting all new allowed nodes, then clearing newly
 * disallowed ones.
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
994
	bool need_loop;
995

996 997 998 999 1000 1001 1002 1003 1004 1005
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return;
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return;

	task_lock(tsk);
1006 1007
	/*
	 * Determine if a loop is necessary if another thread is doing
1008
	 * read_mems_allowed_begin().  If at least one node remains unchanged and
1009 1010 1011 1012 1013
	 * tsk does not have a mempolicy, then an empty nodemask will not be
	 * possible when mems_allowed is larger than a word.
	 */
	need_loop = task_has_mempolicy(tsk) ||
			!nodes_intersects(*newmems, tsk->mems_allowed);
1014

1015 1016
	if (need_loop) {
		local_irq_disable();
1017
		write_seqcount_begin(&tsk->mems_allowed_seq);
1018
	}
1019

1020 1021
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1022 1023

	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1024
	tsk->mems_allowed = *newmems;
1025

1026
	if (need_loop) {
1027
		write_seqcount_end(&tsk->mems_allowed_seq);
1028 1029
		local_irq_enable();
	}
1030

1031
	task_unlock(tsk);
1032 1033
}

1034 1035
static void *cpuset_being_rebound;

1036 1037 1038 1039
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 *
1040 1041 1042
 * Iterate through each task of @cs updating its mems_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
1043
 */
1044
static void update_tasks_nodemask(struct cpuset *cs)
L
Linus Torvalds 已提交
1045
{
1046
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1047 1048
	struct css_task_iter it;
	struct task_struct *task;
1049

1050
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1051

1052
	guarantee_online_mems(cs, &newmems);
1053

1054
	/*
1055 1056 1057 1058
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1059
	 * the global cpuset_mutex, we know that no other rebind effort
1060
	 * will be contending for the global variable cpuset_being_rebound.
1061
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1062
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1063
	 */
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it))) {
		struct mm_struct *mm;
		bool migrate;

		cpuset_change_task_nodemask(task, &newmems);

		mm = get_task_mm(task);
		if (!mm)
			continue;

		migrate = is_memory_migrate(cs);

		mpol_rebind_mm(mm, &cs->mems_allowed);
		if (migrate)
			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
		mmput(mm);
	}
	css_task_iter_end(&it);
1083

1084 1085 1086 1087 1088 1089
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1090
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1091
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1092 1093
}

1094
/*
1095 1096 1097
 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_mems: a temp variable for calculating new effective_mems
1098
 *
1099 1100
 * When configured nodemask is changed, the effective nodemasks of this cpuset
 * and all its descendants need to be updated.
1101
 *
1102
 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1103 1104 1105
 *
 * Called with cpuset_mutex held
 */
1106
static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1107 1108
{
	struct cpuset *cp;
1109
	struct cgroup_subsys_state *pos_css;
1110 1111

	rcu_read_lock();
1112 1113 1114 1115 1116
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);

1117 1118 1119 1120 1121 1122 1123
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some MEMs.
		 */
		if (nodes_empty(*new_mems))
			*new_mems = parent->effective_mems;

1124 1125 1126 1127
		/* Skip the whole subtree if the nodemask remains the same. */
		if (nodes_equal(*new_mems, cp->effective_mems)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
1128
		}
1129

1130
		if (!css_tryget_online(&cp->css))
1131 1132 1133
			continue;
		rcu_read_unlock();

1134 1135 1136 1137 1138
		mutex_lock(&callback_mutex);
		cp->effective_mems = *new_mems;
		mutex_unlock(&callback_mutex);

		WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
1139
			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1140

1141
		update_tasks_nodemask(cp);
1142 1143 1144 1145 1146 1147 1148

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

1149 1150 1151
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1152 1153 1154 1155
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1156
 *
1157
 * Call with cpuset_mutex held.  May take callback_mutex during call.
1158 1159 1160 1161
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1162 1163
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1164 1165 1166 1167
{
	int retval;

	/*
1168
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1169 1170
	 * it's read-only
	 */
1171 1172 1173 1174
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1175 1176 1177 1178 1179 1180 1181 1182

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1183
		nodes_clear(trialcs->mems_allowed);
1184
	} else {
1185
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1186 1187 1188
		if (retval < 0)
			goto done;

1189
		if (!nodes_subset(trialcs->mems_allowed,
1190 1191
				  top_cpuset.mems_allowed)) {
			retval = -EINVAL;
1192 1193
			goto done;
		}
1194
	}
1195 1196

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1197 1198 1199
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1200
	retval = validate_change(cs, trialcs);
1201 1202 1203 1204
	if (retval < 0)
		goto done;

	mutex_lock(&callback_mutex);
1205
	cs->mems_allowed = trialcs->mems_allowed;
1206 1207
	mutex_unlock(&callback_mutex);

1208 1209
	/* use trialcs->mems_allowed as a temp variable */
	update_nodemasks_hier(cs, &cs->mems_allowed);
1210 1211 1212 1213
done:
	return retval;
}

1214 1215
int current_cpuset_is_being_rebound(void)
{
1216 1217 1218 1219 1220 1221 1222
	int ret;

	rcu_read_lock();
	ret = task_cs(current) == cpuset_being_rebound;
	rcu_read_unlock();

	return ret;
1223 1224
}

1225
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1226
{
1227
#ifdef CONFIG_SMP
1228
	if (val < -1 || val >= sched_domain_level_max)
1229
		return -EINVAL;
1230
#endif
1231 1232 1233

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1234 1235
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1236
			rebuild_sched_domains_locked();
1237 1238 1239 1240 1241
	}

	return 0;
}

1242
/**
1243 1244 1245
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 *
1246 1247 1248
 * Iterate through each task of @cs updating its spread flags.  As this
 * function is called with cpuset_mutex held, cpuset membership stays
 * stable.
1249
 */
1250
static void update_tasks_flags(struct cpuset *cs)
1251
{
1252 1253 1254 1255 1256 1257 1258
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
		cpuset_update_task_spread_flag(cs, task);
	css_task_iter_end(&it);
1259 1260
}

L
Linus Torvalds 已提交
1261 1262
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1263 1264 1265
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1266
 *
1267
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1268 1269
 */

1270 1271
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1272
{
1273
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1274
	int balance_flag_changed;
1275 1276
	int spread_flag_changed;
	int err;
L
Linus Torvalds 已提交
1277

1278 1279 1280 1281
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1282
	if (turning_on)
1283
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1284
	else
1285
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1286

1287
	err = validate_change(cs, trialcs);
1288
	if (err < 0)
1289
		goto out;
P
Paul Jackson 已提交
1290 1291

	balance_flag_changed = (is_sched_load_balance(cs) !=
1292
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1293

1294 1295 1296
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1297
	mutex_lock(&callback_mutex);
1298
	cs->flags = trialcs->flags;
1299
	mutex_unlock(&callback_mutex);
1300

1301
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1302
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1303

1304
	if (spread_flag_changed)
1305
		update_tasks_flags(cs);
1306 1307 1308
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1309 1310
}

1311
/*
A
Adrian Bunk 已提交
1312
 * Frequency meter - How fast is some event occurring?
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1409 1410
static struct cpuset *cpuset_attach_old_cs;

1411
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1412 1413
static int cpuset_can_attach(struct cgroup_subsys_state *css,
			     struct cgroup_taskset *tset)
1414
{
1415
	struct cpuset *cs = css_cs(css);
1416 1417
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1418

1419 1420 1421
	/* used later by cpuset_attach() */
	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));

1422 1423
	mutex_lock(&cpuset_mutex);

1424
	/* allow moving tasks into an empty cpuset if on default hierarchy */
1425
	ret = -ENOSPC;
1426
	if (!cgroup_on_dfl(css->cgroup) &&
1427
	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1428
		goto out_unlock;
1429

1430
	cgroup_taskset_for_each(task, tset) {
1431
		/*
1432 1433 1434 1435 1436 1437 1438
		 * Kthreads which disallow setaffinity shouldn't be moved
		 * to a new cpuset; we don't want to change their cpu
		 * affinity and isolating such threads by their set of
		 * allowed nodes is unnecessary.  Thus, cpusets are not
		 * applicable for such threads.  This prevents checking for
		 * success of set_cpus_allowed_ptr() on all attached tasks
		 * before cpus_allowed may be changed.
1439
		 */
1440
		ret = -EINVAL;
1441
		if (task->flags & PF_NO_SETAFFINITY)
1442 1443 1444 1445
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1446
	}
1447

1448 1449 1450 1451 1452
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1453 1454 1455 1456
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1457
}
1458

1459
static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1460 1461
				 struct cgroup_taskset *tset)
{
1462
	mutex_lock(&cpuset_mutex);
1463
	css_cs(css)->attach_in_progress--;
1464
	mutex_unlock(&cpuset_mutex);
1465
}
L
Linus Torvalds 已提交
1466

1467
/*
1468
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1469 1470 1471 1472 1473
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1474 1475
static void cpuset_attach(struct cgroup_subsys_state *css,
			  struct cgroup_taskset *tset)
1476
{
1477
	/* static buf protected by cpuset_mutex */
1478
	static nodemask_t cpuset_attach_nodemask_to;
1479
	struct mm_struct *mm;
1480 1481
	struct task_struct *task;
	struct task_struct *leader = cgroup_taskset_first(tset);
1482
	struct cpuset *cs = css_cs(css);
1483
	struct cpuset *oldcs = cpuset_attach_old_cs;
1484

1485 1486
	mutex_lock(&cpuset_mutex);

1487 1488 1489 1490
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
1491
		guarantee_online_cpus(cs, cpus_attach);
1492

1493
	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1494

1495
	cgroup_taskset_for_each(task, tset) {
1496 1497 1498 1499 1500 1501 1502 1503 1504
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1505

1506 1507 1508 1509
	/*
	 * Change mm, possibly for multiple threads in a threadgroup. This is
	 * expensive and may sleep.
	 */
1510
	cpuset_attach_nodemask_to = cs->effective_mems;
1511
	mm = get_task_mm(leader);
1512
	if (mm) {
1513
		mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1514 1515 1516 1517 1518 1519 1520 1521 1522

		/*
		 * old_mems_allowed is the same with mems_allowed here, except
		 * if this task is being moved automatically due to hotplug.
		 * In that case @mems_allowed has been updated and is empty,
		 * so @old_mems_allowed is the right nodesets that we migrate
		 * mm from.
		 */
		if (is_memory_migrate(cs)) {
1523
			cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1524
					  &cpuset_attach_nodemask_to);
1525
		}
1526 1527
		mmput(mm);
	}
1528

1529
	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1530

1531
	cs->attach_in_progress--;
1532 1533
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
1534 1535

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1536 1537 1538 1539 1540
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1541
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1542 1543
	FILE_CPULIST,
	FILE_MEMLIST,
1544 1545
	FILE_EFFECTIVE_CPULIST,
	FILE_EFFECTIVE_MEMLIST,
L
Linus Torvalds 已提交
1546 1547
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1548
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1549
	FILE_SCHED_LOAD_BALANCE,
1550
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1551 1552
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1553 1554
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1555 1556
} cpuset_filetype_t;

1557 1558
static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
			    u64 val)
1559
{
1560
	struct cpuset *cs = css_cs(css);
1561
	cpuset_filetype_t type = cft->private;
1562
	int retval = 0;
1563

1564
	mutex_lock(&cpuset_mutex);
1565 1566
	if (!is_cpuset_online(cs)) {
		retval = -ENODEV;
1567
		goto out_unlock;
1568
	}
1569 1570

	switch (type) {
L
Linus Torvalds 已提交
1571
	case FILE_CPU_EXCLUSIVE:
1572
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1573 1574
		break;
	case FILE_MEM_EXCLUSIVE:
1575
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1576
		break;
1577 1578 1579
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1580
	case FILE_SCHED_LOAD_BALANCE:
1581
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1582
		break;
1583
	case FILE_MEMORY_MIGRATE:
1584
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1585
		break;
1586
	case FILE_MEMORY_PRESSURE_ENABLED:
1587
		cpuset_memory_pressure_enabled = !!val;
1588 1589 1590 1591
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1592
	case FILE_SPREAD_PAGE:
1593
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1594 1595
		break;
	case FILE_SPREAD_SLAB:
1596
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1597
		break;
L
Linus Torvalds 已提交
1598 1599
	default:
		retval = -EINVAL;
1600
		break;
L
Linus Torvalds 已提交
1601
	}
1602 1603
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1604 1605 1606
	return retval;
}

1607 1608
static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
			    s64 val)
1609
{
1610
	struct cpuset *cs = css_cs(css);
1611
	cpuset_filetype_t type = cft->private;
1612
	int retval = -ENODEV;
1613

1614 1615 1616
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1617

1618 1619 1620 1621 1622 1623 1624 1625
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1626 1627
out_unlock:
	mutex_unlock(&cpuset_mutex);
1628 1629 1630
	return retval;
}

1631 1632 1633
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
1634 1635
static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
				    char *buf, size_t nbytes, loff_t off)
1636
{
1637
	struct cpuset *cs = css_cs(of_css(of));
1638
	struct cpuset *trialcs;
1639
	int retval = -ENODEV;
1640

1641 1642
	buf = strstrip(buf);

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
1653 1654 1655 1656 1657 1658 1659 1660
	 *
	 * cpuset_hotplug_work calls back into cgroup core via
	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
	 * operation like this one can lead to a deadlock through kernfs
	 * active_ref protection.  Let's break the protection.  Losing the
	 * protection is okay as we check whether @cs is online after
	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
	 * hierarchies.
1661
	 */
1662 1663
	css_get(&cs->css);
	kernfs_break_active_protection(of->kn);
1664 1665
	flush_work(&cpuset_hotplug_work);

1666 1667 1668
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1669

1670
	trialcs = alloc_trial_cpuset(cs);
1671 1672
	if (!trialcs) {
		retval = -ENOMEM;
1673
		goto out_unlock;
1674
	}
1675

1676
	switch (of_cft(of)->private) {
1677
	case FILE_CPULIST:
1678
		retval = update_cpumask(cs, trialcs, buf);
1679 1680
		break;
	case FILE_MEMLIST:
1681
		retval = update_nodemask(cs, trialcs, buf);
1682 1683 1684 1685 1686
		break;
	default:
		retval = -EINVAL;
		break;
	}
1687 1688

	free_trial_cpuset(trialcs);
1689 1690
out_unlock:
	mutex_unlock(&cpuset_mutex);
1691 1692
	kernfs_unbreak_active_protection(of->kn);
	css_put(&cs->css);
1693
	return retval ?: nbytes;
1694 1695
}

L
Linus Torvalds 已提交
1696 1697 1698 1699 1700 1701 1702 1703
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 */
1704
static int cpuset_common_seq_show(struct seq_file *sf, void *v)
L
Linus Torvalds 已提交
1705
{
1706 1707
	struct cpuset *cs = css_cs(seq_css(sf));
	cpuset_filetype_t type = seq_cft(sf)->private;
1708 1709 1710
	ssize_t count;
	char *buf, *s;
	int ret = 0;
L
Linus Torvalds 已提交
1711

1712 1713
	count = seq_get_buf(sf, &buf);
	s = buf;
L
Linus Torvalds 已提交
1714

1715
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
1716 1717 1718

	switch (type) {
	case FILE_CPULIST:
1719
		s += cpulist_scnprintf(s, count, cs->cpus_allowed);
L
Linus Torvalds 已提交
1720 1721
		break;
	case FILE_MEMLIST:
1722
		s += nodelist_scnprintf(s, count, cs->mems_allowed);
L
Linus Torvalds 已提交
1723
		break;
1724 1725 1726 1727 1728 1729
	case FILE_EFFECTIVE_CPULIST:
		s += cpulist_scnprintf(s, count, cs->effective_cpus);
		break;
	case FILE_EFFECTIVE_MEMLIST:
		s += nodelist_scnprintf(s, count, cs->effective_mems);
		break;
L
Linus Torvalds 已提交
1730
	default:
1731 1732
		ret = -EINVAL;
		goto out_unlock;
L
Linus Torvalds 已提交
1733 1734
	}

1735 1736 1737 1738 1739 1740 1741 1742 1743
	if (s < buf + count - 1) {
		*s++ = '\n';
		seq_commit(sf, s - buf);
	} else {
		seq_commit(sf, -1);
	}
out_unlock:
	mutex_unlock(&callback_mutex);
	return ret;
L
Linus Torvalds 已提交
1744 1745
}

1746
static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1747
{
1748
	struct cpuset *cs = css_cs(css);
1749 1750 1751 1752 1753 1754
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1755 1756
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1772 1773 1774

	/* Unreachable but makes gcc happy */
	return 0;
1775
}
L
Linus Torvalds 已提交
1776

1777
static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1778
{
1779
	struct cpuset *cs = css_cs(css);
1780 1781 1782 1783 1784 1785 1786
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1787 1788 1789

	/* Unrechable but makes gcc happy */
	return 0;
1790 1791
}

L
Linus Torvalds 已提交
1792 1793 1794 1795 1796

/*
 * for the common functions, 'private' gives the type of file
 */

1797 1798 1799
static struct cftype files[] = {
	{
		.name = "cpus",
1800
		.seq_show = cpuset_common_seq_show,
1801
		.write = cpuset_write_resmask,
1802
		.max_write_len = (100U + 6 * NR_CPUS),
1803 1804 1805 1806 1807
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
1808
		.seq_show = cpuset_common_seq_show,
1809
		.write = cpuset_write_resmask,
1810
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1811 1812 1813
		.private = FILE_MEMLIST,
	},

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
	{
		.name = "effective_cpus",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_CPULIST,
	},

	{
		.name = "effective_mems",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_MEMLIST,
	},

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1840 1841 1842 1843 1844 1845 1846
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1847 1848 1849 1850 1851 1852 1853 1854 1855
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1856 1857
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE,
L
Li Zefan 已提交
1873
		.mode = S_IRUGO,
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1889

1890 1891 1892 1893 1894 1895 1896
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1897

1898 1899
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1900 1901

/*
1902
 *	cpuset_css_alloc - allocate a cpuset css
L
Li Zefan 已提交
1903
 *	cgrp:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1904 1905
 */

1906 1907
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
L
Linus Torvalds 已提交
1908
{
T
Tejun Heo 已提交
1909
	struct cpuset *cs;
L
Linus Torvalds 已提交
1910

1911
	if (!parent_css)
1912
		return &top_cpuset.css;
1913

T
Tejun Heo 已提交
1914
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1915
	if (!cs)
1916
		return ERR_PTR(-ENOMEM);
1917 1918 1919 1920
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
		goto free_cpus;
L
Linus Torvalds 已提交
1921

P
Paul Jackson 已提交
1922
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1923
	cpumask_clear(cs->cpus_allowed);
1924
	nodes_clear(cs->mems_allowed);
1925 1926
	cpumask_clear(cs->effective_cpus);
	nodes_clear(cs->effective_mems);
1927
	fmeter_init(&cs->fmeter);
1928
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1929

T
Tejun Heo 已提交
1930
	return &cs->css;
1931 1932 1933 1934 1935 1936

free_cpus:
	free_cpumask_var(cs->cpus_allowed);
free_cs:
	kfree(cs);
	return ERR_PTR(-ENOMEM);
T
Tejun Heo 已提交
1937 1938
}

1939
static int cpuset_css_online(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1940
{
1941
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1942
	struct cpuset *parent = parent_cs(cs);
1943
	struct cpuset *tmp_cs;
1944
	struct cgroup_subsys_state *pos_css;
T
Tejun Heo 已提交
1945 1946 1947 1948

	if (!parent)
		return 0;

1949 1950
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1951
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1952 1953 1954 1955
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1956

1957
	cpuset_inc();
1958

1959 1960 1961 1962 1963 1964 1965
	mutex_lock(&callback_mutex);
	if (cgroup_on_dfl(cs->css.cgroup)) {
		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
		cs->effective_mems = parent->effective_mems;
	}
	mutex_unlock(&callback_mutex);

1966
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1967
		goto out_unlock;
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
1982
	rcu_read_lock();
1983
	cpuset_for_each_child(tmp_cs, pos_css, parent) {
1984 1985
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
1986
			goto out_unlock;
1987
		}
1988
	}
1989
	rcu_read_unlock();
1990 1991 1992 1993 1994

	mutex_lock(&callback_mutex);
	cs->mems_allowed = parent->mems_allowed;
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
	mutex_unlock(&callback_mutex);
1995 1996
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
1997 1998 1999
	return 0;
}

2000 2001 2002 2003 2004 2005
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
 * will call rebuild_sched_domains_locked().
 */

2006
static void cpuset_css_offline(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
2007
{
2008
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
2009

2010
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
2011 2012 2013 2014

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

2015
	cpuset_dec();
T
Tejun Heo 已提交
2016
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
2017

2018
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
2019 2020
}

2021
static void cpuset_css_free(struct cgroup_subsys_state *css)
L
Linus Torvalds 已提交
2022
{
2023
	struct cpuset *cs = css_cs(css);
L
Linus Torvalds 已提交
2024

2025
	free_cpumask_var(cs->effective_cpus);
2026
	free_cpumask_var(cs->cpus_allowed);
2027
	kfree(cs);
L
Linus Torvalds 已提交
2028 2029
}

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
static void cpuset_bind(struct cgroup_subsys_state *root_css)
{
	mutex_lock(&cpuset_mutex);
	mutex_lock(&callback_mutex);

	if (cgroup_on_dfl(root_css->cgroup)) {
		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
		top_cpuset.mems_allowed = node_possible_map;
	} else {
		cpumask_copy(top_cpuset.cpus_allowed,
			     top_cpuset.effective_cpus);
		top_cpuset.mems_allowed = top_cpuset.effective_mems;
	}

	mutex_unlock(&callback_mutex);
	mutex_unlock(&cpuset_mutex);
}

2048
struct cgroup_subsys cpuset_cgrp_subsys = {
2049 2050 2051 2052 2053 2054 2055 2056
	.css_alloc	= cpuset_css_alloc,
	.css_online	= cpuset_css_online,
	.css_offline	= cpuset_css_offline,
	.css_free	= cpuset_css_free,
	.can_attach	= cpuset_can_attach,
	.cancel_attach	= cpuset_cancel_attach,
	.attach		= cpuset_attach,
	.bind		= cpuset_bind,
2057
	.legacy_cftypes	= files,
2058
	.early_init	= 1,
2059 2060
};

L
Linus Torvalds 已提交
2061 2062 2063 2064 2065 2066 2067 2068
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
2069
	int err = 0;
L
Linus Torvalds 已提交
2070

2071 2072
	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
		BUG();
2073 2074
	if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
		BUG();
2075

2076
	cpumask_setall(top_cpuset.cpus_allowed);
2077
	nodes_setall(top_cpuset.mems_allowed);
2078 2079
	cpumask_setall(top_cpuset.effective_cpus);
	nodes_setall(top_cpuset.effective_mems);
L
Linus Torvalds 已提交
2080

2081
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
2082
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2083
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
2084 2085 2086

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
2087 2088
		return err;

2089 2090 2091
	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
		BUG();

2092
	return 0;
L
Linus Torvalds 已提交
2093 2094
}

2095
/*
2096
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2097 2098
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2099 2100
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2101
 */
2102 2103 2104 2105 2106 2107 2108 2109
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2110
	parent = parent_cs(cs);
2111
	while (cpumask_empty(parent->cpus_allowed) ||
2112
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2113
		parent = parent_cs(parent);
2114

2115
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2116
		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
T
Tejun Heo 已提交
2117 2118
		pr_cont_cgroup_name(cs->css.cgroup);
		pr_cont("\n");
2119
	}
2120 2121
}

2122 2123 2124 2125
static void
hotplug_update_tasks_legacy(struct cpuset *cs,
			    struct cpumask *new_cpus, nodemask_t *new_mems,
			    bool cpus_updated, bool mems_updated)
2126 2127 2128 2129
{
	bool is_empty;

	mutex_lock(&callback_mutex);
2130 2131 2132 2133
	cpumask_copy(cs->cpus_allowed, new_cpus);
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->mems_allowed = *new_mems;
	cs->effective_mems = *new_mems;
2134 2135 2136 2137 2138 2139
	mutex_unlock(&callback_mutex);

	/*
	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
	 * as the tasks will be migratecd to an ancestor.
	 */
2140
	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2141
		update_tasks_cpumask(cs);
2142
	if (mems_updated && !nodes_empty(cs->mems_allowed))
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
		update_tasks_nodemask(cs);

	is_empty = cpumask_empty(cs->cpus_allowed) ||
		   nodes_empty(cs->mems_allowed);

	mutex_unlock(&cpuset_mutex);

	/*
	 * Move tasks to the nearest ancestor with execution resources,
	 * This is full cgroup operation which will also call back into
	 * cpuset. Should be done outside any lock.
	 */
	if (is_empty)
		remove_tasks_in_empty_cpuset(cs);

	mutex_lock(&cpuset_mutex);
}

2161 2162 2163 2164
static void
hotplug_update_tasks(struct cpuset *cs,
		     struct cpumask *new_cpus, nodemask_t *new_mems,
		     bool cpus_updated, bool mems_updated)
2165
{
2166 2167 2168 2169 2170
	if (cpumask_empty(new_cpus))
		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
	if (nodes_empty(*new_mems))
		*new_mems = parent_cs(cs)->effective_mems;

2171
	mutex_lock(&callback_mutex);
2172 2173
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->effective_mems = *new_mems;
2174 2175
	mutex_unlock(&callback_mutex);

2176
	if (cpus_updated)
2177
		update_tasks_cpumask(cs);
2178
	if (mems_updated)
2179 2180 2181
		update_tasks_nodemask(cs);
}

2182
/**
2183
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2184
 * @cs: cpuset in interest
2185
 *
2186 2187 2188
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2189
 */
2190
static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2191
{
2192 2193 2194 2195
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
	bool cpus_updated;
	bool mems_updated;
2196 2197
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2198

2199
	mutex_lock(&cpuset_mutex);
2200

2201 2202 2203 2204 2205 2206 2207 2208 2209
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

2210 2211
	cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
	nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2212

2213 2214
	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2215

2216
	if (cgroup_on_dfl(cs->css.cgroup))
2217 2218
		hotplug_update_tasks(cs, &new_cpus, &new_mems,
				     cpus_updated, mems_updated);
2219
	else
2220 2221
		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
					    cpus_updated, mems_updated);
2222

2223
	mutex_unlock(&cpuset_mutex);
2224 2225
}

2226
/**
2227
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2228
 *
2229 2230 2231 2232 2233
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2234
 *
2235
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2236 2237
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
2238
 *
2239 2240
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2241
 */
2242
static void cpuset_hotplug_workfn(struct work_struct *work)
2243
{
2244 2245
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
2246
	bool cpus_updated, mems_updated;
2247
	bool on_dfl = cgroup_on_dfl(top_cpuset.css.cgroup);
2248

2249
	mutex_lock(&cpuset_mutex);
2250

2251 2252 2253
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2254

2255 2256
	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2257

2258 2259 2260
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
		mutex_lock(&callback_mutex);
2261 2262
		if (!on_dfl)
			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2263
		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2264 2265 2266
		mutex_unlock(&callback_mutex);
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2267

2268 2269 2270
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
		mutex_lock(&callback_mutex);
2271 2272
		if (!on_dfl)
			top_cpuset.mems_allowed = new_mems;
2273
		top_cpuset.effective_mems = new_mems;
2274
		mutex_unlock(&callback_mutex);
2275
		update_tasks_nodemask(&top_cpuset);
2276
	}
2277

2278 2279
	mutex_unlock(&cpuset_mutex);

2280 2281
	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
2282
		struct cpuset *cs;
2283
		struct cgroup_subsys_state *pos_css;
2284

2285
		rcu_read_lock();
2286
		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2287
			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2288 2289
				continue;
			rcu_read_unlock();
2290

2291
			cpuset_hotplug_update_tasks(cs);
2292

2293 2294 2295 2296 2297
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
2298

2299
	/* rebuild sched domains if cpus_allowed has changed */
2300 2301
	if (cpus_updated)
		rebuild_sched_domains();
2302 2303
}

2304
void cpuset_update_active_cpus(bool cpu_online)
2305
{
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 *
	 * We still need to do partition_sched_domains() synchronously;
	 * otherwise, the scheduler will get confused and put tasks to the
	 * dead CPU.  Fall back to the default single domain.
	 * cpuset_hotplug_workfn() will rebuild it as necessary.
	 */
	partition_sched_domains(1, NULL, NULL);
	schedule_work(&cpuset_hotplug_work);
2318 2319
}

2320
/*
2321 2322
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2323
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2324
 */
2325 2326
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2327
{
2328
	schedule_work(&cpuset_hotplug_work);
2329
	return NOTIFY_OK;
2330
}
2331 2332 2333 2334 2335

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2336

L
Linus Torvalds 已提交
2337 2338 2339 2340
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2341
 */
L
Linus Torvalds 已提交
2342 2343
void __init cpuset_init_smp(void)
{
2344
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2345
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2346
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2347

2348 2349 2350
	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
	top_cpuset.effective_mems = node_states[N_MEMORY];

2351
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
L
Linus Torvalds 已提交
2352 2353 2354 2355 2356
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2357
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2358
 *
2359
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2360
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2361
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2362 2363 2364
 * tasks cpuset.
 **/

2365
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2366
{
2367
	mutex_lock(&callback_mutex);
2368
	rcu_read_lock();
2369
	guarantee_online_cpus(task_cs(tsk), pmask);
2370
	rcu_read_unlock();
2371
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
2372 2373
}

2374
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2375 2376
{
	rcu_read_lock();
2377
	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2393 2394 2395
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2396 2397 2398
	 */
}

L
Linus Torvalds 已提交
2399 2400
void cpuset_init_current_mems_allowed(void)
{
2401
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2402 2403
}

2404 2405 2406 2407 2408 2409
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2410
 * subset of node_states[N_MEMORY], even if this means going outside the
2411 2412 2413 2414 2415 2416 2417
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;

2418
	mutex_lock(&callback_mutex);
2419
	rcu_read_lock();
2420
	guarantee_online_mems(task_cs(tsk), &mask);
2421
	rcu_read_unlock();
2422
	mutex_unlock(&callback_mutex);
2423 2424 2425 2426

	return mask;
}

2427
/**
2428 2429
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2430
 *
2431
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2432
 */
2433
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2434
{
2435
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2436 2437
}

2438
/*
2439 2440 2441 2442
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
 * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
 * (an unusual configuration), then returns the root cpuset.
2443
 */
2444
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2445
{
T
Tejun Heo 已提交
2446 2447
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2448 2449 2450
	return cs;
}

2451
/**
2452 2453
 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2454
 * @gfp_mask: memory allocation flags
2455
 *
2456 2457 2458 2459 2460 2461
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
 * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
 * flag, yes.
2462 2463
 * Otherwise, no.
 *
2464 2465 2466
 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
 * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
 * might sleep, and might allow a node from an enclosing cpuset.
2467
 *
2468 2469
 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
 * cpusets, and never sleeps.
2470 2471 2472 2473 2474 2475 2476
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2477
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2478 2479
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2480
 * GFP_KERNEL allocations are not so marked, so can escape to the
2481
 * nearest enclosing hardwalled ancestor cpuset.
2482
 *
2483 2484 2485 2486 2487 2488 2489
 * Scanning up parent cpusets requires callback_mutex.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_mutex
 * mutex.
2490
 *
2491
 * The first call here from mm/page_alloc:get_page_from_freelist()
2492 2493 2494
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2495 2496 2497 2498 2499 2500
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2501 2502
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2503
 *	TIF_MEMDIE   - any node ok
2504
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2505
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2506 2507
 *
 * Rule:
2508
 *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2509 2510
 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 *    the code that might scan up ancestor cpusets and sleep.
2511
 */
2512
int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2513
{
2514
	struct cpuset *cs;		/* current cpuset ancestors */
2515
	int allowed;			/* is allocation in zone z allowed? */
2516

2517
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2518
		return 1;
2519
	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2520 2521
	if (node_isset(node, current->mems_allowed))
		return 1;
2522 2523 2524 2525 2526 2527
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2528 2529 2530
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2531 2532 2533
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2534
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2535
	mutex_lock(&callback_mutex);
2536

2537
	rcu_read_lock();
2538
	cs = nearest_hardwall_ancestor(task_cs(current));
2539
	allowed = node_isset(node, cs->mems_allowed);
2540
	rcu_read_unlock();
2541

2542
	mutex_unlock(&callback_mutex);
2543
	return allowed;
L
Linus Torvalds 已提交
2544 2545
}

2546
/*
2547 2548
 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2549 2550
 * @gfp_mask: memory allocation flags
 *
2551 2552 2553 2554 2555
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If the task has been OOM killed and has access to memory reserves as
 * specified by the TIF_MEMDIE flag, yes.
 * Otherwise, no.
2556 2557 2558 2559 2560 2561 2562
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2563 2564
 * Unlike the cpuset_node_allowed_softwall() variant, above,
 * this variant requires that the node be in the current task's
2565 2566 2567 2568
 * mems_allowed or that we're in interrupt.  It does not scan up the
 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 * It never sleeps.
 */
2569
int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2570 2571 2572 2573 2574
{
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	if (node_isset(node, current->mems_allowed))
		return 1;
D
Daniel Walker 已提交
2575 2576 2577 2578 2579 2580
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2581 2582 2583
	return 0;
}

2584
/**
2585 2586
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2611
static int cpuset_spread_node(int *rotor)
2612 2613 2614
{
	int node;

2615
	node = next_node(*rotor, current->mems_allowed);
2616 2617
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
2618
	*rotor = node;
2619 2620
	return node;
}
2621 2622 2623

int cpuset_mem_spread_node(void)
{
2624 2625 2626 2627
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2628 2629 2630 2631 2632
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2633 2634 2635 2636
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2637 2638 2639
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2640 2641
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2642
/**
2643 2644 2645 2646 2647 2648 2649 2650
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2651 2652
 **/

2653 2654
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2655
{
2656
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2657 2658
}

2659 2660
#define CPUSET_NODELIST_LEN	(256)

2661 2662
/**
 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2663
 * @tsk: pointer to task_struct of some task.
2664 2665
 *
 * Description: Prints @task's name, cpuset name, and cached copy of its
2666
 * mems_allowed to the kernel log.
2667 2668 2669
 */
void cpuset_print_task_mems_allowed(struct task_struct *tsk)
{
2670 2671 2672
	 /* Statically allocated to prevent using excess stack. */
	static char cpuset_nodelist[CPUSET_NODELIST_LEN];
	static DEFINE_SPINLOCK(cpuset_buffer_lock);
2673
	struct cgroup *cgrp;
2674

2675
	spin_lock(&cpuset_buffer_lock);
2676
	rcu_read_lock();
2677

2678
	cgrp = task_cs(tsk)->css.cgroup;
2679 2680
	nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
			   tsk->mems_allowed);
2681
	pr_info("%s cpuset=", tsk->comm);
T
Tejun Heo 已提交
2682 2683
	pr_cont_cgroup_name(cgrp);
	pr_cont(" mems_allowed=%s\n", cpuset_nodelist);
2684

2685
	rcu_read_unlock();
2686 2687 2688
	spin_unlock(&cpuset_buffer_lock);
}

2689 2690 2691 2692 2693 2694
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2695
int cpuset_memory_pressure_enabled __read_mostly;
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
2717
	rcu_read_lock();
2718
	fmeter_markevent(&task_cs(current)->fmeter);
2719
	rcu_read_unlock();
2720 2721
}

2722
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2723 2724 2725 2726
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2727 2728
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2729
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2730
 *    anyway.
L
Linus Torvalds 已提交
2731
 */
2732
int proc_cpuset_show(struct seq_file *m, void *unused_v)
L
Linus Torvalds 已提交
2733
{
2734
	struct pid *pid;
L
Linus Torvalds 已提交
2735
	struct task_struct *tsk;
T
Tejun Heo 已提交
2736
	char *buf, *p;
2737
	struct cgroup_subsys_state *css;
2738
	int retval;
L
Linus Torvalds 已提交
2739

2740
	retval = -ENOMEM;
T
Tejun Heo 已提交
2741
	buf = kmalloc(PATH_MAX, GFP_KERNEL);
L
Linus Torvalds 已提交
2742
	if (!buf)
2743 2744 2745
		goto out;

	retval = -ESRCH;
2746 2747
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
2748 2749
	if (!tsk)
		goto out_free;
L
Linus Torvalds 已提交
2750

T
Tejun Heo 已提交
2751
	retval = -ENAMETOOLONG;
L
Li Zefan 已提交
2752
	rcu_read_lock();
2753
	css = task_css(tsk, cpuset_cgrp_id);
T
Tejun Heo 已提交
2754
	p = cgroup_path(css->cgroup, buf, PATH_MAX);
L
Li Zefan 已提交
2755
	rcu_read_unlock();
T
Tejun Heo 已提交
2756
	if (!p)
L
Li Zefan 已提交
2757
		goto out_put_task;
T
Tejun Heo 已提交
2758
	seq_puts(m, p);
L
Linus Torvalds 已提交
2759
	seq_putc(m, '\n');
T
Tejun Heo 已提交
2760
	retval = 0;
L
Li Zefan 已提交
2761
out_put_task:
2762 2763
	put_task_struct(tsk);
out_free:
L
Linus Torvalds 已提交
2764
	kfree(buf);
2765
out:
L
Linus Torvalds 已提交
2766 2767
	return retval;
}
2768
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2769

2770
/* Display task mems_allowed in /proc/<pid>/status file. */
2771 2772
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
2773
	seq_puts(m, "Mems_allowed:\t");
2774
	seq_nodemask(m, &task->mems_allowed);
2775 2776
	seq_puts(m, "\n");
	seq_puts(m, "Mems_allowed_list:\t");
2777
	seq_nodemask_list(m, &task->mems_allowed);
2778
	seq_puts(m, "\n");
L
Linus Torvalds 已提交
2779
}