arm-cci.c 37.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * CCI cache coherent interconnect driver
 *
 * Copyright (C) 2013 ARM Ltd.
 * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/arm-cci.h>
#include <linux/io.h>
19
#include <linux/interrupt.h>
20 21
#include <linux/module.h>
#include <linux/of_address.h>
22 23
#include <linux/of_irq.h>
#include <linux/of_platform.h>
24
#include <linux/perf_event.h>
25
#include <linux/platform_device.h>
26
#include <linux/slab.h>
27
#include <linux/spinlock.h>
28 29 30 31

#include <asm/cacheflush.h>
#include <asm/smp_plat.h>

32 33
static void __iomem *cci_ctrl_base;
static unsigned long cci_ctrl_phys;
34

35
#ifdef CONFIG_ARM_CCI400_PORT_CTRL
36 37 38 39 40
struct cci_nb_ports {
	unsigned int nb_ace;
	unsigned int nb_ace_lite;
};

41 42 43
static const struct cci_nb_ports cci400_ports = {
	.nb_ace = 2,
	.nb_ace_lite = 3
44 45
};

46 47 48 49 50
#define CCI400_PORTS_DATA	(&cci400_ports)
#else
#define CCI400_PORTS_DATA	(NULL)
#endif

51
static const struct of_device_id arm_cci_matches[] = {
52 53 54
#ifdef CONFIG_ARM_CCI400_COMMON
	{.compatible = "arm,cci-400", .data = CCI400_PORTS_DATA },
#endif
55
	{},
56 57
};

58
#ifdef CONFIG_ARM_CCI400_PMU
59

60 61 62
#define DRIVER_NAME		"CCI-400"
#define DRIVER_NAME_PMU		DRIVER_NAME " PMU"

63 64 65 66 67 68 69 70 71 72
#define CCI_PMCR		0x0100
#define CCI_PID2		0x0fe8

#define CCI_PMCR_CEN		0x00000001
#define CCI_PMCR_NCNT_MASK	0x0000f800
#define CCI_PMCR_NCNT_SHIFT	11

#define CCI_PID2_REV_MASK	0xf0
#define CCI_PID2_REV_SHIFT	4

73 74 75 76 77 78 79 80 81 82 83
#define CCI_PMU_EVT_SEL		0x000
#define CCI_PMU_CNTR		0x004
#define CCI_PMU_CNTR_CTRL	0x008
#define CCI_PMU_OVRFLW		0x00c

#define CCI_PMU_OVRFLW_FLAG	1

#define CCI_PMU_CNTR_BASE(idx)	((idx) * SZ_4K)

#define CCI_PMU_CNTR_MASK	((1ULL << 32) -1)

84
#define CCI_PMU_EVENT_MASK		0xffUL
85 86 87 88 89
#define CCI_PMU_EVENT_SOURCE(event)	((event >> 5) & 0x7)
#define CCI_PMU_EVENT_CODE(event)	(event & 0x1f)

#define CCI_PMU_MAX_HW_EVENTS 5   /* CCI PMU has 4 counters + 1 cycle counter */

90 91 92 93 94 95 96 97 98 99 100 101
/* Types of interfaces that can generate events */
enum {
	CCI_IF_SLAVE,
	CCI_IF_MASTER,
	CCI_IF_MAX,
};

struct event_range {
	u32 min;
	u32 max;
};

102 103 104 105 106 107
struct cci_pmu_hw_events {
	struct perf_event *events[CCI_PMU_MAX_HW_EVENTS];
	unsigned long used_mask[BITS_TO_LONGS(CCI_PMU_MAX_HW_EVENTS)];
	raw_spinlock_t pmu_lock;
};

108 109 110 111 112 113 114
struct cci_pmu_model {
	char *name;
	struct event_range event_ranges[CCI_IF_MAX];
};

static struct cci_pmu_model cci_pmu_models[];

115 116 117 118 119 120
struct cci_pmu {
	void __iomem *base;
	struct pmu pmu;
	int nr_irqs;
	int irqs[CCI_PMU_MAX_HW_EVENTS];
	unsigned long active_irqs;
121
	const struct cci_pmu_model *model;
122 123 124 125 126 127 128 129 130 131 132
	struct cci_pmu_hw_events hw_events;
	struct platform_device *plat_device;
	int num_events;
	atomic_t active_events;
	struct mutex reserve_mutex;
	cpumask_t cpus;
};
static struct cci_pmu *pmu;

#define to_cci_pmu(c)	(container_of(c, struct cci_pmu, pmu))

133 134 135 136 137 138 139 140 141 142 143 144
/* Port ids */
#define CCI_PORT_S0	0
#define CCI_PORT_S1	1
#define CCI_PORT_S2	2
#define CCI_PORT_S3	3
#define CCI_PORT_S4	4
#define CCI_PORT_M0	5
#define CCI_PORT_M1	6
#define CCI_PORT_M2	7

#define CCI_REV_R0		0
#define CCI_REV_R1		1
145
#define CCI_REV_R1_PX		5
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

/*
 * Instead of an event id to monitor CCI cycles, a dedicated counter is
 * provided. Use 0xff to represent CCI cycles and hope that no future revisions
 * make use of this event in hardware.
 */
enum cci400_perf_events {
	CCI_PMU_CYCLES = 0xff
};

#define CCI_PMU_CYCLE_CNTR_IDX		0
#define CCI_PMU_CNTR0_IDX		1
#define CCI_PMU_CNTR_LAST(cci_pmu)	(CCI_PMU_CYCLE_CNTR_IDX + cci_pmu->num_events - 1)

/*
 * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
 * ports and bits 4:0 are event codes. There are different event codes
 * associated with each port type.
 *
 * Additionally, the range of events associated with the port types changed
 * between Rev0 and Rev1.
 *
 * The constants below define the range of valid codes for each port type for
 * the different revisions and are used to validate the event to be monitored.
 */

#define CCI_REV_R0_SLAVE_PORT_MIN_EV	0x00
#define CCI_REV_R0_SLAVE_PORT_MAX_EV	0x13
#define CCI_REV_R0_MASTER_PORT_MIN_EV	0x14
#define CCI_REV_R0_MASTER_PORT_MAX_EV	0x1a

#define CCI_REV_R1_SLAVE_PORT_MIN_EV	0x00
#define CCI_REV_R1_SLAVE_PORT_MAX_EV	0x14
#define CCI_REV_R1_MASTER_PORT_MIN_EV	0x00
#define CCI_REV_R1_MASTER_PORT_MAX_EV	0x11

182
static int pmu_validate_hw_event(unsigned long hw_event)
183 184 185
{
	u8 ev_source = CCI_PMU_EVENT_SOURCE(hw_event);
	u8 ev_code = CCI_PMU_EVENT_CODE(hw_event);
186
	int if_type;
187

188 189 190
	if (hw_event & ~CCI_PMU_EVENT_MASK)
		return -ENOENT;

191 192 193 194 195 196 197
	switch (ev_source) {
	case CCI_PORT_S0:
	case CCI_PORT_S1:
	case CCI_PORT_S2:
	case CCI_PORT_S3:
	case CCI_PORT_S4:
		/* Slave Interface */
198
		if_type = CCI_IF_SLAVE;
199 200 201 202 203
		break;
	case CCI_PORT_M0:
	case CCI_PORT_M1:
	case CCI_PORT_M2:
		/* Master Interface */
204
		if_type = CCI_IF_MASTER;
205
		break;
206 207
	default:
		return -ENOENT;
208 209
	}

210 211 212 213
	if (ev_code >= pmu->model->event_ranges[if_type].min &&
		ev_code <= pmu->model->event_ranges[if_type].max)
		return hw_event;

214 215 216
	return -ENOENT;
}

217 218 219 220 221 222 223 224 225 226 227 228
static int probe_cci_revision(void)
{
	int rev;
	rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK;
	rev >>= CCI_PID2_REV_SHIFT;

	if (rev < CCI_REV_R1_PX)
		return CCI_REV_R0;
	else
		return CCI_REV_R1;
}

229
static const struct cci_pmu_model *probe_cci_model(struct platform_device *pdev)
230
{
231 232 233
	if (platform_has_secure_cci_access())
		return &cci_pmu_models[probe_cci_revision()];
	return NULL;
234 235
}

236
static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx)
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
{
	return CCI_PMU_CYCLE_CNTR_IDX <= idx &&
		idx <= CCI_PMU_CNTR_LAST(cci_pmu);
}

static u32 pmu_read_register(int idx, unsigned int offset)
{
	return readl_relaxed(pmu->base + CCI_PMU_CNTR_BASE(idx) + offset);
}

static void pmu_write_register(u32 value, int idx, unsigned int offset)
{
	return writel_relaxed(value, pmu->base + CCI_PMU_CNTR_BASE(idx) + offset);
}

static void pmu_disable_counter(int idx)
{
	pmu_write_register(0, idx, CCI_PMU_CNTR_CTRL);
}

static void pmu_enable_counter(int idx)
{
	pmu_write_register(1, idx, CCI_PMU_CNTR_CTRL);
}

static void pmu_set_event(int idx, unsigned long event)
{
	pmu_write_register(event, idx, CCI_PMU_EVT_SEL);
}

static u32 pmu_get_max_counters(void)
{
	u32 n_cnts = (readl_relaxed(cci_ctrl_base + CCI_PMCR) &
		      CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT;

	/* add 1 for cycle counter */
	return n_cnts + 1;
}

276
static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event)
277
{
278
	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
279
	struct hw_perf_event *hw_event = &event->hw;
280
	unsigned long cci_event = hw_event->config_base;
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	int idx;

	if (cci_event == CCI_PMU_CYCLES) {
		if (test_and_set_bit(CCI_PMU_CYCLE_CNTR_IDX, hw->used_mask))
			return -EAGAIN;

		return CCI_PMU_CYCLE_CNTR_IDX;
	}

	for (idx = CCI_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx)
		if (!test_and_set_bit(idx, hw->used_mask))
			return idx;

	/* No counters available */
	return -EAGAIN;
}

static int pmu_map_event(struct perf_event *event)
{
	int mapping;
301
	unsigned long config = event->attr.config;
302 303 304 305 306 307 308 309 310 311 312 313

	if (event->attr.type < PERF_TYPE_MAX)
		return -ENOENT;

	if (config == CCI_PMU_CYCLES)
		mapping = config;
	else
		mapping = pmu_validate_hw_event(config);

	return mapping;
}

314
static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler)
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
{
	int i;
	struct platform_device *pmu_device = cci_pmu->plat_device;

	if (unlikely(!pmu_device))
		return -ENODEV;

	if (pmu->nr_irqs < 1) {
		dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n");
		return -ENODEV;
	}

	/*
	 * Register all available CCI PMU interrupts. In the interrupt handler
	 * we iterate over the counters checking for interrupt source (the
	 * overflowing counter) and clear it.
	 *
	 * This should allow handling of non-unique interrupt for the counters.
	 */
	for (i = 0; i < pmu->nr_irqs; i++) {
		int err = request_irq(pmu->irqs[i], handler, IRQF_SHARED,
				"arm-cci-pmu", cci_pmu);
		if (err) {
			dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n",
				pmu->irqs[i]);
			return err;
		}

		set_bit(i, &pmu->active_irqs);
	}

	return 0;
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
static void pmu_free_irq(struct cci_pmu *cci_pmu)
{
	int i;

	for (i = 0; i < pmu->nr_irqs; i++) {
		if (!test_and_clear_bit(i, &pmu->active_irqs))
			continue;

		free_irq(pmu->irqs[i], cci_pmu);
	}
}

static u32 pmu_read_counter(struct perf_event *event)
{
	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
	struct hw_perf_event *hw_counter = &event->hw;
	int idx = hw_counter->idx;
	u32 value;

	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
		return 0;
	}
	value = pmu_read_register(idx, CCI_PMU_CNTR);

	return value;
}

static void pmu_write_counter(struct perf_event *event, u32 value)
{
	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
	struct hw_perf_event *hw_counter = &event->hw;
	int idx = hw_counter->idx;

	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx)))
		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
	else
		pmu_write_register(value, idx, CCI_PMU_CNTR);
}

static u64 pmu_event_update(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	u64 delta, prev_raw_count, new_raw_count;

	do {
		prev_raw_count = local64_read(&hwc->prev_count);
		new_raw_count = pmu_read_counter(event);
	} while (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
		 new_raw_count) != prev_raw_count);

	delta = (new_raw_count - prev_raw_count) & CCI_PMU_CNTR_MASK;

	local64_add(delta, &event->count);

	return new_raw_count;
}

static void pmu_read(struct perf_event *event)
{
	pmu_event_update(event);
}

void pmu_event_set_period(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	/*
	 * The CCI PMU counters have a period of 2^32. To account for the
	 * possiblity of extreme interrupt latency we program for a period of
	 * half that. Hopefully we can handle the interrupt before another 2^31
	 * events occur and the counter overtakes its previous value.
	 */
	u64 val = 1ULL << 31;
	local64_set(&hwc->prev_count, val);
	pmu_write_counter(event, val);
}

426 427 428
static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
{
	unsigned long flags;
429 430
	struct cci_pmu *cci_pmu = dev;
	struct cci_pmu_hw_events *events = &pmu->hw_events;
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
	int idx, handled = IRQ_NONE;

	raw_spin_lock_irqsave(&events->pmu_lock, flags);
	/*
	 * Iterate over counters and update the corresponding perf events.
	 * This should work regardless of whether we have per-counter overflow
	 * interrupt or a combined overflow interrupt.
	 */
	for (idx = CCI_PMU_CYCLE_CNTR_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) {
		struct perf_event *event = events->events[idx];
		struct hw_perf_event *hw_counter;

		if (!event)
			continue;

		hw_counter = &event->hw;

		/* Did this counter overflow? */
449 450
		if (!(pmu_read_register(idx, CCI_PMU_OVRFLW) &
		      CCI_PMU_OVRFLW_FLAG))
451 452 453 454
			continue;

		pmu_write_register(CCI_PMU_OVRFLW_FLAG, idx, CCI_PMU_OVRFLW);

455 456
		pmu_event_update(event);
		pmu_event_set_period(event);
457 458 459 460 461 462 463
		handled = IRQ_HANDLED;
	}
	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);

	return IRQ_RETVAL(handled);
}

464
static int cci_pmu_get_hw(struct cci_pmu *cci_pmu)
465
{
466 467 468 469 470 471 472
	int ret = pmu_request_irq(cci_pmu, pmu_handle_irq);
	if (ret) {
		pmu_free_irq(cci_pmu);
		return ret;
	}
	return 0;
}
473

474 475 476 477
static void cci_pmu_put_hw(struct cci_pmu *cci_pmu)
{
	pmu_free_irq(cci_pmu);
}
478

479 480 481 482 483 484 485 486 487
static void hw_perf_event_destroy(struct perf_event *event)
{
	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
	atomic_t *active_events = &cci_pmu->active_events;
	struct mutex *reserve_mutex = &cci_pmu->reserve_mutex;

	if (atomic_dec_and_mutex_lock(active_events, reserve_mutex)) {
		cci_pmu_put_hw(cci_pmu);
		mutex_unlock(reserve_mutex);
488 489 490
	}
}

491
static void cci_pmu_enable(struct pmu *pmu)
492
{
493 494 495
	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
	int enabled = bitmap_weight(hw_events->used_mask, cci_pmu->num_events);
496
	unsigned long flags;
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
	u32 val;

	if (!enabled)
		return;

	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);

	/* Enable all the PMU counters. */
	val = readl_relaxed(cci_ctrl_base + CCI_PMCR) | CCI_PMCR_CEN;
	writel(val, cci_ctrl_base + CCI_PMCR);
	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);

}

static void cci_pmu_disable(struct pmu *pmu)
{
	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
	unsigned long flags;
	u32 val;

	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);

	/* Disable all the PMU counters. */
	val = readl_relaxed(cci_ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN;
	writel(val, cci_ctrl_base + CCI_PMCR);
	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
}

static void cci_pmu_start(struct perf_event *event, int pmu_flags)
{
	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
	struct hw_perf_event *hwc = &event->hw;
	int idx = hwc->idx;
	unsigned long flags;

	/*
	 * To handle interrupt latency, we always reprogram the period
	 * regardlesss of PERF_EF_RELOAD.
	 */
	if (pmu_flags & PERF_EF_RELOAD)
		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));

	hwc->state = 0;
542 543 544 545 546 547

	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
		return;
	}

548
	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
549 550 551

	/* Configure the event to count, unless you are counting cycles */
	if (idx != CCI_PMU_CYCLE_CNTR_IDX)
552
		pmu_set_event(idx, hwc->config_base);
553

554
	pmu_event_set_period(event);
555 556
	pmu_enable_counter(idx);

557
	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
558 559
}

560
static void cci_pmu_stop(struct perf_event *event, int pmu_flags)
561
{
562 563 564 565 566 567
	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
	struct hw_perf_event *hwc = &event->hw;
	int idx = hwc->idx;

	if (hwc->state & PERF_HES_STOPPED)
		return;
568 569 570 571 572 573

	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
		return;
	}

574 575 576 577
	/*
	 * We always reprogram the counter, so ignore PERF_EF_UPDATE. See
	 * cci_pmu_start()
	 */
578
	pmu_disable_counter(idx);
579 580
	pmu_event_update(event);
	hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
581 582
}

583
static int cci_pmu_add(struct perf_event *event, int flags)
584
{
585 586 587 588 589
	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
	struct hw_perf_event *hwc = &event->hw;
	int idx;
	int err = 0;
590

591
	perf_pmu_disable(event->pmu);
592

593 594 595 596 597 598
	/* If we don't have a space for the counter then finish early. */
	idx = pmu_get_event_idx(hw_events, event);
	if (idx < 0) {
		err = idx;
		goto out;
	}
599

600 601 602 603 604 605 606 607 608 609 610 611 612
	event->hw.idx = idx;
	hw_events->events[idx] = event;

	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
	if (flags & PERF_EF_START)
		cci_pmu_start(event, PERF_EF_RELOAD);

	/* Propagate our changes to the userspace mapping. */
	perf_event_update_userpage(event);

out:
	perf_pmu_enable(event->pmu);
	return err;
613 614
}

615
static void cci_pmu_del(struct perf_event *event, int flags)
616
{
617 618 619 620
	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
	struct hw_perf_event *hwc = &event->hw;
	int idx = hwc->idx;
621

622 623 624
	cci_pmu_stop(event, PERF_EF_UPDATE);
	hw_events->events[idx] = NULL;
	clear_bit(idx, hw_events->used_mask);
625

626 627
	perf_event_update_userpage(event);
}
628

629
static int
630 631 632
validate_event(struct pmu *cci_pmu,
               struct cci_pmu_hw_events *hw_events,
               struct perf_event *event)
633 634 635 636
{
	if (is_software_event(event))
		return 1;

637 638 639 640 641 642 643 644
	/*
	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
	 * core perf code won't check that the pmu->ctx == leader->ctx
	 * until after pmu->event_init(event).
	 */
	if (event->pmu != cci_pmu)
		return 0;

645 646 647 648 649 650 651
	if (event->state < PERF_EVENT_STATE_OFF)
		return 1;

	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
		return 1;

	return pmu_get_event_idx(hw_events, event) >= 0;
652 653
}

654 655
static int
validate_group(struct perf_event *event)
656
{
657 658 659 660 661 662
	struct perf_event *sibling, *leader = event->group_leader;
	struct cci_pmu_hw_events fake_pmu = {
		/*
		 * Initialise the fake PMU. We only need to populate the
		 * used_mask for the purposes of validation.
		 */
663
		.used_mask = { 0 },
664
	};
665

666
	if (!validate_event(event->pmu, &fake_pmu, leader))
667 668 669
		return -EINVAL;

	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
670
		if (!validate_event(event->pmu, &fake_pmu, sibling))
671
			return -EINVAL;
672 673
	}

674
	if (!validate_event(event->pmu, &fake_pmu, event))
675 676 677
		return -EINVAL;

	return 0;
678 679
}

680 681
static int
__hw_perf_event_init(struct perf_event *event)
682
{
683 684
	struct hw_perf_event *hwc = &event->hw;
	int mapping;
685

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
	mapping = pmu_map_event(event);

	if (mapping < 0) {
		pr_debug("event %x:%llx not supported\n", event->attr.type,
			 event->attr.config);
		return mapping;
	}

	/*
	 * We don't assign an index until we actually place the event onto
	 * hardware. Use -1 to signify that we haven't decided where to put it
	 * yet.
	 */
	hwc->idx		= -1;
	hwc->config_base	= 0;
	hwc->config		= 0;
	hwc->event_base		= 0;

	/*
	 * Store the event encoding into the config_base field.
	 */
	hwc->config_base	    |= (unsigned long)mapping;

	/*
	 * Limit the sample_period to half of the counter width. That way, the
	 * new counter value is far less likely to overtake the previous one
	 * unless you have some serious IRQ latency issues.
	 */
	hwc->sample_period  = CCI_PMU_CNTR_MASK >> 1;
	hwc->last_period    = hwc->sample_period;
	local64_set(&hwc->period_left, hwc->sample_period);

	if (event->group_leader != event) {
		if (validate_group(event) != 0)
			return -EINVAL;
	}

	return 0;
}

static int cci_pmu_event_init(struct perf_event *event)
{
	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
	atomic_t *active_events = &cci_pmu->active_events;
	int err = 0;
	int cpu;

	if (event->attr.type != event->pmu->type)
		return -ENOENT;

	/* Shared by all CPUs, no meaningful state to sample */
	if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
		return -EOPNOTSUPP;

	/* We have no filtering of any kind */
	if (event->attr.exclude_user	||
	    event->attr.exclude_kernel	||
	    event->attr.exclude_hv	||
	    event->attr.exclude_idle	||
	    event->attr.exclude_host	||
	    event->attr.exclude_guest)
		return -EINVAL;

	/*
	 * Following the example set by other "uncore" PMUs, we accept any CPU
	 * and rewrite its affinity dynamically rather than having perf core
	 * handle cpu == -1 and pid == -1 for this case.
	 *
	 * The perf core will pin online CPUs for the duration of this call and
	 * the event being installed into its context, so the PMU's CPU can't
	 * change under our feet.
	 */
	cpu = cpumask_first(&cci_pmu->cpus);
	if (event->cpu < 0 || cpu < 0)
		return -EINVAL;
	event->cpu = cpu;

	event->destroy = hw_perf_event_destroy;
	if (!atomic_inc_not_zero(active_events)) {
		mutex_lock(&cci_pmu->reserve_mutex);
		if (atomic_read(active_events) == 0)
			err = cci_pmu_get_hw(cci_pmu);
		if (!err)
			atomic_inc(active_events);
		mutex_unlock(&cci_pmu->reserve_mutex);
	}
	if (err)
		return err;

	err = __hw_perf_event_init(event);
	if (err)
		hw_perf_event_destroy(event);

	return err;
780 781
}

782 783 784
static ssize_t pmu_attr_cpumask_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
785 786
	int n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl",
			  cpumask_pr_args(&pmu->cpus));
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
	buf[n++] = '\n';
	buf[n] = '\0';
	return n;
}

static DEVICE_ATTR(cpumask, S_IRUGO, pmu_attr_cpumask_show, NULL);

static struct attribute *pmu_attrs[] = {
	&dev_attr_cpumask.attr,
	NULL,
};

static struct attribute_group pmu_attr_group = {
	.attrs = pmu_attrs,
};

static const struct attribute_group *pmu_attr_groups[] = {
	&pmu_attr_group,
	NULL
};

static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev)
{
810
	char *name = cci_pmu->model->name;
811
	cci_pmu->pmu = (struct pmu) {
812
		.name		= cci_pmu->model->name,
813 814 815 816 817 818 819 820 821 822
		.task_ctx_nr	= perf_invalid_context,
		.pmu_enable	= cci_pmu_enable,
		.pmu_disable	= cci_pmu_disable,
		.event_init	= cci_pmu_event_init,
		.add		= cci_pmu_add,
		.del		= cci_pmu_del,
		.start		= cci_pmu_start,
		.stop		= cci_pmu_stop,
		.read		= pmu_read,
		.attr_groups	= pmu_attr_groups,
823 824 825 826 827
	};

	cci_pmu->plat_device = pdev;
	cci_pmu->num_events = pmu_get_max_counters();

828
	return perf_pmu_register(&cci_pmu->pmu, name, -1);
829 830
}

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
static int cci_pmu_cpu_notifier(struct notifier_block *self,
				unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;
	unsigned int target;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		if (!cpumask_test_and_clear_cpu(cpu, &pmu->cpus))
			break;
		target = cpumask_any_but(cpu_online_mask, cpu);
		if (target < 0) // UP, last CPU
			break;
		/*
		 * TODO: migrate context once core races on event->ctx have
		 * been fixed.
		 */
		cpumask_set_cpu(target, &pmu->cpus);
	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block cci_pmu_cpu_nb = {
	.notifier_call	= cci_pmu_cpu_notifier,
	/*
	 * to migrate uncore events, our notifier should be executed
	 * before perf core's notifier.
	 */
	.priority	= CPU_PRI_PERF + 1,
};

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
static struct cci_pmu_model cci_pmu_models[] = {
	[CCI_REV_R0] = {
		.name = "CCI_400",
		.event_ranges = {
			[CCI_IF_SLAVE] = {
				CCI_REV_R0_SLAVE_PORT_MIN_EV,
				CCI_REV_R0_SLAVE_PORT_MAX_EV,
			},
			[CCI_IF_MASTER] = {
				CCI_REV_R0_MASTER_PORT_MIN_EV,
				CCI_REV_R0_MASTER_PORT_MAX_EV,
			},
		},
	},
	[CCI_REV_R1] = {
		.name = "CCI_400_r1",
		.event_ranges = {
			[CCI_IF_SLAVE] = {
				CCI_REV_R1_SLAVE_PORT_MIN_EV,
				CCI_REV_R1_SLAVE_PORT_MAX_EV,
			},
			[CCI_IF_MASTER] = {
				CCI_REV_R1_MASTER_PORT_MIN_EV,
				CCI_REV_R1_MASTER_PORT_MAX_EV,
			},
		},
	},
};

894 895 896
static const struct of_device_id arm_cci_pmu_matches[] = {
	{
		.compatible = "arm,cci-400-pmu",
897 898 899 900 901 902 903 904 905
		.data	= NULL,
	},
	{
		.compatible = "arm,cci-400-pmu,r0",
		.data	= &cci_pmu_models[CCI_REV_R0],
	},
	{
		.compatible = "arm,cci-400-pmu,r1",
		.data	= &cci_pmu_models[CCI_REV_R1],
906 907 908 909
	},
	{},
};

910 911 912 913 914 915
static inline const struct cci_pmu_model *get_cci_model(struct platform_device *pdev)
{
	const struct of_device_id *match = of_match_node(arm_cci_pmu_matches,
							pdev->dev.of_node);
	if (!match)
		return NULL;
916 917
	if (match->data)
		return match->data;
918

919 920
	dev_warn(&pdev->dev, "DEPRECATED compatible property,"
			 "requires secure access to CCI registers");
921 922 923
	return probe_cci_model(pdev);
}

924 925 926 927 928 929 930 931 932 933 934
static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs)
{
	int i;

	for (i = 0; i < nr_irqs; i++)
		if (irq == irqs[i])
			return true;

	return false;
}

935 936 937 938
static int cci_pmu_probe(struct platform_device *pdev)
{
	struct resource *res;
	int i, ret, irq;
939 940 941 942 943 944 945
	const struct cci_pmu_model *model;

	model = get_cci_model(pdev);
	if (!model) {
		dev_warn(&pdev->dev, "CCI PMU version not supported\n");
		return -ENODEV;
	}
946 947 948 949 950

	pmu = devm_kzalloc(&pdev->dev, sizeof(*pmu), GFP_KERNEL);
	if (!pmu)
		return -ENOMEM;

951
	pmu->model = model;
952 953
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	pmu->base = devm_ioremap_resource(&pdev->dev, res);
954 955
	if (IS_ERR(pmu->base))
		return -ENOMEM;
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979

	/*
	 * CCI PMU has 5 overflow signals - one per counter; but some may be tied
	 * together to a common interrupt.
	 */
	pmu->nr_irqs = 0;
	for (i = 0; i < CCI_PMU_MAX_HW_EVENTS; i++) {
		irq = platform_get_irq(pdev, i);
		if (irq < 0)
			break;

		if (is_duplicate_irq(irq, pmu->irqs, pmu->nr_irqs))
			continue;

		pmu->irqs[pmu->nr_irqs++] = irq;
	}

	/*
	 * Ensure that the device tree has as many interrupts as the number
	 * of counters.
	 */
	if (i < CCI_PMU_MAX_HW_EVENTS) {
		dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n",
			i, CCI_PMU_MAX_HW_EVENTS);
980
		return -EINVAL;
981 982 983
	}

	raw_spin_lock_init(&pmu->hw_events.pmu_lock);
984 985 986 987 988 989 990
	mutex_init(&pmu->reserve_mutex);
	atomic_set(&pmu->active_events, 0);
	cpumask_set_cpu(smp_processor_id(), &pmu->cpus);

	ret = register_cpu_notifier(&cci_pmu_cpu_nb);
	if (ret)
		return ret;
991

992
	ret = cci_pmu_init(pmu, pdev);
993
	if (ret)
994
		return ret;
995

996
	pr_info("ARM %s PMU driver probed", pmu->model->name);
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	return 0;
}

static int cci_platform_probe(struct platform_device *pdev)
{
	if (!cci_probed())
		return -ENODEV;

	return of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
}

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
static struct platform_driver cci_pmu_driver = {
	.driver = {
		   .name = DRIVER_NAME_PMU,
		   .of_match_table = arm_cci_pmu_matches,
		  },
	.probe = cci_pmu_probe,
};

static struct platform_driver cci_platform_driver = {
	.driver = {
		   .name = DRIVER_NAME,
		   .of_match_table = arm_cci_matches,
		  },
	.probe = cci_platform_probe,
};

static int __init cci_platform_init(void)
{
	int ret;

	ret = platform_driver_register(&cci_pmu_driver);
	if (ret)
		return ret;

	return platform_driver_register(&cci_platform_driver);
}

1035
#else /* !CONFIG_ARM_CCI400_PMU */
1036 1037 1038 1039 1040 1041

static int __init cci_platform_init(void)
{
	return 0;
}

1042 1043 1044
#endif /* CONFIG_ARM_CCI400_PMU */

#ifdef CONFIG_ARM_CCI400_PORT_CTRL
1045

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
#define CCI_PORT_CTRL		0x0
#define CCI_CTRL_STATUS		0xc

#define CCI_ENABLE_SNOOP_REQ	0x1
#define CCI_ENABLE_DVM_REQ	0x2
#define CCI_ENABLE_REQ		(CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ)

enum cci_ace_port_type {
	ACE_INVALID_PORT = 0x0,
	ACE_PORT,
	ACE_LITE_PORT,
};

struct cci_ace_port {
	void __iomem *base;
	unsigned long phys;
	enum cci_ace_port_type type;
	struct device_node *dn;
};

static struct cci_ace_port *ports;
static unsigned int nb_cci_ports;

1069 1070 1071 1072
struct cpu_port {
	u64 mpidr;
	u32 port;
};
1073

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
/*
 * Use the port MSB as valid flag, shift can be made dynamic
 * by computing number of bits required for port indexes.
 * Code disabling CCI cpu ports runs with D-cache invalidated
 * and SCTLR bit clear so data accesses must be kept to a minimum
 * to improve performance; for now shift is left static to
 * avoid one more data access while disabling the CCI port.
 */
#define PORT_VALID_SHIFT	31
#define PORT_VALID		(0x1 << PORT_VALID_SHIFT)

static inline void init_cpu_port(struct cpu_port *port, u32 index, u64 mpidr)
{
	port->port = PORT_VALID | index;
	port->mpidr = mpidr;
}

static inline bool cpu_port_is_valid(struct cpu_port *port)
{
	return !!(port->port & PORT_VALID);
}

static inline bool cpu_port_match(struct cpu_port *port, u64 mpidr)
{
	return port->mpidr == (mpidr & MPIDR_HWID_BITMASK);
}

static struct cpu_port cpu_port[NR_CPUS];

/**
 * __cci_ace_get_port - Function to retrieve the port index connected to
 *			a cpu or device.
 *
 * @dn: device node of the device to look-up
 * @type: port type
 *
 * Return value:
 *	- CCI port index if success
 *	- -ENODEV if failure
 */
static int __cci_ace_get_port(struct device_node *dn, int type)
{
	int i;
	bool ace_match;
	struct device_node *cci_portn;

	cci_portn = of_parse_phandle(dn, "cci-control-port", 0);
	for (i = 0; i < nb_cci_ports; i++) {
		ace_match = ports[i].type == type;
		if (ace_match && cci_portn == ports[i].dn)
			return i;
	}
	return -ENODEV;
}

int cci_ace_get_port(struct device_node *dn)
{
	return __cci_ace_get_port(dn, ACE_LITE_PORT);
}
EXPORT_SYMBOL_GPL(cci_ace_get_port);

1135
static void cci_ace_init_ports(void)
1136
{
1137 1138
	int port, cpu;
	struct device_node *cpun;
1139 1140 1141 1142 1143 1144 1145 1146

	/*
	 * Port index look-up speeds up the function disabling ports by CPU,
	 * since the logical to port index mapping is done once and does
	 * not change after system boot.
	 * The stashed index array is initialized for all possible CPUs
	 * at probe time.
	 */
1147 1148 1149
	for_each_possible_cpu(cpu) {
		/* too early to use cpu->of_node */
		cpun = of_get_cpu_node(cpu, NULL);
1150

1151
		if (WARN(!cpun, "Missing cpu device node\n"))
1152
			continue;
1153

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
		port = __cci_ace_get_port(cpun, ACE_PORT);
		if (port < 0)
			continue;

		init_cpu_port(&cpu_port[cpu], port, cpu_logical_map(cpu));
	}

	for_each_possible_cpu(cpu) {
		WARN(!cpu_port_is_valid(&cpu_port[cpu]),
			"CPU %u does not have an associated CCI port\n",
			cpu);
	}
}
/*
 * Functions to enable/disable a CCI interconnect slave port
 *
 * They are called by low-level power management code to disable slave
 * interfaces snoops and DVM broadcast.
 * Since they may execute with cache data allocation disabled and
 * after the caches have been cleaned and invalidated the functions provide
 * no explicit locking since they may run with D-cache disabled, so normal
 * cacheable kernel locks based on ldrex/strex may not work.
 * Locking has to be provided by BSP implementations to ensure proper
 * operations.
 */

/**
 * cci_port_control() - function to control a CCI port
 *
 * @port: index of the port to setup
 * @enable: if true enables the port, if false disables it
 */
static void notrace cci_port_control(unsigned int port, bool enable)
{
	void __iomem *base = ports[port].base;

	writel_relaxed(enable ? CCI_ENABLE_REQ : 0, base + CCI_PORT_CTRL);
	/*
	 * This function is called from power down procedures
	 * and must not execute any instruction that might
	 * cause the processor to be put in a quiescent state
	 * (eg wfi). Hence, cpu_relax() can not be added to this
	 * read loop to optimize power, since it might hide possibly
	 * disruptive operations.
	 */
	while (readl_relaxed(cci_ctrl_base + CCI_CTRL_STATUS) & 0x1)
			;
}

/**
 * cci_disable_port_by_cpu() - function to disable a CCI port by CPU
 *			       reference
 *
 * @mpidr: mpidr of the CPU whose CCI port should be disabled
 *
 * Disabling a CCI port for a CPU implies disabling the CCI port
 * controlling that CPU cluster. Code disabling CPU CCI ports
 * must make sure that the CPU running the code is the last active CPU
 * in the cluster ie all other CPUs are quiescent in a low power state.
 *
 * Return:
 *	0 on success
 *	-ENODEV on port look-up failure
 */
int notrace cci_disable_port_by_cpu(u64 mpidr)
{
	int cpu;
	bool is_valid;
	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
		is_valid = cpu_port_is_valid(&cpu_port[cpu]);
		if (is_valid && cpu_port_match(&cpu_port[cpu], mpidr)) {
			cci_port_control(cpu_port[cpu].port, false);
			return 0;
		}
	}
	return -ENODEV;
}
EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu);

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
/**
 * cci_enable_port_for_self() - enable a CCI port for calling CPU
 *
 * Enabling a CCI port for the calling CPU implies enabling the CCI
 * port controlling that CPU's cluster. Caller must make sure that the
 * CPU running the code is the first active CPU in the cluster and all
 * other CPUs are quiescent in a low power state  or waiting for this CPU
 * to complete the CCI initialization.
 *
 * Because this is called when the MMU is still off and with no stack,
 * the code must be position independent and ideally rely on callee
 * clobbered registers only.  To achieve this we must code this function
 * entirely in assembler.
 *
 * On success this returns with the proper CCI port enabled.  In case of
 * any failure this never returns as the inability to enable the CCI is
 * fatal and there is no possible recovery at this stage.
 */
asmlinkage void __naked cci_enable_port_for_self(void)
{
	asm volatile ("\n"
1254
"	.arch armv7-a\n"
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
"	mrc	p15, 0, r0, c0, c0, 5	@ get MPIDR value \n"
"	and	r0, r0, #"__stringify(MPIDR_HWID_BITMASK)" \n"
"	adr	r1, 5f \n"
"	ldr	r2, [r1] \n"
"	add	r1, r1, r2		@ &cpu_port \n"
"	add	ip, r1, %[sizeof_cpu_port] \n"

	/* Loop over the cpu_port array looking for a matching MPIDR */
"1:	ldr	r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n"
"	cmp	r2, r0 			@ compare MPIDR \n"
"	bne	2f \n"

	/* Found a match, now test port validity */
"	ldr	r3, [r1, %[offsetof_cpu_port_port]] \n"
"	tst	r3, #"__stringify(PORT_VALID)" \n"
"	bne	3f \n"

	/* no match, loop with the next cpu_port entry */
"2:	add	r1, r1, %[sizeof_struct_cpu_port] \n"
"	cmp	r1, ip			@ done? \n"
"	blo	1b \n"

	/* CCI port not found -- cheaply try to stall this CPU */
"cci_port_not_found: \n"
"	wfi \n"
"	wfe \n"
"	b	cci_port_not_found \n"

	/* Use matched port index to look up the corresponding ports entry */
"3:	bic	r3, r3, #"__stringify(PORT_VALID)" \n"
"	adr	r0, 6f \n"
"	ldmia	r0, {r1, r2} \n"
"	sub	r1, r1, r0 		@ virt - phys \n"
"	ldr	r0, [r0, r2] 		@ *(&ports) \n"
"	mov	r2, %[sizeof_struct_ace_port] \n"
"	mla	r0, r2, r3, r0		@ &ports[index] \n"
"	sub	r0, r0, r1		@ virt_to_phys() \n"

	/* Enable the CCI port */
"	ldr	r0, [r0, %[offsetof_port_phys]] \n"
1295
"	mov	r3, %[cci_enable_req]\n"		   
1296 1297 1298 1299 1300 1301 1302
"	str	r3, [r0, #"__stringify(CCI_PORT_CTRL)"] \n"

	/* poll the status reg for completion */
"	adr	r1, 7f \n"
"	ldr	r0, [r1] \n"
"	ldr	r0, [r0, r1]		@ cci_ctrl_base \n"
"4:	ldr	r1, [r0, #"__stringify(CCI_CTRL_STATUS)"] \n"
1303
"	tst	r1, %[cci_control_status_bits] \n"			
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
"	bne	4b \n"

"	mov	r0, #0 \n"
"	bx	lr \n"

"	.align	2 \n"
"5:	.word	cpu_port - . \n"
"6:	.word	. \n"
"	.word	ports - 6b \n"
"7:	.word	cci_ctrl_phys - . \n"
	: :
	[sizeof_cpu_port] "i" (sizeof(cpu_port)),
1316 1317
	[cci_enable_req] "i" cpu_to_le32(CCI_ENABLE_REQ),
	[cci_control_status_bits] "i" cpu_to_le32(1),
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
#ifndef __ARMEB__
	[offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)),
#else
	[offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)+4),
#endif
	[offsetof_cpu_port_port] "i" (offsetof(struct cpu_port, port)),
	[sizeof_struct_cpu_port] "i" (sizeof(struct cpu_port)),
	[sizeof_struct_ace_port] "i" (sizeof(struct cci_ace_port)),
	[offsetof_port_phys] "i" (offsetof(struct cci_ace_port, phys)) );

	unreachable();
}

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
/**
 * __cci_control_port_by_device() - function to control a CCI port by device
 *				    reference
 *
 * @dn: device node pointer of the device whose CCI port should be
 *      controlled
 * @enable: if true enables the port, if false disables it
 *
 * Return:
 *	0 on success
 *	-ENODEV on port look-up failure
 */
int notrace __cci_control_port_by_device(struct device_node *dn, bool enable)
{
	int port;

	if (!dn)
		return -ENODEV;

	port = __cci_ace_get_port(dn, ACE_LITE_PORT);
	if (WARN_ONCE(port < 0, "node %s ACE lite port look-up failure\n",
				dn->full_name))
		return -ENODEV;
	cci_port_control(port, enable);
	return 0;
}
EXPORT_SYMBOL_GPL(__cci_control_port_by_device);

/**
 * __cci_control_port_by_index() - function to control a CCI port by port index
 *
 * @port: port index previously retrieved with cci_ace_get_port()
 * @enable: if true enables the port, if false disables it
 *
 * Return:
 *	0 on success
 *	-ENODEV on port index out of range
 *	-EPERM if operation carried out on an ACE PORT
 */
int notrace __cci_control_port_by_index(u32 port, bool enable)
{
	if (port >= nb_cci_ports || ports[port].type == ACE_INVALID_PORT)
		return -ENODEV;
	/*
	 * CCI control for ports connected to CPUS is extremely fragile
	 * and must be made to go through a specific and controlled
	 * interface (ie cci_disable_port_by_cpu(); control by general purpose
	 * indexing is therefore disabled for ACE ports.
	 */
	if (ports[port].type == ACE_PORT)
		return -EPERM;

	cci_port_control(port, enable);
	return 0;
}
EXPORT_SYMBOL_GPL(__cci_control_port_by_index);

static const struct of_device_id arm_cci_ctrl_if_matches[] = {
	{.compatible = "arm,cci-400-ctrl-if", },
	{},
};

1393
static int cci_probe_ports(struct device_node *np)
1394 1395 1396
{
	struct cci_nb_ports const *cci_config;
	int ret, i, nb_ace = 0, nb_ace_lite = 0;
1397
	struct device_node *cp;
1398
	struct resource res;
1399 1400 1401
	const char *match_str;
	bool is_ace;

1402

1403 1404 1405 1406 1407 1408
	cci_config = of_match_node(arm_cci_matches, np)->data;
	if (!cci_config)
		return -ENODEV;

	nb_cci_ports = cci_config->nb_ace + cci_config->nb_ace_lite;

1409
	ports = kcalloc(nb_cci_ports, sizeof(*ports), GFP_KERNEL);
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
	if (!ports)
		return -ENOMEM;

	for_each_child_of_node(np, cp) {
		if (!of_match_node(arm_cci_ctrl_if_matches, cp))
			continue;

		i = nb_ace + nb_ace_lite;

		if (i >= nb_cci_ports)
			break;

		if (of_property_read_string(cp, "interface-type",
					&match_str)) {
			WARN(1, "node %s missing interface-type property\n",
				  cp->full_name);
			continue;
		}
		is_ace = strcmp(match_str, "ace") == 0;
		if (!is_ace && strcmp(match_str, "ace-lite")) {
			WARN(1, "node %s containing invalid interface-type property, skipping it\n",
					cp->full_name);
			continue;
		}

1435 1436 1437 1438 1439 1440
		ret = of_address_to_resource(cp, 0, &res);
		if (!ret) {
			ports[i].base = ioremap(res.start, resource_size(&res));
			ports[i].phys = res.start;
		}
		if (ret || !ports[i].base) {
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
			WARN(1, "unable to ioremap CCI port %d\n", i);
			continue;
		}

		if (is_ace) {
			if (WARN_ON(nb_ace >= cci_config->nb_ace))
				continue;
			ports[i].type = ACE_PORT;
			++nb_ace;
		} else {
			if (WARN_ON(nb_ace_lite >= cci_config->nb_ace_lite))
				continue;
			ports[i].type = ACE_LITE_PORT;
			++nb_ace_lite;
		}
		ports[i].dn = cp;
	}

	 /* initialize a stashed array of ACE ports to speed-up look-up */
	cci_ace_init_ports();

	/*
	 * Multi-cluster systems may need this data when non-coherent, during
	 * cluster power-up/power-down. Make sure it reaches main memory.
	 */
	sync_cache_w(&cci_ctrl_base);
1467
	sync_cache_w(&cci_ctrl_phys);
1468 1469 1470 1471
	sync_cache_w(&ports);
	sync_cache_w(&cpu_port);
	__sync_cache_range_w(ports, sizeof(*ports) * nb_cci_ports);
	pr_info("ARM CCI driver probed\n");
1472

1473
	return 0;
1474
}
1475 1476 1477 1478 1479 1480
#else /* !CONFIG_ARM_CCI400_PORT_CTRL */
static inline int cci_probe_ports(struct device_node *np)
{
	return 0;
}
#endif /* CONFIG_ARM_CCI400_PORT_CTRL */
1481

1482 1483 1484 1485 1486
static int cci_probe(void)
{
	int ret;
	struct device_node *np;
	struct resource res;
1487

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	np = of_find_matching_node(NULL, arm_cci_matches);
	if(!np || !of_device_is_available(np))
		return -ENODEV;

	ret = of_address_to_resource(np, 0, &res);
	if (!ret) {
		cci_ctrl_base = ioremap(res.start, resource_size(&res));
		cci_ctrl_phys =	res.start;
	}
	if (ret || !cci_ctrl_base) {
		WARN(1, "unable to ioremap CCI ctrl\n");
		return -ENXIO;
	}

	return cci_probe_ports(np);
1503 1504 1505 1506 1507
}

static int cci_init_status = -EAGAIN;
static DEFINE_MUTEX(cci_probing);

1508
static int cci_init(void)
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
{
	if (cci_init_status != -EAGAIN)
		return cci_init_status;

	mutex_lock(&cci_probing);
	if (cci_init_status == -EAGAIN)
		cci_init_status = cci_probe();
	mutex_unlock(&cci_probing);
	return cci_init_status;
}

/*
 * To sort out early init calls ordering a helper function is provided to
 * check if the CCI driver has beed initialized. Function check if the driver
 * has been initialized, if not it calls the init function that probes
 * the driver and updates the return value.
 */
1526
bool cci_probed(void)
1527 1528 1529 1530 1531 1532
{
	return cci_init() == 0;
}
EXPORT_SYMBOL_GPL(cci_probed);

early_initcall(cci_init);
1533
core_initcall(cci_platform_init);
1534 1535
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("ARM CCI support");