of_device.c 23.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/slab.h>

#include <asm/errno.h>
#include <asm/of_device.h>

/**
 * of_match_device - Tell if an of_device structure has a matching
 * of_match structure
 * @ids: array of of device match structures to search in
 * @dev: the of device structure to match against
 *
 * Used by a driver to check whether an of_device present in the
 * system is in its list of supported devices.
 */
const struct of_device_id *of_match_device(const struct of_device_id *matches,
					const struct of_device *dev)
{
	if (!dev->node)
		return NULL;
	while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
		int match = 1;
		if (matches->name[0])
			match &= dev->node->name
				&& !strcmp(matches->name, dev->node->name);
		if (matches->type[0])
			match &= dev->node->type
				&& !strcmp(matches->type, dev->node->type);
		if (matches->compatible[0])
			match &= of_device_is_compatible(dev->node,
							 matches->compatible);
		if (match)
			return matches;
		matches++;
	}
	return NULL;
}

static int of_platform_bus_match(struct device *dev, struct device_driver *drv)
{
	struct of_device * of_dev = to_of_device(dev);
	struct of_platform_driver * of_drv = to_of_platform_driver(drv);
	const struct of_device_id * matches = of_drv->match_table;

	if (!matches)
		return 0;

	return of_match_device(matches, of_dev) != NULL;
}

struct of_device *of_dev_get(struct of_device *dev)
{
	struct device *tmp;

	if (!dev)
		return NULL;
	tmp = get_device(&dev->dev);
	if (tmp)
		return to_of_device(tmp);
	else
		return NULL;
}

void of_dev_put(struct of_device *dev)
{
	if (dev)
		put_device(&dev->dev);
}


static int of_device_probe(struct device *dev)
{
	int error = -ENODEV;
	struct of_platform_driver *drv;
	struct of_device *of_dev;
	const struct of_device_id *match;

	drv = to_of_platform_driver(dev->driver);
	of_dev = to_of_device(dev);

	if (!drv->probe)
		return error;

	of_dev_get(of_dev);

	match = of_match_device(drv->match_table, of_dev);
	if (match)
		error = drv->probe(of_dev, match);
	if (error)
		of_dev_put(of_dev);

	return error;
}

static int of_device_remove(struct device *dev)
{
	struct of_device * of_dev = to_of_device(dev);
	struct of_platform_driver * drv = to_of_platform_driver(dev->driver);

	if (dev->driver && drv->remove)
		drv->remove(of_dev);
	return 0;
}

static int of_device_suspend(struct device *dev, pm_message_t state)
{
	struct of_device * of_dev = to_of_device(dev);
	struct of_platform_driver * drv = to_of_platform_driver(dev->driver);
	int error = 0;

	if (dev->driver && drv->suspend)
		error = drv->suspend(of_dev, state);
	return error;
}

static int of_device_resume(struct device * dev)
{
	struct of_device * of_dev = to_of_device(dev);
	struct of_platform_driver * drv = to_of_platform_driver(dev->driver);
	int error = 0;

	if (dev->driver && drv->resume)
		error = drv->resume(of_dev);
	return error;
}

131 132 133
void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name)
{
	unsigned long ret = res->start + offset;
D
David S. Miller 已提交
134
	struct resource *r;
135

D
David S. Miller 已提交
136 137 138 139 140
	if (res->flags & IORESOURCE_MEM)
		r = request_mem_region(ret, size, name);
	else
		r = request_region(ret, size, name);
	if (!r)
141 142 143 144 145 146
		ret = 0;

	return (void __iomem *) ret;
}
EXPORT_SYMBOL(of_ioremap);

147
void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
148
{
149 150 151 152
	if (res->flags & IORESOURCE_MEM)
		release_mem_region((unsigned long) base, size);
	else
		release_region((unsigned long) base, size);
153 154 155
}
EXPORT_SYMBOL(of_iounmap);

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
static int node_match(struct device *dev, void *data)
{
	struct of_device *op = to_of_device(dev);
	struct device_node *dp = data;

	return (op->node == dp);
}

struct of_device *of_find_device_by_node(struct device_node *dp)
{
	struct device *dev = bus_find_device(&of_bus_type, NULL,
					     dp, node_match);

	if (dev)
		return to_of_device(dev);

	return NULL;
}
EXPORT_SYMBOL(of_find_device_by_node);

176 177 178 179 180 181 182 183 184
#ifdef CONFIG_PCI
struct bus_type isa_bus_type = {
       .name	= "isa",
       .match	= of_platform_bus_match,
       .probe	= of_device_probe,
       .remove	= of_device_remove,
       .suspend	= of_device_suspend,
       .resume	= of_device_resume,
};
185
EXPORT_SYMBOL(isa_bus_type);
186 187 188 189 190 191 192 193 194

struct bus_type ebus_bus_type = {
       .name	= "ebus",
       .match	= of_platform_bus_match,
       .probe	= of_device_probe,
       .remove	= of_device_remove,
       .suspend	= of_device_suspend,
       .resume	= of_device_resume,
};
195
EXPORT_SYMBOL(ebus_bus_type);
196 197 198 199 200 201 202 203 204 205 206
#endif

#ifdef CONFIG_SBUS
struct bus_type sbus_bus_type = {
       .name	= "sbus",
       .match	= of_platform_bus_match,
       .probe	= of_device_probe,
       .remove	= of_device_remove,
       .suspend	= of_device_suspend,
       .resume	= of_device_resume,
};
207
EXPORT_SYMBOL(sbus_bus_type);
208 209
#endif

210 211 212 213 214 215 216 217 218 219
struct bus_type of_bus_type = {
       .name	= "of",
       .match	= of_platform_bus_match,
       .probe	= of_device_probe,
       .remove	= of_device_remove,
       .suspend	= of_device_suspend,
       .resume	= of_device_resume,
};
EXPORT_SYMBOL(of_bus_type);

220
static inline u64 of_read_addr(const u32 *cell, int size)
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
{
	u64 r = 0;
	while (size--)
		r = (r << 32) | *(cell++);
	return r;
}

static void __init get_cells(struct device_node *dp,
			     int *addrc, int *sizec)
{
	if (addrc)
		*addrc = of_n_addr_cells(dp);
	if (sizec)
		*sizec = of_n_size_cells(dp);
}

/* Max address size we deal with */
#define OF_MAX_ADDR_CELLS	4

struct of_bus {
	const char	*name;
	const char	*addr_prop_name;
	int		(*match)(struct device_node *parent);
	void		(*count_cells)(struct device_node *child,
				       int *addrc, int *sizec);
246 247
	int		(*map)(u32 *addr, const u32 *range,
			       int na, int ns, int pna);
248 249 250 251 252 253 254 255 256 257 258 259 260
	unsigned int	(*get_flags)(u32 *addr);
};

/*
 * Default translator (generic bus)
 */

static void of_bus_default_count_cells(struct device_node *dev,
				       int *addrc, int *sizec)
{
	get_cells(dev, addrc, sizec);
}

261 262 263 264 265
/* Make sure the least significant 64-bits are in-range.  Even
 * for 3 or 4 cell values it is a good enough approximation.
 */
static int of_out_of_range(const u32 *addr, const u32 *base,
			   const u32 *size, int na, int ns)
266
{
267 268
	u64 a = of_read_addr(addr, na);
	u64 b = of_read_addr(base, na);
269

270 271
	if (a < b)
		return 1;
272

273 274 275 276 277
	b += of_read_addr(size, ns);
	if (a >= b)
		return 1;

	return 0;
278 279
}

280 281
static int of_bus_default_map(u32 *addr, const u32 *range,
			      int na, int ns, int pna)
282
{
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
	u32 result[OF_MAX_ADDR_CELLS];
	int i;

	if (ns > 2) {
		printk("of_device: Cannot handle size cells (%d) > 2.", ns);
		return -EINVAL;
	}

	if (of_out_of_range(addr, range, range + na + pna, na, ns))
		return -EINVAL;

	/* Start with the parent range base.  */
	memcpy(result, range + na, pna * 4);

	/* Add in the child address offset.  */
	for (i = 0; i < na; i++)
		result[pna - 1 - i] +=
			(addr[na - 1 - i] -
			 range[na - 1 - i]);

	memcpy(addr, result, pna * 4);
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318

	return 0;
}

static unsigned int of_bus_default_get_flags(u32 *addr)
{
	return IORESOURCE_MEM;
}

/*
 * PCI bus specific translator
 */

static int of_bus_pci_match(struct device_node *np)
{
319 320 321 322 323 324 325 326 327 328 329 330 331 332
	if (!strcmp(np->type, "pci") || !strcmp(np->type, "pciex")) {
		/* Do not do PCI specific frobbing if the
		 * PCI bridge lacks a ranges property.  We
		 * want to pass it through up to the next
		 * parent as-is, not with the PCI translate
		 * method which chops off the top address cell.
		 */
		if (!of_find_property(np, "ranges", NULL))
			return 0;

		return 1;
	}

	return 0;
333 334 335 336 337 338 339 340 341 342 343
}

static void of_bus_pci_count_cells(struct device_node *np,
				   int *addrc, int *sizec)
{
	if (addrc)
		*addrc = 3;
	if (sizec)
		*sizec = 2;
}

344 345
static int of_bus_pci_map(u32 *addr, const u32 *range,
			  int na, int ns, int pna)
346
{
347 348
	u32 result[OF_MAX_ADDR_CELLS];
	int i;
349 350 351

	/* Check address type match */
	if ((addr[0] ^ range[0]) & 0x03000000)
352
		return -EINVAL;
353

354 355 356
	if (of_out_of_range(addr + 1, range + 1, range + na + pna,
			    na - 1, ns))
		return -EINVAL;
357

358 359
	/* Start with the parent range base.  */
	memcpy(result, range + na, pna * 4);
360

361 362 363 364 365 366 367 368 369
	/* Add in the child address offset, skipping high cell.  */
	for (i = 0; i < na - 1; i++)
		result[pna - 1 - i] +=
			(addr[na - 1 - i] -
			 range[na - 1 - i]);

	memcpy(addr, result, pna * 4);

	return 0;
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
}

static unsigned int of_bus_pci_get_flags(u32 *addr)
{
	unsigned int flags = 0;
	u32 w = addr[0];

	switch((w >> 24) & 0x03) {
	case 0x01:
		flags |= IORESOURCE_IO;
	case 0x02: /* 32 bits */
	case 0x03: /* 64 bits */
		flags |= IORESOURCE_MEM;
	}
	if (w & 0x40000000)
		flags |= IORESOURCE_PREFETCH;
	return flags;
}

/*
 * SBUS bus specific translator
 */

static int of_bus_sbus_match(struct device_node *np)
{
	return !strcmp(np->name, "sbus") ||
		!strcmp(np->name, "sbi");
}

static void of_bus_sbus_count_cells(struct device_node *child,
				   int *addrc, int *sizec)
{
	if (addrc)
		*addrc = 2;
	if (sizec)
		*sizec = 1;
}

408 409 410 411 412 413 414 415 416 417
/*
 * FHC/Central bus specific translator.
 *
 * This is just needed to hard-code the address and size cell
 * counts.  'fhc' and 'central' nodes lack the #address-cells and
 * #size-cells properties, and if you walk to the root on such
 * Enterprise boxes all you'll get is a #size-cells of 2 which is
 * not what we want to use.
 */
static int of_bus_fhc_match(struct device_node *np)
418
{
419 420
	return !strcmp(np->name, "fhc") ||
		!strcmp(np->name, "central");
421 422
}

423
#define of_bus_fhc_count_cells of_bus_sbus_count_cells
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444

/*
 * Array of bus specific translators
 */

static struct of_bus of_busses[] = {
	/* PCI */
	{
		.name = "pci",
		.addr_prop_name = "assigned-addresses",
		.match = of_bus_pci_match,
		.count_cells = of_bus_pci_count_cells,
		.map = of_bus_pci_map,
		.get_flags = of_bus_pci_get_flags,
	},
	/* SBUS */
	{
		.name = "sbus",
		.addr_prop_name = "reg",
		.match = of_bus_sbus_match,
		.count_cells = of_bus_sbus_count_cells,
445 446 447 448 449 450 451 452 453 454 455
		.map = of_bus_default_map,
		.get_flags = of_bus_default_get_flags,
	},
	/* FHC */
	{
		.name = "fhc",
		.addr_prop_name = "reg",
		.match = of_bus_fhc_match,
		.count_cells = of_bus_fhc_count_cells,
		.map = of_bus_default_map,
		.get_flags = of_bus_default_get_flags,
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
	},
	/* Default */
	{
		.name = "default",
		.addr_prop_name = "reg",
		.match = NULL,
		.count_cells = of_bus_default_count_cells,
		.map = of_bus_default_map,
		.get_flags = of_bus_default_get_flags,
	},
};

static struct of_bus *of_match_bus(struct device_node *np)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(of_busses); i ++)
		if (!of_busses[i].match || of_busses[i].match(np))
			return &of_busses[i];
	BUG();
	return NULL;
}

static int __init build_one_resource(struct device_node *parent,
				     struct of_bus *bus,
				     struct of_bus *pbus,
				     u32 *addr,
				     int na, int ns, int pna)
{
	u32 *ranges;
	unsigned int rlen;
	int rone;

	ranges = of_get_property(parent, "ranges", &rlen);
	if (ranges == NULL || rlen == 0) {
491 492 493 494 495 496 497 498 499 500
		u32 result[OF_MAX_ADDR_CELLS];
		int i;

		memset(result, 0, pna * 4);
		for (i = 0; i < na; i++)
			result[pna - 1 - i] =
				addr[na - 1 - i];

		memcpy(addr, result, pna * 4);
		return 0;
501 502 503 504 505 506
	}

	/* Now walk through the ranges */
	rlen /= 4;
	rone = na + pna + ns;
	for (; rlen >= rone; rlen -= rone, ranges += rone) {
507 508
		if (!bus->map(addr, ranges, na, ns, pna))
			return 0;
509
	}
510 511 512 513 514 515 516 517 518 519 520 521

	return 1;
}

static int __init use_1to1_mapping(struct device_node *pp)
{
	char *model;

	/* If this is on the PMU bus, don't try to translate it even
	 * if a ranges property exists.
	 */
	if (!strcmp(pp->name, "pmu"))
522 523
		return 1;

524 525 526
	/* If we have a ranges property in the parent, use it.  */
	if (of_find_property(pp, "ranges", NULL) != NULL)
		return 0;
527

528 529 530 531 532 533 534 535 536 537 538 539
	/* If the parent is the dma node of an ISA bus, pass
	 * the translation up to the root.
	 */
	if (!strcmp(pp->name, "dma"))
		return 0;

	/* Similarly for Simba PCI bridges.  */
	model = of_get_property(pp, "model", NULL);
	if (model && !strcmp(model, "SUNW,simba"))
		return 0;

	return 1;
540 541
}

542 543
static int of_resource_verbose;

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
static void __init build_device_resources(struct of_device *op,
					  struct device *parent)
{
	struct of_device *p_op;
	struct of_bus *bus;
	int na, ns;
	int index, num_reg;
	void *preg;

	if (!parent)
		return;

	p_op = to_of_device(parent);
	bus = of_match_bus(p_op->node);
	bus->count_cells(op->node, &na, &ns);

	preg = of_get_property(op->node, bus->addr_prop_name, &num_reg);
	if (!preg || num_reg == 0)
		return;

	/* Convert to num-cells.  */
	num_reg /= 4;

567
	/* Convert to num-entries.  */
568 569
	num_reg /= na + ns;

570 571 572 573 574 575 576 577
	/* Prevent overruning the op->resources[] array.  */
	if (num_reg > PROMREG_MAX) {
		printk(KERN_WARNING "%s: Too many regs (%d), "
		       "limiting to %d.\n",
		       op->node->full_name, num_reg, PROMREG_MAX);
		num_reg = PROMREG_MAX;
	}

578 579 580 581 582 583
	for (index = 0; index < num_reg; index++) {
		struct resource *r = &op->resource[index];
		u32 addr[OF_MAX_ADDR_CELLS];
		u32 *reg = (preg + (index * ((na + ns) * 4)));
		struct device_node *dp = op->node;
		struct device_node *pp = p_op->node;
584
		struct of_bus *pbus, *dbus;
585 586 587 588 589 590 591 592 593 594
		u64 size, result = OF_BAD_ADDR;
		unsigned long flags;
		int dna, dns;
		int pna, pns;

		size = of_read_addr(reg + na, ns);
		flags = bus->get_flags(reg);

		memcpy(addr, reg, na * 4);

595
		if (use_1to1_mapping(pp)) {
596 597 598 599 600 601
			result = of_read_addr(addr, na);
			goto build_res;
		}

		dna = na;
		dns = ns;
602
		dbus = bus;
603 604 605 606 607 608 609 610 611 612 613 614

		while (1) {
			dp = pp;
			pp = dp->parent;
			if (!pp) {
				result = of_read_addr(addr, dna);
				break;
			}

			pbus = of_match_bus(pp);
			pbus->count_cells(dp, &pna, &pns);

615
			if (build_one_resource(dp, dbus, pbus, addr,
616
					       dna, dns, pna))
617 618 619 620
				break;

			dna = pna;
			dns = pns;
621
			dbus = pbus;
622 623 624 625
		}

	build_res:
		memset(r, 0, sizeof(*r));
626 627 628 629 630 631

		if (of_resource_verbose)
			printk("%s reg[%d] -> %lx\n",
			       op->node->full_name, index,
			       result);

632
		if (result != OF_BAD_ADDR) {
633 634 635
			if (tlb_type == hypervisor)
				result &= 0x0fffffffffffffffUL;

636 637 638 639 640 641 642 643
			r->start = result;
			r->end = result + size - 1;
			r->flags = flags;
		}
		r->name = op->node->name;
	}
}

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
static struct device_node * __init
apply_interrupt_map(struct device_node *dp, struct device_node *pp,
		    u32 *imap, int imlen, u32 *imask,
		    unsigned int *irq_p)
{
	struct device_node *cp;
	unsigned int irq = *irq_p;
	struct of_bus *bus;
	phandle handle;
	u32 *reg;
	int na, num_reg, i;

	bus = of_match_bus(pp);
	bus->count_cells(dp, &na, NULL);

	reg = of_get_property(dp, "reg", &num_reg);
	if (!reg || !num_reg)
		return NULL;

	imlen /= ((na + 3) * 4);
	handle = 0;
	for (i = 0; i < imlen; i++) {
		int j;

		for (j = 0; j < na; j++) {
			if ((reg[j] & imask[j]) != imap[j])
				goto next;
		}
		if (imap[na] == irq) {
			handle = imap[na + 1];
			irq = imap[na + 2];
			break;
		}

	next:
		imap += (na + 3);
	}
681 682 683 684 685 686 687 688 689 690 691 692 693 694
	if (i == imlen) {
		/* Psycho and Sabre PCI controllers can have 'interrupt-map'
		 * properties that do not include the on-board device
		 * interrupts.  Instead, the device's 'interrupts' property
		 * is already a fully specified INO value.
		 *
		 * Handle this by deciding that, if we didn't get a
		 * match in the parent's 'interrupt-map', and the
		 * parent is an IRQ translater, then use the parent as
		 * our IRQ controller.
		 */
		if (pp->irq_trans)
			return pp;

695
		return NULL;
696
	}
697 698 699 700 701 702 703 704 705 706 707 708

	*irq_p = irq;
	cp = of_find_node_by_phandle(handle);

	return cp;
}

static unsigned int __init pci_irq_swizzle(struct device_node *dp,
					   struct device_node *pp,
					   unsigned int irq)
{
	struct linux_prom_pci_registers *regs;
709
	unsigned int bus, devfn, slot, ret;
710 711 712 713 714 715 716 717

	if (irq < 1 || irq > 4)
		return irq;

	regs = of_get_property(dp, "reg", NULL);
	if (!regs)
		return irq;

718
	bus = (regs->phys_hi >> 16) & 0xff;
719 720 721
	devfn = (regs->phys_hi >> 8) & 0xff;
	slot = (devfn >> 3) & 0x1f;

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
	if (pp->irq_trans) {
		/* Derived from Table 8-3, U2P User's Manual.  This branch
		 * is handling a PCI controller that lacks a proper set of
		 * interrupt-map and interrupt-map-mask properties.  The
		 * Ultra-E450 is one example.
		 *
		 * The bit layout is BSSLL, where:
		 * B: 0 on bus A, 1 on bus B
		 * D: 2-bit slot number, derived from PCI device number as
		 *    (dev - 1) for bus A, or (dev - 2) for bus B
		 * L: 2-bit line number
		 *
		 * Actually, more "portable" way to calculate the funky
		 * slot number is to subtract pbm->pci_first_slot from the
		 * device number, and that's exactly what the pre-OF
		 * sparc64 code did, but we're building this stuff generically
		 * using the OBP tree, not in the PCI controller layer.
		 */
		if (bus & 0x80) {
			/* PBM-A */
			bus  = 0x00;
			slot = (slot - 1) << 2;
		} else {
			/* PBM-B */
			bus  = 0x10;
			slot = (slot - 2) << 2;
		}
		irq -= 1;

		ret = (bus | slot | irq);
	} else {
		/* Going through a PCI-PCI bridge that lacks a set of
		 * interrupt-map and interrupt-map-mask properties.
		 */
		ret = ((irq - 1 + (slot & 3)) & 3) + 1;
	}
758 759 760 761

	return ret;
}

762 763
static int of_irq_verbose;

764 765 766 767 768 769 770 771 772 773 774 775 776 777
static unsigned int __init build_one_device_irq(struct of_device *op,
						struct device *parent,
						unsigned int irq)
{
	struct device_node *dp = op->node;
	struct device_node *pp, *ip;
	unsigned int orig_irq = irq;

	if (irq == 0xffffffff)
		return irq;

	if (dp->irq_trans) {
		irq = dp->irq_trans->irq_build(dp, irq,
					       dp->irq_trans->data);
778 779 780 781 782

		if (of_irq_verbose)
			printk("%s: direct translate %x --> %x\n",
			       dp->full_name, orig_irq, irq);

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
		return irq;
	}

	/* Something more complicated.  Walk up to the root, applying
	 * interrupt-map or bus specific translations, until we hit
	 * an IRQ translator.
	 *
	 * If we hit a bus type or situation we cannot handle, we
	 * stop and assume that the original IRQ number was in a
	 * format which has special meaning to it's immediate parent.
	 */
	pp = dp->parent;
	ip = NULL;
	while (pp) {
		void *imap, *imsk;
		int imlen;

		imap = of_get_property(pp, "interrupt-map", &imlen);
		imsk = of_get_property(pp, "interrupt-map-mask", NULL);
		if (imap && imsk) {
			struct device_node *iret;
			int this_orig_irq = irq;

			iret = apply_interrupt_map(dp, pp,
						   imap, imlen, imsk,
						   &irq);
809 810 811 812 813 814 815

			if (of_irq_verbose)
				printk("%s: Apply [%s:%x] imap --> [%s:%x]\n",
				       op->node->full_name,
				       pp->full_name, this_orig_irq,
				       (iret ? iret->full_name : "NULL"), irq);

816 817 818 819 820 821 822 823 824 825 826 827 828
			if (!iret)
				break;

			if (iret->irq_trans) {
				ip = iret;
				break;
			}
		} else {
			if (!strcmp(pp->type, "pci") ||
			    !strcmp(pp->type, "pciex")) {
				unsigned int this_orig_irq = irq;

				irq = pci_irq_swizzle(dp, pp, irq);
829 830 831 832 833 834 835
				if (of_irq_verbose)
					printk("%s: PCI swizzle [%s] "
					       "%x --> %x\n",
					       op->node->full_name,
					       pp->full_name, this_orig_irq,
					       irq);

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
			}

			if (pp->irq_trans) {
				ip = pp;
				break;
			}
		}
		dp = pp;
		pp = pp->parent;
	}
	if (!ip)
		return orig_irq;

	irq = ip->irq_trans->irq_build(op->node, irq,
				       ip->irq_trans->data);
851 852 853
	if (of_irq_verbose)
		printk("%s: Apply IRQ trans [%s] %x --> %x\n",
		       op->node->full_name, ip->full_name, orig_irq, irq);
854 855 856 857

	return irq;
}

858 859 860 861 862
static struct of_device * __init scan_one_device(struct device_node *dp,
						 struct device *parent)
{
	struct of_device *op = kzalloc(sizeof(*op), GFP_KERNEL);
	unsigned int *irq;
863
	int len, i;
864 865 866 867 868 869 870 871 872 873 874 875 876

	if (!op)
		return NULL;

	op->node = dp;

	op->clock_freq = of_getintprop_default(dp, "clock-frequency",
					       (25*1000*1000));
	op->portid = of_getintprop_default(dp, "upa-portid", -1);
	if (op->portid == -1)
		op->portid = of_getintprop_default(dp, "portid", -1);

	irq = of_get_property(dp, "interrupts", &len);
877 878 879 880 881 882
	if (irq) {
		memcpy(op->irqs, irq, len);
		op->num_irqs = len / 4;
	} else {
		op->num_irqs = 0;
	}
883

884 885 886 887 888 889 890 891
	/* Prevent overruning the op->irqs[] array.  */
	if (op->num_irqs > PROMINTR_MAX) {
		printk(KERN_WARNING "%s: Too many irqs (%d), "
		       "limiting to %d.\n",
		       dp->full_name, op->num_irqs, PROMINTR_MAX);
		op->num_irqs = PROMINTR_MAX;
	}

892
	build_device_resources(op, parent);
893 894
	for (i = 0; i < op->num_irqs; i++)
		op->irqs[i] = build_one_device_irq(op, parent, op->irqs[i]);
895 896 897 898 899 900

	op->dev.parent = parent;
	op->dev.bus = &of_bus_type;
	if (!parent)
		strcpy(op->dev.bus_id, "root");
	else
901
		sprintf(op->dev.bus_id, "%08x", dp->node);
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936

	if (of_device_register(op)) {
		printk("%s: Could not register of device.\n",
		       dp->full_name);
		kfree(op);
		op = NULL;
	}

	return op;
}

static void __init scan_tree(struct device_node *dp, struct device *parent)
{
	while (dp) {
		struct of_device *op = scan_one_device(dp, parent);

		if (op)
			scan_tree(dp->child, &op->dev);

		dp = dp->sibling;
	}
}

static void __init scan_of_devices(void)
{
	struct device_node *root = of_find_node_by_path("/");
	struct of_device *parent;

	parent = scan_one_device(root, NULL);
	if (!parent)
		return;

	scan_tree(root->child, &parent->dev);
}

937 938
static int __init of_bus_driver_init(void)
{
939
	int err;
940

941
	err = bus_register(&of_bus_type);
942 943 944 945 946 947 948 949 950 951
#ifdef CONFIG_PCI
	if (!err)
		err = bus_register(&isa_bus_type);
	if (!err)
		err = bus_register(&ebus_bus_type);
#endif
#ifdef CONFIG_SBUS
	if (!err)
		err = bus_register(&sbus_bus_type);
#endif
952 953 954 955 956

	if (!err)
		scan_of_devices();

	return err;
957 958 959 960
}

postcore_initcall(of_bus_driver_init);

961 962 963 964 965 966 967 968 969 970 971 972 973 974
static int __init of_debug(char *str)
{
	int val = 0;

	get_option(&str, &val);
	if (val & 1)
		of_resource_verbose = 1;
	if (val & 2)
		of_irq_verbose = 1;
	return 1;
}

__setup("of_debug=", of_debug);

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
int of_register_driver(struct of_platform_driver *drv, struct bus_type *bus)
{
	/* initialize common driver fields */
	drv->driver.name = drv->name;
	drv->driver.bus = bus;

	/* register with core */
	return driver_register(&drv->driver);
}

void of_unregister_driver(struct of_platform_driver *drv)
{
	driver_unregister(&drv->driver);
}


static ssize_t dev_show_devspec(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct of_device *ofdev;

	ofdev = to_of_device(dev);
	return sprintf(buf, "%s", ofdev->node->full_name);
}

static DEVICE_ATTR(devspec, S_IRUGO, dev_show_devspec, NULL);

/**
 * of_release_dev - free an of device structure when all users of it are finished.
 * @dev: device that's been disconnected
 *
 * Will be called only by the device core when all users of this of device are
 * done.
 */
void of_release_dev(struct device *dev)
{
	struct of_device *ofdev;

        ofdev = to_of_device(dev);

	kfree(ofdev);
}

int of_device_register(struct of_device *ofdev)
{
	int rc;

	BUG_ON(ofdev->node == NULL);

	rc = device_register(&ofdev->dev);
	if (rc)
		return rc;

1027 1028 1029
	rc = device_create_file(&ofdev->dev, &dev_attr_devspec);
	if (rc)
		device_unregister(&ofdev->dev);
1030

1031
	return rc;
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
}

void of_device_unregister(struct of_device *ofdev)
{
	device_remove_file(&ofdev->dev, &dev_attr_devspec);
	device_unregister(&ofdev->dev);
}

struct of_device* of_platform_device_create(struct device_node *np,
					    const char *bus_id,
					    struct device *parent,
					    struct bus_type *bus)
{
	struct of_device *dev;

1047
	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	if (!dev)
		return NULL;

	dev->dev.parent = parent;
	dev->dev.bus = bus;
	dev->dev.release = of_release_dev;

	strlcpy(dev->dev.bus_id, bus_id, BUS_ID_SIZE);

	if (of_device_register(dev) != 0) {
		kfree(dev);
		return NULL;
	}

	return dev;
}

EXPORT_SYMBOL(of_match_device);
EXPORT_SYMBOL(of_register_driver);
EXPORT_SYMBOL(of_unregister_driver);
EXPORT_SYMBOL(of_device_register);
EXPORT_SYMBOL(of_device_unregister);
EXPORT_SYMBOL(of_dev_get);
EXPORT_SYMBOL(of_dev_put);
EXPORT_SYMBOL(of_platform_device_create);
EXPORT_SYMBOL(of_release_dev);