machine_kexec_64.c 12.9 KB
Newer Older
1
/*
D
Dave Jones 已提交
2
 * handle transition of Linux booting another kernel
3 4 5 6 7 8
 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
 *
 * This source code is licensed under the GNU General Public License,
 * Version 2.  See the file COPYING for more details.
 */

9 10
#define pr_fmt(fmt)	"kexec: " fmt

11 12 13
#include <linux/mm.h>
#include <linux/kexec.h>
#include <linux/string.h>
14
#include <linux/gfp.h>
15
#include <linux/reboot.h>
K
Ken'ichi Ohmichi 已提交
16
#include <linux/numa.h>
I
Ingo Molnar 已提交
17
#include <linux/ftrace.h>
18
#include <linux/io.h>
19
#include <linux/suspend.h>
I
Ingo Molnar 已提交
20

21
#include <asm/init.h>
22 23 24
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
25
#include <asm/io_apic.h>
26
#include <asm/debugreg.h>
27
#include <asm/kexec-bzimage64.h>
J
Jiri Kosina 已提交
28
#include <asm/setup.h>
29

30
#ifdef CONFIG_KEXEC_FILE
31
static struct kexec_file_ops *kexec_file_loaders[] = {
32
		&kexec_bzImage64_ops,
33
};
34
#endif
35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
static void free_transition_pgtable(struct kimage *image)
{
	free_page((unsigned long)image->arch.pud);
	free_page((unsigned long)image->arch.pmd);
	free_page((unsigned long)image->arch.pte);
}

static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
{
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	unsigned long vaddr, paddr;
	int result = -ENOMEM;

	vaddr = (unsigned long)relocate_kernel;
	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
	pgd += pgd_index(vaddr);
	if (!pgd_present(*pgd)) {
		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
		if (!pud)
			goto err;
		image->arch.pud = pud;
		set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
	}
	pud = pud_offset(pgd, vaddr);
	if (!pud_present(*pud)) {
		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
		if (!pmd)
			goto err;
		image->arch.pmd = pmd;
		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
	}
	pmd = pmd_offset(pud, vaddr);
	if (!pmd_present(*pmd)) {
		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
		if (!pte)
			goto err;
		image->arch.pte = pte;
		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
	}
	pte = pte_offset_kernel(pmd, vaddr);
	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
	return 0;
err:
	free_transition_pgtable(image);
	return result;
}

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
static void *alloc_pgt_page(void *data)
{
	struct kimage *image = (struct kimage *)data;
	struct page *page;
	void *p = NULL;

	page = kimage_alloc_control_pages(image, 0);
	if (page) {
		p = page_address(page);
		clear_page(p);
	}

	return p;
}

100 101
static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
{
102 103 104 105 106
	struct x86_mapping_info info = {
		.alloc_pgt_page	= alloc_pgt_page,
		.context	= image,
		.pmd_flag	= __PAGE_KERNEL_LARGE_EXEC,
	};
107
	unsigned long mstart, mend;
108
	pgd_t *level4p;
109
	int result;
110 111
	int i;

112
	level4p = (pgd_t *)__va(start_pgtable);
113
	clear_page(level4p);
114 115 116 117 118 119 120 121 122
	for (i = 0; i < nr_pfn_mapped; i++) {
		mstart = pfn_mapped[i].start << PAGE_SHIFT;
		mend   = pfn_mapped[i].end << PAGE_SHIFT;

		result = kernel_ident_mapping_init(&info,
						 level4p, mstart, mend);
		if (result)
			return result;
	}
123

124
	/*
125 126 127 128
	 * segments's mem ranges could be outside 0 ~ max_pfn,
	 * for example when jump back to original kernel from kexeced kernel.
	 * or first kernel is booted with user mem map, and second kernel
	 * could be loaded out of that range.
129
	 */
130 131 132 133
	for (i = 0; i < image->nr_segments; i++) {
		mstart = image->segment[i].mem;
		mend   = mstart + image->segment[i].memsz;

134 135
		result = kernel_ident_mapping_init(&info,
						 level4p, mstart, mend);
136 137 138 139 140

		if (result)
			return result;
	}

141
	return init_transition_pgtable(image, level4p);
142 143 144 145
}

static void set_idt(void *newidt, u16 limit)
{
146
	struct desc_ptr curidt;
147 148

	/* x86-64 supports unaliged loads & stores */
149 150
	curidt.size    = limit;
	curidt.address = (unsigned long)newidt;
151 152

	__asm__ __volatile__ (
153 154
		"lidtq %0\n"
		: : "m" (curidt)
155 156 157 158 159 160
		);
};


static void set_gdt(void *newgdt, u16 limit)
{
161
	struct desc_ptr curgdt;
162 163

	/* x86-64 supports unaligned loads & stores */
164 165
	curgdt.size    = limit;
	curgdt.address = (unsigned long)newgdt;
166 167

	__asm__ __volatile__ (
168 169
		"lgdtq %0\n"
		: : "m" (curgdt)
170 171 172 173 174 175
		);
};

static void load_segments(void)
{
	__asm__ __volatile__ (
176 177 178 179 180
		"\tmovl %0,%%ds\n"
		"\tmovl %0,%%es\n"
		"\tmovl %0,%%ss\n"
		"\tmovl %0,%%fs\n"
		"\tmovl %0,%%gs\n"
M
Michael Matz 已提交
181
		: : "a" (__KERNEL_DS) : "memory"
182 183 184
		);
}

185
#ifdef CONFIG_KEXEC_FILE
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
/* Update purgatory as needed after various image segments have been prepared */
static int arch_update_purgatory(struct kimage *image)
{
	int ret = 0;

	if (!image->file_mode)
		return 0;

	/* Setup copying of backup region */
	if (image->type == KEXEC_TYPE_CRASH) {
		ret = kexec_purgatory_get_set_symbol(image, "backup_dest",
				&image->arch.backup_load_addr,
				sizeof(image->arch.backup_load_addr), 0);
		if (ret)
			return ret;

		ret = kexec_purgatory_get_set_symbol(image, "backup_src",
				&image->arch.backup_src_start,
				sizeof(image->arch.backup_src_start), 0);
		if (ret)
			return ret;

		ret = kexec_purgatory_get_set_symbol(image, "backup_sz",
				&image->arch.backup_src_sz,
				sizeof(image->arch.backup_src_sz), 0);
		if (ret)
			return ret;
	}

	return ret;
}
217 218 219 220 221 222
#else /* !CONFIG_KEXEC_FILE */
static inline int arch_update_purgatory(struct kimage *image)
{
	return 0;
}
#endif /* CONFIG_KEXEC_FILE */
223

224 225
int machine_kexec_prepare(struct kimage *image)
{
226
	unsigned long start_pgtable;
227 228 229
	int result;

	/* Calculate the offsets */
M
Maneesh Soni 已提交
230
	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
231 232 233

	/* Setup the identity mapped 64bit page table */
	result = init_pgtable(image, start_pgtable);
M
Maneesh Soni 已提交
234
	if (result)
235 236
		return result;

237 238 239 240 241
	/* update purgatory as needed */
	result = arch_update_purgatory(image);
	if (result)
		return result;

242 243 244 245 246
	return 0;
}

void machine_kexec_cleanup(struct kimage *image)
{
247
	free_transition_pgtable(image);
248 249 250 251 252 253
}

/*
 * Do not allocate memory (or fail in any way) in machine_kexec().
 * We are past the point of no return, committed to rebooting now.
 */
H
Huang Ying 已提交
254
void machine_kexec(struct kimage *image)
255
{
256 257
	unsigned long page_list[PAGES_NR];
	void *control_page;
258
	int save_ftrace_enabled;
259

260
#ifdef CONFIG_KEXEC_JUMP
261
	if (image->preserve_context)
262 263 264 265
		save_processor_state();
#endif

	save_ftrace_enabled = __ftrace_enabled_save();
I
Ingo Molnar 已提交
266

267 268
	/* Interrupts aren't acceptable while we reboot */
	local_irq_disable();
269
	hw_breakpoint_disable();
270

271 272 273 274 275 276 277 278 279 280 281 282 283
	if (image->preserve_context) {
#ifdef CONFIG_X86_IO_APIC
		/*
		 * We need to put APICs in legacy mode so that we can
		 * get timer interrupts in second kernel. kexec/kdump
		 * paths already have calls to disable_IO_APIC() in
		 * one form or other. kexec jump path also need
		 * one.
		 */
		disable_IO_APIC();
#endif
	}

284
	control_page = page_address(image->control_code_page) + PAGE_SIZE;
285
	memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
286

287
	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
288
	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
289 290
	page_list[PA_TABLE_PAGE] =
	  (unsigned long)__pa(page_address(image->control_code_page));
291

292 293 294 295
	if (image->type == KEXEC_TYPE_DEFAULT)
		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
						<< PAGE_SHIFT);

296 297
	/*
	 * The segment registers are funny things, they have both a
298 299 300 301
	 * visible and an invisible part.  Whenever the visible part is
	 * set to a specific selector, the invisible part is loaded
	 * with from a table in memory.  At no other time is the
	 * descriptor table in memory accessed.
302 303 304 305 306
	 *
	 * I take advantage of this here by force loading the
	 * segments, before I zap the gdt with an invalid value.
	 */
	load_segments();
307 308
	/*
	 * The gdt & idt are now invalid.
309 310
	 * If you want to load them you must set up your own idt & gdt.
	 */
311 312
	set_gdt(phys_to_virt(0), 0);
	set_idt(phys_to_virt(0), 0);
313

314
	/* now call it */
315 316 317 318 319 320
	image->start = relocate_kernel((unsigned long)image->head,
				       (unsigned long)page_list,
				       image->start,
				       image->preserve_context);

#ifdef CONFIG_KEXEC_JUMP
321
	if (image->preserve_context)
322 323 324 325
		restore_processor_state();
#endif

	__ftrace_enabled_restore(save_ftrace_enabled);
326
}
327

K
Ken'ichi Ohmichi 已提交
328 329
void arch_crash_save_vmcoreinfo(void)
{
330
	VMCOREINFO_SYMBOL(phys_base);
331
	VMCOREINFO_SYMBOL(init_level4_pgt);
332 333 334 335 336

#ifdef CONFIG_NUMA
	VMCOREINFO_SYMBOL(node_data);
	VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
#endif
337
	vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
J
Jiri Kosina 已提交
338
			      kaslr_offset());
K
Ken'ichi Ohmichi 已提交
339 340
}

341 342
/* arch-dependent functionality related to kexec file-based syscall */

343
#ifdef CONFIG_KEXEC_FILE
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
				  unsigned long buf_len)
{
	int i, ret = -ENOEXEC;
	struct kexec_file_ops *fops;

	for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
		fops = kexec_file_loaders[i];
		if (!fops || !fops->probe)
			continue;

		ret = fops->probe(buf, buf_len);
		if (!ret) {
			image->fops = fops;
			return ret;
		}
	}

	return ret;
}

void *arch_kexec_kernel_image_load(struct kimage *image)
{
367 368 369
	vfree(image->arch.elf_headers);
	image->arch.elf_headers = NULL;

370 371 372 373 374 375 376 377 378 379 380 381 382 383
	if (!image->fops || !image->fops->load)
		return ERR_PTR(-ENOEXEC);

	return image->fops->load(image, image->kernel_buf,
				 image->kernel_buf_len, image->initrd_buf,
				 image->initrd_buf_len, image->cmdline_buf,
				 image->cmdline_buf_len);
}

int arch_kimage_file_post_load_cleanup(struct kimage *image)
{
	if (!image->fops || !image->fops->cleanup)
		return 0;

384
	return image->fops->cleanup(image->image_loader_data);
385
}
386

387 388 389 390 391 392 393 394 395 396 397
int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel,
				 unsigned long kernel_len)
{
	if (!image->fops || !image->fops->verify_sig) {
		pr_debug("kernel loader does not support signature verification.");
		return -EKEYREJECTED;
	}

	return image->fops->verify_sig(kernel, kernel_len);
}

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
/*
 * Apply purgatory relocations.
 *
 * ehdr: Pointer to elf headers
 * sechdrs: Pointer to section headers.
 * relsec: section index of SHT_RELA section.
 *
 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
 */
int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
				     Elf64_Shdr *sechdrs, unsigned int relsec)
{
	unsigned int i;
	Elf64_Rela *rel;
	Elf64_Sym *sym;
	void *location;
	Elf64_Shdr *section, *symtabsec;
	unsigned long address, sec_base, value;
	const char *strtab, *name, *shstrtab;

	/*
	 * ->sh_offset has been modified to keep the pointer to section
	 * contents in memory
	 */
	rel = (void *)sechdrs[relsec].sh_offset;

	/* Section to which relocations apply */
	section = &sechdrs[sechdrs[relsec].sh_info];

	pr_debug("Applying relocate section %u to %u\n", relsec,
		 sechdrs[relsec].sh_info);

	/* Associated symbol table */
	symtabsec = &sechdrs[sechdrs[relsec].sh_link];

	/* String table */
	if (symtabsec->sh_link >= ehdr->e_shnum) {
		/* Invalid strtab section number */
		pr_err("Invalid string table section index %d\n",
		       symtabsec->sh_link);
		return -ENOEXEC;
	}

	strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;

	/* section header string table */
	shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;

	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {

		/*
		 * rel[i].r_offset contains byte offset from beginning
		 * of section to the storage unit affected.
		 *
		 * This is location to update (->sh_offset). This is temporary
		 * buffer where section is currently loaded. This will finally
		 * be loaded to a different address later, pointed to by
		 * ->sh_addr. kexec takes care of moving it
		 *  (kexec_load_segment()).
		 */
		location = (void *)(section->sh_offset + rel[i].r_offset);

		/* Final address of the location */
		address = section->sh_addr + rel[i].r_offset;

		/*
		 * rel[i].r_info contains information about symbol table index
		 * w.r.t which relocation must be made and type of relocation
		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
		 * these respectively.
		 */
		sym = (Elf64_Sym *)symtabsec->sh_offset +
				ELF64_R_SYM(rel[i].r_info);

		if (sym->st_name)
			name = strtab + sym->st_name;
		else
			name = shstrtab + sechdrs[sym->st_shndx].sh_name;

		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
			 name, sym->st_info, sym->st_shndx, sym->st_value,
			 sym->st_size);

		if (sym->st_shndx == SHN_UNDEF) {
			pr_err("Undefined symbol: %s\n", name);
			return -ENOEXEC;
		}

		if (sym->st_shndx == SHN_COMMON) {
			pr_err("symbol '%s' in common section\n", name);
			return -ENOEXEC;
		}

		if (sym->st_shndx == SHN_ABS)
			sec_base = 0;
		else if (sym->st_shndx >= ehdr->e_shnum) {
			pr_err("Invalid section %d for symbol %s\n",
			       sym->st_shndx, name);
			return -ENOEXEC;
		} else
			sec_base = sechdrs[sym->st_shndx].sh_addr;

		value = sym->st_value;
		value += sec_base;
		value += rel[i].r_addend;

		switch (ELF64_R_TYPE(rel[i].r_info)) {
		case R_X86_64_NONE:
			break;
		case R_X86_64_64:
			*(u64 *)location = value;
			break;
		case R_X86_64_32:
			*(u32 *)location = value;
			if (value != *(u32 *)location)
				goto overflow;
			break;
		case R_X86_64_32S:
			*(s32 *)location = value;
			if ((s64)value != *(s32 *)location)
				goto overflow;
			break;
		case R_X86_64_PC32:
			value -= (u64)address;
			*(u32 *)location = value;
			break;
		default:
			pr_err("Unknown rela relocation: %llu\n",
			       ELF64_R_TYPE(rel[i].r_info));
			return -ENOEXEC;
		}
	}
	return 0;

overflow:
	pr_err("Overflow in relocation type %d value 0x%lx\n",
	       (int)ELF64_R_TYPE(rel[i].r_info), value);
	return -ENOEXEC;
}
537
#endif /* CONFIG_KEXEC_FILE */