compiler.h 11.3 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4
#ifndef __LINUX_COMPILER_H
#define __LINUX_COMPILER_H

5
#include <linux/compiler_types.h>
L
Linus Torvalds 已提交
6

7
#ifndef __ASSEMBLY__
R
Rusty Russell 已提交
8

L
Linus Torvalds 已提交
9 10
#ifdef __KERNEL__

11 12 13 14
/*
 * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
 * to disable branch tracing on a per file basis.
 */
15 16
#if defined(CONFIG_TRACE_BRANCH_PROFILING) \
    && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
17
void ftrace_likely_update(struct ftrace_likely_data *f, int val,
18
			  int expect, int is_constant);
19 20 21 22

#define likely_notrace(x)	__builtin_expect(!!(x), 1)
#define unlikely_notrace(x)	__builtin_expect(!!(x), 0)

23
#define __branch_check__(x, expect, is_constant) ({			\
24
			int ______r;					\
25
			static struct ftrace_likely_data		\
26
				__attribute__((__aligned__(4)))		\
27
				__attribute__((section("_ftrace_annotated_branch"))) \
28
				______f = {				\
29 30 31
				.data.func = __func__,			\
				.data.file = __FILE__,			\
				.data.line = __LINE__,			\
32
			};						\
33 34 35
			______r = __builtin_expect(!!(x), expect);	\
			ftrace_likely_update(&______f, ______r,		\
					     expect, is_constant);	\
36 37 38 39 40 41 42 43 44
			______r;					\
		})

/*
 * Using __builtin_constant_p(x) to ignore cases where the return
 * value is always the same.  This idea is taken from a similar patch
 * written by Daniel Walker.
 */
# ifndef likely
45
#  define likely(x)	(__branch_check__(x, 1, __builtin_constant_p(x)))
46 47
# endif
# ifndef unlikely
48
#  define unlikely(x)	(__branch_check__(x, 0, __builtin_constant_p(x)))
49
# endif
50 51 52 53 54 55

#ifdef CONFIG_PROFILE_ALL_BRANCHES
/*
 * "Define 'is'", Bill Clinton
 * "Define 'if'", Steven Rostedt
 */
56 57
#define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) )
#define __trace_if(cond) \
58
	if (__builtin_constant_p(!!(cond)) ? !!(cond) :			\
59 60 61 62 63 64 65 66 67 68 69
	({								\
		int ______r;						\
		static struct ftrace_branch_data			\
			__attribute__((__aligned__(4)))			\
			__attribute__((section("_ftrace_branch")))	\
			______f = {					\
				.func = __func__,			\
				.file = __FILE__,			\
				.line = __LINE__,			\
			};						\
		______r = !!(cond);					\
70
		______f.miss_hit[______r]++;					\
71 72 73 74
		______r;						\
	}))
#endif /* CONFIG_PROFILE_ALL_BRANCHES */

75 76 77 78
#else
# define likely(x)	__builtin_expect(!!(x), 1)
# define unlikely(x)	__builtin_expect(!!(x), 0)
#endif
L
Linus Torvalds 已提交
79 80 81 82 83 84

/* Optimization barrier */
#ifndef barrier
# define barrier() __memory_barrier()
#endif

85 86 87 88
#ifndef barrier_data
# define barrier_data(ptr) barrier()
#endif

89
/* Unreachable code */
90
#ifdef CONFIG_STACK_VALIDATION
91 92 93 94 95
/*
 * These macros help objtool understand GCC code flow for unreachable code.
 * The __COUNTER__ based labels are a hack to make each instance of the macros
 * unique, to convince GCC not to merge duplicate inline asm statements.
 */
96
#define annotate_reachable() ({						\
97 98 99 100
	asm volatile("%c0:\n\t"						\
		     ".pushsection .discard.reachable\n\t"		\
		     ".long %c0b - .\n\t"				\
		     ".popsection\n\t" : : "i" (__COUNTER__));		\
101 102
})
#define annotate_unreachable() ({					\
103 104 105 106
	asm volatile("%c0:\n\t"						\
		     ".pushsection .discard.unreachable\n\t"		\
		     ".long %c0b - .\n\t"				\
		     ".popsection\n\t" : : "i" (__COUNTER__));		\
107 108 109 110 111 112 113 114 115 116 117
})
#define ASM_UNREACHABLE							\
	"999:\n\t"							\
	".pushsection .discard.unreachable\n\t"				\
	".long 999b - .\n\t"						\
	".popsection\n\t"
#else
#define annotate_reachable()
#define annotate_unreachable()
#endif

K
Kees Cook 已提交
118 119 120
#ifndef ASM_UNREACHABLE
# define ASM_UNREACHABLE
#endif
121
#ifndef unreachable
122
# define unreachable() do { annotate_reachable(); do { } while (1); } while (0)
123 124
#endif

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
/*
 * KENTRY - kernel entry point
 * This can be used to annotate symbols (functions or data) that are used
 * without their linker symbol being referenced explicitly. For example,
 * interrupt vector handlers, or functions in the kernel image that are found
 * programatically.
 *
 * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those
 * are handled in their own way (with KEEP() in linker scripts).
 *
 * KENTRY can be avoided if the symbols in question are marked as KEEP() in the
 * linker script. For example an architecture could KEEP() its entire
 * boot/exception vector code rather than annotate each function and data.
 */
#ifndef KENTRY
# define KENTRY(sym)						\
	extern typeof(sym) sym;					\
	static const unsigned long __kentry_##sym		\
	__used							\
	__attribute__((section("___kentry" "+" #sym ), used))	\
	= (unsigned long)&sym;
#endif

L
Linus Torvalds 已提交
148 149 150 151 152 153 154
#ifndef RELOC_HIDE
# define RELOC_HIDE(ptr, off)					\
  ({ unsigned long __ptr;					\
     __ptr = (unsigned long) (ptr);				\
    (typeof(ptr)) (__ptr + (off)); })
#endif

155 156 157 158
#ifndef OPTIMIZER_HIDE_VAR
#define OPTIMIZER_HIDE_VAR(var) barrier()
#endif

R
Rusty Russell 已提交
159 160 161 162 163
/* Not-quite-unique ID. */
#ifndef __UNIQUE_ID
# define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
#endif

164 165
#include <uapi/linux/types.h>

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
#define __READ_ONCE_SIZE						\
({									\
	switch (size) {							\
	case 1: *(__u8 *)res = *(volatile __u8 *)p; break;		\
	case 2: *(__u16 *)res = *(volatile __u16 *)p; break;		\
	case 4: *(__u32 *)res = *(volatile __u32 *)p; break;		\
	case 8: *(__u64 *)res = *(volatile __u64 *)p; break;		\
	default:							\
		barrier();						\
		__builtin_memcpy((void *)res, (const void *)p, size);	\
		barrier();						\
	}								\
})

static __always_inline
void __read_once_size(const volatile void *p, void *res, int size)
182
{
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
	__READ_ONCE_SIZE;
}

#ifdef CONFIG_KASAN
/*
 * This function is not 'inline' because __no_sanitize_address confilcts
 * with inlining. Attempt to inline it may cause a build failure.
 * 	https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368
 * '__maybe_unused' allows us to avoid defined-but-not-used warnings.
 */
static __no_sanitize_address __maybe_unused
void __read_once_size_nocheck(const volatile void *p, void *res, int size)
{
	__READ_ONCE_SIZE;
}
#else
static __always_inline
void __read_once_size_nocheck(const volatile void *p, void *res, int size)
{
	__READ_ONCE_SIZE;
203
}
204
#endif
205

206
static __always_inline void __write_once_size(volatile void *p, void *res, int size)
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
{
	switch (size) {
	case 1: *(volatile __u8 *)p = *(__u8 *)res; break;
	case 2: *(volatile __u16 *)p = *(__u16 *)res; break;
	case 4: *(volatile __u32 *)p = *(__u32 *)res; break;
	case 8: *(volatile __u64 *)p = *(__u64 *)res; break;
	default:
		barrier();
		__builtin_memcpy((void *)p, (const void *)res, size);
		barrier();
	}
}

/*
 * Prevent the compiler from merging or refetching reads or writes. The
 * compiler is also forbidden from reordering successive instances of
223
 * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the
224 225
 * compiler is aware of some particular ordering.  One way to make the
 * compiler aware of ordering is to put the two invocations of READ_ONCE,
226
 * WRITE_ONCE or ACCESS_ONCE() in different C statements.
227 228 229 230
 *
 * In contrast to ACCESS_ONCE these two macros will also work on aggregate
 * data types like structs or unions. If the size of the accessed data
 * type exceeds the word size of the machine (e.g., 32 bits or 64 bits)
231 232 233
 * READ_ONCE() and WRITE_ONCE() will fall back to memcpy(). There's at
 * least two memcpy()s: one for the __builtin_memcpy() and then one for
 * the macro doing the copy of variable - '__u' allocated on the stack.
234 235 236 237 238 239 240 241
 *
 * Their two major use cases are: (1) Mediating communication between
 * process-level code and irq/NMI handlers, all running on the same CPU,
 * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
 * mutilate accesses that either do not require ordering or that interact
 * with an explicit memory barrier or atomic instruction that provides the
 * required ordering.
 */
242
#include <asm/barrier.h>
243

244 245 246 247 248 249 250
#define __READ_ONCE(x, check)						\
({									\
	union { typeof(x) __val; char __c[1]; } __u;			\
	if (check)							\
		__read_once_size(&(x), __u.__c, sizeof(x));		\
	else								\
		__read_once_size_nocheck(&(x), __u.__c, sizeof(x));	\
251
	smp_read_barrier_depends(); /* Enforce dependency ordering from x */ \
252 253 254 255 256 257 258 259 260
	__u.__val;							\
})
#define READ_ONCE(x) __READ_ONCE(x, 1)

/*
 * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need
 * to hide memory access from KASAN.
 */
#define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0)
261

262
#define WRITE_ONCE(x, val) \
263 264 265 266 267 268
({							\
	union { typeof(x) __val; char __c[1]; } __u =	\
		{ .__val = (__force typeof(x)) (val) }; \
	__write_once_size(&(x), __u.__c, sizeof(x));	\
	__u.__val;					\
})
269

L
Linus Torvalds 已提交
270 271 272 273
#endif /* __KERNEL__ */

#endif /* __ASSEMBLY__ */

274 275 276 277
/* Compile time object size, -1 for unknown */
#ifndef __compiletime_object_size
# define __compiletime_object_size(obj) -1
#endif
278 279 280
#ifndef __compiletime_warning
# define __compiletime_warning(message)
#endif
281 282
#ifndef __compiletime_error
# define __compiletime_error(message)
283 284 285 286 287 288 289 290
/*
 * Sparse complains of variable sized arrays due to the temporary variable in
 * __compiletime_assert. Unfortunately we can't just expand it out to make
 * sparse see a constant array size without breaking compiletime_assert on old
 * versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether.
 */
# ifndef __CHECKER__
#  define __compiletime_error_fallback(condition) \
291
	do { ((void)sizeof(char[1 - 2 * condition])); } while (0)
292 293 294
# endif
#endif
#ifndef __compiletime_error_fallback
295
# define __compiletime_error_fallback(condition) do { } while (0)
296
#endif
297

298 299
#ifdef __OPTIMIZE__
# define __compiletime_assert(condition, msg, prefix, suffix)		\
300 301 302 303 304 305 306
	do {								\
		bool __cond = !(condition);				\
		extern void prefix ## suffix(void) __compiletime_error(msg); \
		if (__cond)						\
			prefix ## suffix();				\
		__compiletime_error_fallback(__cond);			\
	} while (0)
307 308 309
#else
# define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0)
#endif
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

#define _compiletime_assert(condition, msg, prefix, suffix) \
	__compiletime_assert(condition, msg, prefix, suffix)

/**
 * compiletime_assert - break build and emit msg if condition is false
 * @condition: a compile-time constant condition to check
 * @msg:       a message to emit if condition is false
 *
 * In tradition of POSIX assert, this macro will break the build if the
 * supplied condition is *false*, emitting the supplied error message if the
 * compiler has support to do so.
 */
#define compiletime_assert(condition, msg) \
	_compiletime_assert(condition, msg, __compiletime_assert_, __LINE__)

326 327 328 329
#define compiletime_assert_atomic_type(t)				\
	compiletime_assert(__native_word(t),				\
		"Need native word sized stores/loads for atomicity.")

330 331 332 333 334 335 336
/*
 * Prevent the compiler from merging or refetching accesses.  The compiler
 * is also forbidden from reordering successive instances of ACCESS_ONCE(),
 * but only when the compiler is aware of some particular ordering.  One way
 * to make the compiler aware of ordering is to put the two invocations of
 * ACCESS_ONCE() in different C statements.
 *
337 338 339 340 341 342 343 344 345 346 347
 * ACCESS_ONCE will only work on scalar types. For union types, ACCESS_ONCE
 * on a union member will work as long as the size of the member matches the
 * size of the union and the size is smaller than word size.
 *
 * The major use cases of ACCESS_ONCE used to be (1) Mediating communication
 * between process-level code and irq/NMI handlers, all running on the same CPU,
 * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
 * mutilate accesses that either do not require ordering or that interact
 * with an explicit memory barrier or atomic instruction that provides the
 * required ordering.
 *
348
 * If possible use READ_ONCE()/WRITE_ONCE() instead.
349
 */
350
#define __ACCESS_ONCE(x) ({ \
351
	 __maybe_unused typeof(x) __var = (__force typeof(x)) 0; \
352 353
	(volatile typeof(x) *)&(x); })
#define ACCESS_ONCE(x) (*__ACCESS_ONCE(x))
354

L
Linus Torvalds 已提交
355
#endif /* __LINUX_COMPILER_H */