82571.c 48.5 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
4
  Copyright(c) 1999 - 2010 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/*
 * 82571EB Gigabit Ethernet Controller
31
 * 82571EB Gigabit Ethernet Controller (Copper)
32
 * 82571EB Gigabit Ethernet Controller (Fiber)
33 34 35
 * 82571EB Dual Port Gigabit Mezzanine Adapter
 * 82571EB Quad Port Gigabit Mezzanine Adapter
 * 82571PT Gigabit PT Quad Port Server ExpressModule
36 37 38 39 40 41
 * 82572EI Gigabit Ethernet Controller (Copper)
 * 82572EI Gigabit Ethernet Controller (Fiber)
 * 82572EI Gigabit Ethernet Controller
 * 82573V Gigabit Ethernet Controller (Copper)
 * 82573E Gigabit Ethernet Controller (Copper)
 * 82573L Gigabit Ethernet Controller
42
 * 82574L Gigabit Network Connection
43
 * 82583V Gigabit Network Connection
44 45 46 47 48 49 50 51 52 53 54 55
 */

#include "e1000.h"

#define ID_LED_RESERVED_F746 0xF746
#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
			      (ID_LED_OFF1_ON2  <<  8) | \
			      (ID_LED_DEF1_DEF2 <<  4) | \
			      (ID_LED_DEF1_DEF2))

#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000

56 57
#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */

58 59 60
static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
61
static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
62 63 64 65 66 67
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
				      u16 words, u16 *data);
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
static s32 e1000_setup_link_82571(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
68
static void e1000_clear_vfta_82571(struct e1000_hw *hw);
69 70
static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
static s32 e1000_led_on_82574(struct e1000_hw *hw);
71
static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
72
static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
73 74 75 76 77 78 79 80 81 82

/**
 *  e1000_init_phy_params_82571 - Init PHY func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;

83
	if (hw->phy.media_type != e1000_media_type_copper) {
84 85 86 87 88 89 90 91
		phy->type = e1000_phy_none;
		return 0;
	}

	phy->addr			 = 1;
	phy->autoneg_mask		 = AUTONEG_ADVERTISE_SPEED_DEFAULT;
	phy->reset_delay_us		 = 100;

92 93 94
	phy->ops.power_up		 = e1000_power_up_phy_copper;
	phy->ops.power_down		 = e1000_power_down_phy_copper_82571;

95 96 97 98 99 100 101 102
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		phy->type		 = e1000_phy_igp_2;
		break;
	case e1000_82573:
		phy->type		 = e1000_phy_m88;
		break;
103
	case e1000_82574:
104
	case e1000_82583:
105 106
		phy->type		 = e1000_phy_bm;
		break;
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
	default:
		return -E1000_ERR_PHY;
		break;
	}

	/* This can only be done after all function pointers are setup. */
	ret_val = e1000_get_phy_id_82571(hw);

	/* Verify phy id */
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		if (phy->id != IGP01E1000_I_PHY_ID)
			return -E1000_ERR_PHY;
		break;
	case e1000_82573:
		if (phy->id != M88E1111_I_PHY_ID)
			return -E1000_ERR_PHY;
		break;
126
	case e1000_82574:
127
	case e1000_82583:
128 129 130
		if (phy->id != BME1000_E_PHY_ID_R2)
			return -E1000_ERR_PHY;
		break;
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
	default:
		return -E1000_ERR_PHY;
		break;
	}

	return 0;
}

/**
 *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 eecd = er32(EECD);
	u16 size;

	nvm->opcode_bits = 8;
	nvm->delay_usec = 1;
	switch (nvm->override) {
	case e1000_nvm_override_spi_large:
		nvm->page_size = 32;
		nvm->address_bits = 16;
		break;
	case e1000_nvm_override_spi_small:
		nvm->page_size = 8;
		nvm->address_bits = 8;
		break;
	default:
		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
		break;
	}

	switch (hw->mac.type) {
	case e1000_82573:
168
	case e1000_82574:
169
	case e1000_82583:
170 171 172
		if (((eecd >> 15) & 0x3) == 0x3) {
			nvm->type = e1000_nvm_flash_hw;
			nvm->word_size = 2048;
173 174
			/*
			 * Autonomous Flash update bit must be cleared due
175 176 177 178 179 180 181 182
			 * to Flash update issue.
			 */
			eecd &= ~E1000_EECD_AUPDEN;
			ew32(EECD, eecd);
			break;
		}
		/* Fall Through */
	default:
183
		nvm->type = e1000_nvm_eeprom_spi;
184 185
		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
				  E1000_EECD_SIZE_EX_SHIFT);
186 187
		/*
		 * Added to a constant, "size" becomes the left-shift value
188 189 190
		 * for setting word_size.
		 */
		size += NVM_WORD_SIZE_BASE_SHIFT;
191 192 193 194

		/* EEPROM access above 16k is unsupported */
		if (size > 14)
			size = 14;
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
		nvm->word_size	= 1 << size;
		break;
	}

	return 0;
}

/**
 *  e1000_init_mac_params_82571 - Init MAC func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_mac_operations *func = &mac->ops;
211 212 213
	u32 swsm = 0;
	u32 swsm2 = 0;
	bool force_clear_smbi = false;
214 215 216 217 218 219

	/* Set media type */
	switch (adapter->pdev->device) {
	case E1000_DEV_ID_82571EB_FIBER:
	case E1000_DEV_ID_82572EI_FIBER:
	case E1000_DEV_ID_82571EB_QUAD_FIBER:
220
		hw->phy.media_type = e1000_media_type_fiber;
221 222 223
		break;
	case E1000_DEV_ID_82571EB_SERDES:
	case E1000_DEV_ID_82572EI_SERDES:
224 225
	case E1000_DEV_ID_82571EB_SERDES_DUAL:
	case E1000_DEV_ID_82571EB_SERDES_QUAD:
226
		hw->phy.media_type = e1000_media_type_internal_serdes;
227 228
		break;
	default:
229
		hw->phy.media_type = e1000_media_type_copper;
230 231 232 233 234 235 236
		break;
	}

	/* Set mta register count */
	mac->mta_reg_count = 128;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_RAR_ENTRIES;
237 238
	/* Adaptive IFS supported */
	mac->adaptive_ifs = true;
239 240

	/* check for link */
241
	switch (hw->phy.media_type) {
242 243 244 245 246 247
	case e1000_media_type_copper:
		func->setup_physical_interface = e1000_setup_copper_link_82571;
		func->check_for_link = e1000e_check_for_copper_link;
		func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
		break;
	case e1000_media_type_fiber:
248 249
		func->setup_physical_interface =
			e1000_setup_fiber_serdes_link_82571;
250
		func->check_for_link = e1000e_check_for_fiber_link;
251 252
		func->get_link_up_info =
			e1000e_get_speed_and_duplex_fiber_serdes;
253 254
		break;
	case e1000_media_type_internal_serdes:
255 256
		func->setup_physical_interface =
			e1000_setup_fiber_serdes_link_82571;
257
		func->check_for_link = e1000_check_for_serdes_link_82571;
258 259
		func->get_link_up_info =
			e1000e_get_speed_and_duplex_fiber_serdes;
260 261 262 263 264 265
		break;
	default:
		return -E1000_ERR_CONFIG;
		break;
	}

266
	switch (hw->mac.type) {
267 268 269 270
	case e1000_82573:
		func->set_lan_id = e1000_set_lan_id_single_port;
		func->check_mng_mode = e1000e_check_mng_mode_generic;
		func->led_on = e1000e_led_on_generic;
271 272 273 274 275 276 277 278 279 280

		/* FWSM register */
		mac->has_fwsm = true;
		/*
		 * ARC supported; valid only if manageability features are
		 * enabled.
		 */
		mac->arc_subsystem_valid =
			(er32(FWSM) & E1000_FWSM_MODE_MASK)
			? true : false;
281
		break;
282
	case e1000_82574:
283
	case e1000_82583:
284
		func->set_lan_id = e1000_set_lan_id_single_port;
285 286 287 288 289 290
		func->check_mng_mode = e1000_check_mng_mode_82574;
		func->led_on = e1000_led_on_82574;
		break;
	default:
		func->check_mng_mode = e1000e_check_mng_mode_generic;
		func->led_on = e1000e_led_on_generic;
291 292 293

		/* FWSM register */
		mac->has_fwsm = true;
294 295 296
		break;
	}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	/*
	 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
	 * first NVM or PHY acess. This should be done for single-port
	 * devices, and for one port only on dual-port devices so that
	 * for those devices we can still use the SMBI lock to synchronize
	 * inter-port accesses to the PHY & NVM.
	 */
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		swsm2 = er32(SWSM2);

		if (!(swsm2 & E1000_SWSM2_LOCK)) {
			/* Only do this for the first interface on this card */
			ew32(SWSM2,
			    swsm2 | E1000_SWSM2_LOCK);
			force_clear_smbi = true;
		} else
			force_clear_smbi = false;
		break;
	default:
		force_clear_smbi = true;
		break;
	}

	if (force_clear_smbi) {
		/* Make sure SWSM.SMBI is clear */
		swsm = er32(SWSM);
		if (swsm & E1000_SWSM_SMBI) {
			/* This bit should not be set on a first interface, and
			 * indicates that the bootagent or EFI code has
			 * improperly left this bit enabled
			 */
330
			e_dbg("Please update your 82571 Bootagent\n");
331 332 333 334 335
		}
		ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
	}

	/*
J
Joe Perches 已提交
336
	 * Initialize device specific counter of SMBI acquisition
337 338 339 340
	 * timeouts.
	 */
	 hw->dev_spec.e82571.smb_counter = 0;

341 342 343
	return 0;
}

J
Jeff Kirsher 已提交
344
static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
{
	struct e1000_hw *hw = &adapter->hw;
	static int global_quad_port_a; /* global port a indication */
	struct pci_dev *pdev = adapter->pdev;
	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
	s32 rc;

	rc = e1000_init_mac_params_82571(adapter);
	if (rc)
		return rc;

	rc = e1000_init_nvm_params_82571(hw);
	if (rc)
		return rc;

	rc = e1000_init_phy_params_82571(hw);
	if (rc)
		return rc;

	/* tag quad port adapters first, it's used below */
	switch (pdev->device) {
	case E1000_DEV_ID_82571EB_QUAD_COPPER:
	case E1000_DEV_ID_82571EB_QUAD_FIBER:
	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
369
	case E1000_DEV_ID_82571PT_QUAD_COPPER:
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
		adapter->flags |= FLAG_IS_QUAD_PORT;
		/* mark the first port */
		if (global_quad_port_a == 0)
			adapter->flags |= FLAG_IS_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		global_quad_port_a++;
		if (global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
	default:
		break;
	}

	switch (adapter->hw.mac.type) {
	case e1000_82571:
		/* these dual ports don't have WoL on port B at all */
		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
		    (is_port_b))
			adapter->flags &= ~FLAG_HAS_WOL;
		/* quad ports only support WoL on port A */
		if (adapter->flags & FLAG_IS_QUAD_PORT &&
R
Roel Kluin 已提交
393
		    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
394
			adapter->flags &= ~FLAG_HAS_WOL;
395 396 397
		/* Does not support WoL on any port */
		if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
			adapter->flags &= ~FLAG_HAS_WOL;
398 399
		break;
	case e1000_82573:
400 401 402 403 404
	case e1000_82574:
	case e1000_82583:
		/* Disable ASPM L0s due to hardware errata */
		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L0S);

405
		if (pdev->device == E1000_DEV_ID_82573L) {
406 407
			adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
			adapter->max_hw_frame_size = DEFAULT_JUMBO;
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
		}
		break;
	default:
		break;
	}

	return 0;
}

/**
 *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
 *  @hw: pointer to the HW structure
 *
 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
 *  revision in the hardware structure.
 **/
static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
427 428
	s32 ret_val;
	u16 phy_id = 0;
429 430 431 432

	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
433 434
		/*
		 * The 82571 firmware may still be configuring the PHY.
435 436
		 * In this case, we cannot access the PHY until the
		 * configuration is done.  So we explicitly set the
437 438
		 * PHY ID.
		 */
439 440 441 442 443
		phy->id = IGP01E1000_I_PHY_ID;
		break;
	case e1000_82573:
		return e1000e_get_phy_id(hw);
		break;
444
	case e1000_82574:
445
	case e1000_82583:
446 447 448 449 450 451 452 453 454 455 456 457 458
		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
		if (ret_val)
			return ret_val;

		phy->id = (u32)(phy_id << 16);
		udelay(20);
		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
		if (ret_val)
			return ret_val;

		phy->id |= (u32)(phy_id);
		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
		break;
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
	default:
		return -E1000_ERR_PHY;
		break;
	}

	return 0;
}

/**
 *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Acquire the HW semaphore to access the PHY or NVM
 **/
static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
{
	u32 swsm;
476 477
	s32 sw_timeout = hw->nvm.word_size + 1;
	s32 fw_timeout = hw->nvm.word_size + 1;
478 479
	s32 i = 0;

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
	/*
	 * If we have timedout 3 times on trying to acquire
	 * the inter-port SMBI semaphore, there is old code
	 * operating on the other port, and it is not
	 * releasing SMBI. Modify the number of times that
	 * we try for the semaphore to interwork with this
	 * older code.
	 */
	if (hw->dev_spec.e82571.smb_counter > 2)
		sw_timeout = 1;

	/* Get the SW semaphore */
	while (i < sw_timeout) {
		swsm = er32(SWSM);
		if (!(swsm & E1000_SWSM_SMBI))
			break;

		udelay(50);
		i++;
	}

	if (i == sw_timeout) {
502
		e_dbg("Driver can't access device - SMBI bit is set.\n");
503 504
		hw->dev_spec.e82571.smb_counter++;
	}
505
	/* Get the FW semaphore. */
506
	for (i = 0; i < fw_timeout; i++) {
507 508 509 510 511 512 513 514 515 516
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);

		/* Semaphore acquired if bit latched */
		if (er32(SWSM) & E1000_SWSM_SWESMBI)
			break;

		udelay(50);
	}

517
	if (i == fw_timeout) {
518
		/* Release semaphores */
519
		e1000_put_hw_semaphore_82571(hw);
520
		e_dbg("Driver can't access the NVM\n");
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
		return -E1000_ERR_NVM;
	}

	return 0;
}

/**
 *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Release hardware semaphore used to access the PHY or NVM
 **/
static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
{
	u32 swsm;

	swsm = er32(SWSM);
538
	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
	ew32(SWSM, swsm);
}

/**
 *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
 *  @hw: pointer to the HW structure
 *
 *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
 *  Then for non-82573 hardware, set the EEPROM access request bit and wait
 *  for EEPROM access grant bit.  If the access grant bit is not set, release
 *  hardware semaphore.
 **/
static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
{
	s32 ret_val;

	ret_val = e1000_get_hw_semaphore_82571(hw);
	if (ret_val)
		return ret_val;

559 560 561 562 563 564
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		break;
	default:
565
		ret_val = e1000e_acquire_nvm(hw);
566 567
		break;
	}
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596

	if (ret_val)
		e1000_put_hw_semaphore_82571(hw);

	return ret_val;
}

/**
 *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
 *  @hw: pointer to the HW structure
 *
 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
 **/
static void e1000_release_nvm_82571(struct e1000_hw *hw)
{
	e1000e_release_nvm(hw);
	e1000_put_hw_semaphore_82571(hw);
}

/**
 *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
 *  @hw: pointer to the HW structure
 *  @offset: offset within the EEPROM to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the EEPROM
 *
 *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
 *
 *  If e1000e_update_nvm_checksum is not called after this function, the
597
 *  EEPROM will most likely contain an invalid checksum.
598 599 600 601 602 603 604 605
 **/
static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
				 u16 *data)
{
	s32 ret_val;

	switch (hw->mac.type) {
	case e1000_82573:
606
	case e1000_82574:
607
	case e1000_82583:
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
		break;
	case e1000_82571:
	case e1000_82572:
		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
		break;
	default:
		ret_val = -E1000_ERR_NVM;
		break;
	}

	return ret_val;
}

/**
 *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 *  value to the EEPROM.
 **/
static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
{
	u32 eecd;
	s32 ret_val;
	u16 i;

	ret_val = e1000e_update_nvm_checksum_generic(hw);
	if (ret_val)
		return ret_val;

640 641 642 643
	/*
	 * If our nvm is an EEPROM, then we're done
	 * otherwise, commit the checksum to the flash NVM.
	 */
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
	if (hw->nvm.type != e1000_nvm_flash_hw)
		return ret_val;

	/* Check for pending operations. */
	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
		msleep(1);
		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
			break;
	}

	if (i == E1000_FLASH_UPDATES)
		return -E1000_ERR_NVM;

	/* Reset the firmware if using STM opcode. */
	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
659 660
		/*
		 * The enabling of and the actual reset must be done
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
		 * in two write cycles.
		 */
		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
		e1e_flush();
		ew32(HICR, E1000_HICR_FW_RESET);
	}

	/* Commit the write to flash */
	eecd = er32(EECD) | E1000_EECD_FLUPD;
	ew32(EECD, eecd);

	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
		msleep(1);
		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
			break;
	}

	if (i == E1000_FLASH_UPDATES)
		return -E1000_ERR_NVM;

	return 0;
}

/**
 *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 **/
static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
{
	if (hw->nvm.type == e1000_nvm_flash_hw)
		e1000_fix_nvm_checksum_82571(hw);

	return e1000e_validate_nvm_checksum_generic(hw);
}

/**
 *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
 *  @hw: pointer to the HW structure
 *  @offset: offset within the EEPROM to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the EEPROM
 *
 *  After checking for invalid values, poll the EEPROM to ensure the previous
 *  command has completed before trying to write the next word.  After write
 *  poll for completion.
 *
 *  If e1000e_update_nvm_checksum is not called after this function, the
711
 *  EEPROM will most likely contain an invalid checksum.
712 713 714 715 716
 **/
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
				      u16 words, u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
717
	u32 i, eewr = 0;
718 719
	s32 ret_val = 0;

720 721 722 723
	/*
	 * A check for invalid values:  offset too large, too many words,
	 * and not enough words.
	 */
724 725
	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
	    (words == 0)) {
726
		e_dbg("nvm parameter(s) out of bounds\n");
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
		return -E1000_ERR_NVM;
	}

	for (i = 0; i < words; i++) {
		eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
		       ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
		       E1000_NVM_RW_REG_START;

		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
		if (ret_val)
			break;

		ew32(EEWR, eewr);

		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
		if (ret_val)
			break;
	}

	return ret_val;
}

/**
 *  e1000_get_cfg_done_82571 - Poll for configuration done
 *  @hw: pointer to the HW structure
 *
 *  Reads the management control register for the config done bit to be set.
 **/
static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
{
	s32 timeout = PHY_CFG_TIMEOUT;

	while (timeout) {
		if (er32(EEMNGCTL) &
		    E1000_NVM_CFG_DONE_PORT_0)
			break;
		msleep(1);
		timeout--;
	}
	if (!timeout) {
767
		e_dbg("MNG configuration cycle has not completed.\n");
768 769 770 771 772 773 774 775 776
		return -E1000_ERR_RESET;
	}

	return 0;
}

/**
 *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
777
 *  @active: true to enable LPLU, false to disable
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
 *
 *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
 *  this function also disables smart speed and vice versa.  LPLU will not be
 *  activated unless the device autonegotiation advertisement meets standards
 *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
 *  pointer entry point only called by PHY setup routines.
 **/
static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
	if (ret_val)
		return ret_val;

	if (active) {
		data |= IGP02E1000_PM_D0_LPLU;
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
		if (ret_val)
			return ret_val;

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
		if (ret_val)
			return ret_val;
	} else {
		data &= ~IGP02E1000_PM_D0_LPLU;
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
810 811
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
812 813
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
814 815
		 * SmartSpeed, so performance is maintained.
		 */
816 817
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
818
					   &data);
819 820 821 822 823
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
824
					   data);
825 826 827 828
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
829
					   &data);
830 831 832 833 834
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
835
					   data);
836 837 838 839 840 841 842 843 844 845 846 847
			if (ret_val)
				return ret_val;
		}
	}

	return 0;
}

/**
 *  e1000_reset_hw_82571 - Reset hardware
 *  @hw: pointer to the HW structure
 *
848
 *  This resets the hardware into a known state.
849 850 851
 **/
static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
{
852
	u32 ctrl, extcnf_ctrl, ctrl_ext, icr;
853 854 855
	s32 ret_val;
	u16 i = 0;

856 857
	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
858 859 860 861
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000e_disable_pcie_master(hw);
	if (ret_val)
862
		e_dbg("PCI-E Master disable polling has failed.\n");
863

864
	e_dbg("Masking off all interrupts\n");
865 866 867 868 869 870 871 872
	ew32(IMC, 0xffffffff);

	ew32(RCTL, 0);
	ew32(TCTL, E1000_TCTL_PSP);
	e1e_flush();

	msleep(10);

873 874 875 876
	/*
	 * Must acquire the MDIO ownership before MAC reset.
	 * Ownership defaults to firmware after a reset.
	 */
877 878 879 880
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
		extcnf_ctrl = er32(EXTCNF_CTRL);
		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;

		do {
			ew32(EXTCNF_CTRL, extcnf_ctrl);
			extcnf_ctrl = er32(EXTCNF_CTRL);

			if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
				break;

			extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;

			msleep(2);
			i++;
		} while (i < MDIO_OWNERSHIP_TIMEOUT);
896 897 898
		break;
	default:
		break;
899 900 901 902
	}

	ctrl = er32(CTRL);

903
	e_dbg("Issuing a global reset to MAC\n");
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
	ew32(CTRL, ctrl | E1000_CTRL_RST);

	if (hw->nvm.type == e1000_nvm_flash_hw) {
		udelay(10);
		ctrl_ext = er32(CTRL_EXT);
		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
		ew32(CTRL_EXT, ctrl_ext);
		e1e_flush();
	}

	ret_val = e1000e_get_auto_rd_done(hw);
	if (ret_val)
		/* We don't want to continue accessing MAC registers. */
		return ret_val;

919 920
	/*
	 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
921 922 923
	 * Need to wait for Phy configuration completion before accessing
	 * NVM and Phy.
	 */
924 925 926 927 928

	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
929
		msleep(25);
930 931 932 933
		break;
	default:
		break;
	}
934 935 936 937 938

	/* Clear any pending interrupt events. */
	ew32(IMC, 0xffffffff);
	icr = er32(ICR);

939 940 941 942 943 944
	/* Install any alternate MAC address into RAR0 */
	ret_val = e1000_check_alt_mac_addr_generic(hw);
	if (ret_val)
		return ret_val;

	e1000e_set_laa_state_82571(hw, true);
945

946 947 948 949
	/* Reinitialize the 82571 serdes link state machine */
	if (hw->phy.media_type == e1000_media_type_internal_serdes)
		hw->mac.serdes_link_state = e1000_serdes_link_down;

950 951 952 953 954 955 956 957 958 959 960 961 962 963
	return 0;
}

/**
 *  e1000_init_hw_82571 - Initialize hardware
 *  @hw: pointer to the HW structure
 *
 *  This inits the hardware readying it for operation.
 **/
static s32 e1000_init_hw_82571(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 reg_data;
	s32 ret_val;
964
	u16 i, rar_count = mac->rar_entry_count;
965 966 967 968 969

	e1000_initialize_hw_bits_82571(hw);

	/* Initialize identification LED */
	ret_val = e1000e_id_led_init(hw);
970
	if (ret_val)
971
		e_dbg("Error initializing identification LED\n");
972
		/* This is not fatal and we should not stop init due to this */
973 974

	/* Disabling VLAN filtering */
975
	e_dbg("Initializing the IEEE VLAN\n");
976
	mac->ops.clear_vfta(hw);
977 978

	/* Setup the receive address. */
979 980
	/*
	 * If, however, a locally administered address was assigned to the
981 982 983 984 985 986 987 988
	 * 82571, we must reserve a RAR for it to work around an issue where
	 * resetting one port will reload the MAC on the other port.
	 */
	if (e1000e_get_laa_state_82571(hw))
		rar_count--;
	e1000e_init_rx_addrs(hw, rar_count);

	/* Zero out the Multicast HASH table */
989
	e_dbg("Zeroing the MTA\n");
990 991 992 993 994 995 996
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

	/* Setup link and flow control */
	ret_val = e1000_setup_link_82571(hw);

	/* Set the transmit descriptor write-back policy */
997
	reg_data = er32(TXDCTL(0));
998 999 1000
	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
		   E1000_TXDCTL_FULL_TX_DESC_WB |
		   E1000_TXDCTL_COUNT_DESC;
1001
	ew32(TXDCTL(0), reg_data);
1002 1003

	/* ...for both queues. */
1004 1005
	switch (mac->type) {
	case e1000_82573:
1006 1007
		e1000e_enable_tx_pkt_filtering(hw);
		/* fall through */
1008 1009 1010 1011 1012 1013 1014
	case e1000_82574:
	case e1000_82583:
		reg_data = er32(GCR);
		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
		ew32(GCR, reg_data);
		break;
	default:
1015
		reg_data = er32(TXDCTL(1));
1016 1017 1018
		reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
			   E1000_TXDCTL_FULL_TX_DESC_WB |
			   E1000_TXDCTL_COUNT_DESC;
1019
		ew32(TXDCTL(1), reg_data);
1020
		break;
1021 1022
	}

1023 1024
	/*
	 * Clear all of the statistics registers (clear on read).  It is
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_82571(hw);

	return ret_val;
}

/**
 *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
 *  @hw: pointer to the HW structure
 *
 *  Initializes required hardware-dependent bits needed for normal operation.
 **/
static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
{
	u32 reg;

	/* Transmit Descriptor Control 0 */
1045
	reg = er32(TXDCTL(0));
1046
	reg |= (1 << 22);
1047
	ew32(TXDCTL(0), reg);
1048 1049

	/* Transmit Descriptor Control 1 */
1050
	reg = er32(TXDCTL(1));
1051
	reg |= (1 << 22);
1052
	ew32(TXDCTL(1), reg);
1053 1054

	/* Transmit Arbitration Control 0 */
1055
	reg = er32(TARC(0));
1056 1057 1058 1059 1060 1061 1062 1063 1064
	reg &= ~(0xF << 27); /* 30:27 */
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
		break;
	default:
		break;
	}
1065
	ew32(TARC(0), reg);
1066 1067

	/* Transmit Arbitration Control 1 */
1068
	reg = er32(TARC(1));
1069 1070 1071 1072 1073 1074 1075 1076 1077
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		reg &= ~((1 << 29) | (1 << 30));
		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
		if (er32(TCTL) & E1000_TCTL_MULR)
			reg &= ~(1 << 28);
		else
			reg |= (1 << 28);
1078
		ew32(TARC(1), reg);
1079 1080 1081 1082 1083 1084
		break;
	default:
		break;
	}

	/* Device Control */
1085 1086 1087 1088
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
1089 1090 1091
		reg = er32(CTRL);
		reg &= ~(1 << 29);
		ew32(CTRL, reg);
1092 1093 1094
		break;
	default:
		break;
1095 1096 1097
	}

	/* Extended Device Control */
1098 1099 1100 1101
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
1102 1103 1104 1105
		reg = er32(CTRL_EXT);
		reg &= ~(1 << 23);
		reg |= (1 << 22);
		ew32(CTRL_EXT, reg);
1106 1107 1108
		break;
	default:
		break;
1109
	}
1110

1111 1112 1113 1114 1115
	if (hw->mac.type == e1000_82571) {
		reg = er32(PBA_ECC);
		reg |= E1000_PBA_ECC_CORR_EN;
		ew32(PBA_ECC, reg);
	}
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	/*
	 * Workaround for hardware errata.
	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
	 */

        if ((hw->mac.type == e1000_82571) ||
           (hw->mac.type == e1000_82572)) {
                reg = er32(CTRL_EXT);
                reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
                ew32(CTRL_EXT, reg);
        }

1128

J
Jesse Brandeburg 已提交
1129
	/* PCI-Ex Control Registers */
1130 1131 1132
	switch (hw->mac.type) {
	case e1000_82574:
	case e1000_82583:
1133 1134 1135
		reg = er32(GCR);
		reg |= (1 << 22);
		ew32(GCR, reg);
J
Jesse Brandeburg 已提交
1136

1137 1138 1139 1140 1141 1142 1143
		/*
		 * Workaround for hardware errata.
		 * apply workaround for hardware errata documented in errata
		 * docs Fixes issue where some error prone or unreliable PCIe
		 * completions are occurring, particularly with ASPM enabled.
		 * Without fix, issue can cause tx timeouts.
		 */
J
Jesse Brandeburg 已提交
1144 1145 1146
		reg = er32(GCR2);
		reg |= 1;
		ew32(GCR2, reg);
1147 1148 1149
		break;
	default:
		break;
1150
	}
1151 1152 1153
}

/**
1154
 *  e1000_clear_vfta_82571 - Clear VLAN filter table
1155 1156 1157 1158 1159
 *  @hw: pointer to the HW structure
 *
 *  Clears the register array which contains the VLAN filter table by
 *  setting all the values to 0.
 **/
1160
static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1161 1162 1163 1164 1165 1166
{
	u32 offset;
	u32 vfta_value = 0;
	u32 vfta_offset = 0;
	u32 vfta_bit_in_reg = 0;

1167 1168 1169 1170
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
1171
		if (hw->mng_cookie.vlan_id != 0) {
1172 1173
			/*
			 * The VFTA is a 4096b bit-field, each identifying
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
			 * a single VLAN ID.  The following operations
			 * determine which 32b entry (i.e. offset) into the
			 * array we want to set the VLAN ID (i.e. bit) of
			 * the manageability unit.
			 */
			vfta_offset = (hw->mng_cookie.vlan_id >>
				       E1000_VFTA_ENTRY_SHIFT) &
				      E1000_VFTA_ENTRY_MASK;
			vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
					       E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
		}
1185 1186 1187
		break;
	default:
		break;
1188 1189
	}
	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1190 1191
		/*
		 * If the offset we want to clear is the same offset of the
1192 1193 1194 1195 1196 1197 1198 1199 1200
		 * manageability VLAN ID, then clear all bits except that of
		 * the manageability unit.
		 */
		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
		e1e_flush();
	}
}

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
/**
 *  e1000_check_mng_mode_82574 - Check manageability is enabled
 *  @hw: pointer to the HW structure
 *
 *  Reads the NVM Initialization Control Word 2 and returns true
 *  (>0) if any manageability is enabled, else false (0).
 **/
static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
{
	u16 data;

	e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
}

/**
 *  e1000_led_on_82574 - Turn LED on
 *  @hw: pointer to the HW structure
 *
 *  Turn LED on.
 **/
static s32 e1000_led_on_82574(struct e1000_hw *hw)
{
	u32 ctrl;
	u32 i;

	ctrl = hw->mac.ledctl_mode2;
	if (!(E1000_STATUS_LU & er32(STATUS))) {
		/*
		 * If no link, then turn LED on by setting the invert bit
		 * for each LED that's "on" (0x0E) in ledctl_mode2.
		 */
		for (i = 0; i < 4; i++)
			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
			    E1000_LEDCTL_MODE_LED_ON)
				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
	}
	ew32(LEDCTL, ctrl);

	return 0;
}

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
/**
 *  e1000_setup_link_82571 - Setup flow control and link settings
 *  @hw: pointer to the HW structure
 *
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
static s32 e1000_setup_link_82571(struct e1000_hw *hw)
{
1255 1256
	/*
	 * 82573 does not have a word in the NVM to determine
1257 1258 1259
	 * the default flow control setting, so we explicitly
	 * set it to full.
	 */
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		if (hw->fc.requested_mode == e1000_fc_default)
			hw->fc.requested_mode = e1000_fc_full;
		break;
	default:
		break;
	}
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293

	return e1000e_setup_link(hw);
}

/**
 *  e1000_setup_copper_link_82571 - Configure copper link settings
 *  @hw: pointer to the HW structure
 *
 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
 *  for link, once link is established calls to configure collision distance
 *  and flow control are called.
 **/
static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ew32(CTRL, ctrl);

	switch (hw->phy.type) {
	case e1000_phy_m88:
1294
	case e1000_phy_bm:
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
		ret_val = e1000e_copper_link_setup_m88(hw);
		break;
	case e1000_phy_igp_2:
		ret_val = e1000e_copper_link_setup_igp(hw);
		break;
	default:
		return -E1000_ERR_PHY;
		break;
	}

	if (ret_val)
		return ret_val;

	ret_val = e1000e_setup_copper_link(hw);

	return ret_val;
}

/**
 *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
 *  @hw: pointer to the HW structure
 *
 *  Configures collision distance and flow control for fiber and serdes links.
 *  Upon successful setup, poll for link.
 **/
static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
{
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
1325 1326
		/*
		 * If SerDes loopback mode is entered, there is no form
1327 1328
		 * of reset to take the adapter out of that mode.  So we
		 * have to explicitly take the adapter out of loopback
1329
		 * mode.  This prevents drivers from twiddling their thumbs
1330 1331
		 * if another tool failed to take it out of loopback mode.
		 */
1332
		ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1333 1334 1335 1336 1337 1338 1339 1340
		break;
	default:
		break;
	}

	return e1000e_setup_fiber_serdes_link(hw);
}

1341 1342 1343 1344
/**
 *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
 *  @hw: pointer to the HW structure
 *
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
 *  Reports the link state as up or down.
 *
 *  If autonegotiation is supported by the link partner, the link state is
 *  determined by the result of autonegotiation. This is the most likely case.
 *  If autonegotiation is not supported by the link partner, and the link
 *  has a valid signal, force the link up.
 *
 *  The link state is represented internally here by 4 states:
 *
 *  1) down
 *  2) autoneg_progress
D
Daniel Mack 已提交
1356
 *  3) autoneg_complete (the link successfully autonegotiated)
1357 1358
 *  4) forced_up (the link has been forced up, it did not autonegotiate)
 *
1359
 **/
1360
static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 rxcw;
	u32 ctrl;
	u32 status;
	s32 ret_val = 0;

	ctrl = er32(CTRL);
	status = er32(STATUS);
	rxcw = er32(RXCW);

	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {

		/* Receiver is synchronized with no invalid bits.  */
		switch (mac->serdes_link_state) {
		case e1000_serdes_link_autoneg_complete:
			if (!(status & E1000_STATUS_LU)) {
				/*
				 * We have lost link, retry autoneg before
				 * reporting link failure
				 */
				mac->serdes_link_state =
				    e1000_serdes_link_autoneg_progress;
1384
				mac->serdes_has_link = false;
1385
				e_dbg("AN_UP     -> AN_PROG\n");
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
			}
		break;

		case e1000_serdes_link_forced_up:
			/*
			 * If we are receiving /C/ ordered sets, re-enable
			 * auto-negotiation in the TXCW register and disable
			 * forced link in the Device Control register in an
			 * attempt to auto-negotiate with our link partner.
			 */
			if (rxcw & E1000_RXCW_C) {
				/* Enable autoneg, and unforce link up */
				ew32(TXCW, mac->txcw);
1399
				ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1400 1401
				mac->serdes_link_state =
				    e1000_serdes_link_autoneg_progress;
1402
				mac->serdes_has_link = false;
1403
				e_dbg("FORCED_UP -> AN_PROG\n");
1404 1405 1406 1407
			}
			break;

		case e1000_serdes_link_autoneg_progress:
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
			if (rxcw & E1000_RXCW_C) {
				/*
				 * We received /C/ ordered sets, meaning the
				 * link partner has autonegotiated, and we can
				 * trust the Link Up (LU) status bit.
				 */
				if (status & E1000_STATUS_LU) {
					mac->serdes_link_state =
					    e1000_serdes_link_autoneg_complete;
					e_dbg("AN_PROG   -> AN_UP\n");
					mac->serdes_has_link = true;
				} else {
					/* Autoneg completed, but failed. */
					mac->serdes_link_state =
					    e1000_serdes_link_down;
					e_dbg("AN_PROG   -> DOWN\n");
				}
1425 1426
			} else {
				/*
1427 1428 1429
				 * The link partner did not autoneg.
				 * Force link up and full duplex, and change
				 * state to forced.
1430
				 */
1431
				ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1432 1433 1434 1435
				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
				ew32(CTRL, ctrl);

				/* Configure Flow Control after link up. */
1436
				ret_val = e1000e_config_fc_after_link_up(hw);
1437
				if (ret_val) {
1438
					e_dbg("Error config flow control\n");
1439 1440 1441 1442
					break;
				}
				mac->serdes_link_state =
				    e1000_serdes_link_forced_up;
1443
				mac->serdes_has_link = true;
1444
				e_dbg("AN_PROG   -> FORCED_UP\n");
1445 1446 1447 1448 1449
			}
			break;

		case e1000_serdes_link_down:
		default:
1450 1451
			/*
			 * The link was down but the receiver has now gained
1452
			 * valid sync, so lets see if we can bring the link
1453 1454
			 * up.
			 */
1455
			ew32(TXCW, mac->txcw);
1456
			ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1457 1458
			mac->serdes_link_state =
			    e1000_serdes_link_autoneg_progress;
1459
			e_dbg("DOWN      -> AN_PROG\n");
1460 1461 1462 1463 1464 1465
			break;
		}
	} else {
		if (!(rxcw & E1000_RXCW_SYNCH)) {
			mac->serdes_has_link = false;
			mac->serdes_link_state = e1000_serdes_link_down;
1466
			e_dbg("ANYSTATE  -> DOWN\n");
1467 1468
		} else {
			/*
1469 1470 1471
			 * We have sync, and can tolerate one invalid (IV)
			 * codeword before declaring link down, so reread
			 * to look again.
1472 1473 1474 1475 1476 1477
			 */
			udelay(10);
			rxcw = er32(RXCW);
			if (rxcw & E1000_RXCW_IV) {
				mac->serdes_link_state = e1000_serdes_link_down;
				mac->serdes_has_link = false;
1478
				e_dbg("ANYSTATE  -> DOWN\n");
1479 1480 1481 1482 1483 1484 1485
			}
		}
	}

	return ret_val;
}

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
/**
 *  e1000_valid_led_default_82571 - Verify a valid default LED config
 *  @hw: pointer to the HW structure
 *  @data: pointer to the NVM (EEPROM)
 *
 *  Read the EEPROM for the current default LED configuration.  If the
 *  LED configuration is not valid, set to a valid LED configuration.
 **/
static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
1500
		e_dbg("NVM Read Error\n");
1501 1502 1503
		return ret_val;
	}

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		if (*data == ID_LED_RESERVED_F746)
			*data = ID_LED_DEFAULT_82573;
		break;
	default:
		if (*data == ID_LED_RESERVED_0000 ||
		    *data == ID_LED_RESERVED_FFFF)
			*data = ID_LED_DEFAULT;
		break;
	}
1517 1518 1519 1520 1521 1522 1523 1524

	return 0;
}

/**
 *  e1000e_get_laa_state_82571 - Get locally administered address state
 *  @hw: pointer to the HW structure
 *
1525
 *  Retrieve and return the current locally administered address state.
1526 1527 1528 1529
 **/
bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
{
	if (hw->mac.type != e1000_82571)
1530
		return false;
1531 1532 1533 1534 1535 1536 1537 1538 1539

	return hw->dev_spec.e82571.laa_is_present;
}

/**
 *  e1000e_set_laa_state_82571 - Set locally administered address state
 *  @hw: pointer to the HW structure
 *  @state: enable/disable locally administered address
 *
B
Bruce Allan 已提交
1540
 *  Enable/Disable the current locally administered address state.
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
 **/
void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
{
	if (hw->mac.type != e1000_82571)
		return;

	hw->dev_spec.e82571.laa_is_present = state;

	/* If workaround is activated... */
	if (state)
1551 1552
		/*
		 * Hold a copy of the LAA in RAR[14] This is done so that
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
		 * between the time RAR[0] gets clobbered and the time it
		 * gets fixed, the actual LAA is in one of the RARs and no
		 * incoming packets directed to this port are dropped.
		 * Eventually the LAA will be in RAR[0] and RAR[14].
		 */
		e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
}

/**
 *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Verifies that the EEPROM has completed the update.  After updating the
 *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
 *  the checksum fix is not implemented, we need to set the bit and update
 *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
 *  we need to return bad checksum.
 **/
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	s32 ret_val;
	u16 data;

	if (nvm->type != e1000_nvm_flash_hw)
		return 0;

1580 1581
	/*
	 * Check bit 4 of word 10h.  If it is 0, firmware is done updating
1582 1583 1584 1585 1586 1587 1588
	 * 10h-12h.  Checksum may need to be fixed.
	 */
	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
	if (ret_val)
		return ret_val;

	if (!(data & 0x10)) {
1589 1590
		/*
		 * Read 0x23 and check bit 15.  This bit is a 1
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
		 * when the checksum has already been fixed.  If
		 * the checksum is still wrong and this bit is a
		 * 1, we need to return bad checksum.  Otherwise,
		 * we need to set this bit to a 1 and update the
		 * checksum.
		 */
		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
		if (ret_val)
			return ret_val;

		if (!(data & 0x8000)) {
			data |= 0x8000;
			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
			if (ret_val)
				return ret_val;
			ret_val = e1000e_update_nvm_checksum(hw);
		}
	}

	return 0;
}

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
/**
 *  e1000_read_mac_addr_82571 - Read device MAC address
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
{
	s32 ret_val = 0;

	/*
	 * If there's an alternate MAC address place it in RAR0
	 * so that it will override the Si installed default perm
	 * address.
	 */
	ret_val = e1000_check_alt_mac_addr_generic(hw);
	if (ret_val)
		goto out;

	ret_val = e1000_read_mac_addr_generic(hw);

out:
	return ret_val;
}

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
/**
 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, remove the link.
 **/
static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	struct e1000_mac_info *mac = &hw->mac;

	if (!(phy->ops.check_reset_block))
		return;

	/* If the management interface is not enabled, then power down */
	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
		e1000_power_down_phy_copper(hw);
}

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
/**
 *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
 *  @hw: pointer to the HW structure
 *
 *  Clears the hardware counters by reading the counter registers.
 **/
static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
{
	e1000e_clear_hw_cntrs_base(hw);

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	er32(PRC64);
	er32(PRC127);
	er32(PRC255);
	er32(PRC511);
	er32(PRC1023);
	er32(PRC1522);
	er32(PTC64);
	er32(PTC127);
	er32(PTC255);
	er32(PTC511);
	er32(PTC1023);
	er32(PTC1522);

	er32(ALGNERRC);
	er32(RXERRC);
	er32(TNCRS);
	er32(CEXTERR);
	er32(TSCTC);
	er32(TSCTFC);

	er32(MGTPRC);
	er32(MGTPDC);
	er32(MGTPTC);

	er32(IAC);
	er32(ICRXOC);

	er32(ICRXPTC);
	er32(ICRXATC);
	er32(ICTXPTC);
	er32(ICTXATC);
	er32(ICTXQEC);
	er32(ICTXQMTC);
	er32(ICRXDMTC);
1700 1701 1702
}

static struct e1000_mac_operations e82571_mac_ops = {
1703
	/* .check_mng_mode: mac type dependent */
1704
	/* .check_for_link: media type dependent */
1705
	.id_led_init		= e1000e_id_led_init,
1706 1707 1708
	.cleanup_led		= e1000e_cleanup_led_generic,
	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
	.get_bus_info		= e1000e_get_bus_info_pcie,
1709
	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1710
	/* .get_link_up_info: media type dependent */
1711
	/* .led_on: mac type dependent */
1712
	.led_off		= e1000e_led_off_generic,
1713
	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1714 1715
	.write_vfta		= e1000_write_vfta_generic,
	.clear_vfta		= e1000_clear_vfta_82571,
1716 1717 1718 1719
	.reset_hw		= e1000_reset_hw_82571,
	.init_hw		= e1000_init_hw_82571,
	.setup_link		= e1000_setup_link_82571,
	/* .setup_physical_interface: media type dependent */
1720
	.setup_led		= e1000e_setup_led_generic,
1721
	.read_mac_addr		= e1000_read_mac_addr_82571,
1722 1723 1724
};

static struct e1000_phy_operations e82_phy_ops_igp = {
1725
	.acquire		= e1000_get_hw_semaphore_82571,
1726
	.check_polarity		= e1000_check_polarity_igp,
1727
	.check_reset_block	= e1000e_check_reset_block_generic,
1728
	.commit			= NULL,
1729 1730 1731
	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
	.get_cfg_done		= e1000_get_cfg_done_82571,
	.get_cable_length	= e1000e_get_cable_length_igp_2,
1732 1733 1734 1735
	.get_info		= e1000e_get_phy_info_igp,
	.read_reg		= e1000e_read_phy_reg_igp,
	.release		= e1000_put_hw_semaphore_82571,
	.reset			= e1000e_phy_hw_reset_generic,
1736 1737
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1738
	.write_reg		= e1000e_write_phy_reg_igp,
B
Bruce Allan 已提交
1739
	.cfg_on_link_up      	= NULL,
1740 1741 1742
};

static struct e1000_phy_operations e82_phy_ops_m88 = {
1743
	.acquire		= e1000_get_hw_semaphore_82571,
1744
	.check_polarity		= e1000_check_polarity_m88,
1745
	.check_reset_block	= e1000e_check_reset_block_generic,
1746
	.commit			= e1000e_phy_sw_reset,
1747 1748 1749
	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
	.get_cfg_done		= e1000e_get_cfg_done,
	.get_cable_length	= e1000e_get_cable_length_m88,
1750 1751 1752 1753
	.get_info		= e1000e_get_phy_info_m88,
	.read_reg		= e1000e_read_phy_reg_m88,
	.release		= e1000_put_hw_semaphore_82571,
	.reset			= e1000e_phy_hw_reset_generic,
1754 1755
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1756
	.write_reg		= e1000e_write_phy_reg_m88,
B
Bruce Allan 已提交
1757
	.cfg_on_link_up      	= NULL,
1758 1759
};

1760
static struct e1000_phy_operations e82_phy_ops_bm = {
1761
	.acquire		= e1000_get_hw_semaphore_82571,
1762
	.check_polarity		= e1000_check_polarity_m88,
1763
	.check_reset_block	= e1000e_check_reset_block_generic,
1764
	.commit			= e1000e_phy_sw_reset,
1765 1766 1767
	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
	.get_cfg_done		= e1000e_get_cfg_done,
	.get_cable_length	= e1000e_get_cable_length_m88,
1768 1769 1770 1771
	.get_info		= e1000e_get_phy_info_m88,
	.read_reg		= e1000e_read_phy_reg_bm2,
	.release		= e1000_put_hw_semaphore_82571,
	.reset			= e1000e_phy_hw_reset_generic,
1772 1773
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1774
	.write_reg		= e1000e_write_phy_reg_bm2,
B
Bruce Allan 已提交
1775
	.cfg_on_link_up      	= NULL,
1776 1777
};

1778
static struct e1000_nvm_operations e82571_nvm_ops = {
1779 1780 1781 1782
	.acquire		= e1000_acquire_nvm_82571,
	.read			= e1000e_read_nvm_eerd,
	.release		= e1000_release_nvm_82571,
	.update			= e1000_update_nvm_checksum_82571,
1783
	.valid_led_default	= e1000_valid_led_default_82571,
1784 1785
	.validate		= e1000_validate_nvm_checksum_82571,
	.write			= e1000_write_nvm_82571,
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
};

struct e1000_info e1000_82571_info = {
	.mac			= e1000_82571,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_RESET_OVERWRITES_LAA /* errata */
				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
				  | FLAG_APME_CHECK_PORT_B,
1800
	.flags2			= FLAG2_DISABLE_ASPM_L1, /* errata 13 */
1801
	.pba			= 38,
1802
	.max_hw_frame_size	= DEFAULT_JUMBO,
J
Jeff Kirsher 已提交
1803
	.get_variants		= e1000_get_variants_82571,
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_igp,
	.nvm_ops		= &e82571_nvm_ops,
};

struct e1000_info e1000_82572_info = {
	.mac			= e1000_82572,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1818
	.flags2			= FLAG2_DISABLE_ASPM_L1, /* errata 13 */
1819
	.pba			= 38,
1820
	.max_hw_frame_size	= DEFAULT_JUMBO,
J
Jeff Kirsher 已提交
1821
	.get_variants		= e1000_get_variants_82571,
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_igp,
	.nvm_ops		= &e82571_nvm_ops,
};

struct e1000_info e1000_82573_info = {
	.mac			= e1000_82573,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_HAS_AMT
				  | FLAG_HAS_SWSM_ON_LOAD,
	.pba			= 20,
1837
	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
J
Jeff Kirsher 已提交
1838
	.get_variants		= e1000_get_variants_82571,
1839 1840
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_m88,
1841
	.nvm_ops		= &e82571_nvm_ops,
1842 1843
};

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
struct e1000_info e1000_82574_info = {
	.mac			= e1000_82574,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_MSIX
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_HAS_AMT
				  | FLAG_HAS_CTRLEXT_ON_LOAD,
1855
	.pba			= 36,
1856
	.max_hw_frame_size	= DEFAULT_JUMBO,
1857 1858 1859 1860 1861 1862
	.get_variants		= e1000_get_variants_82571,
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_bm,
	.nvm_ops		= &e82571_nvm_ops,
};

1863 1864 1865 1866 1867 1868 1869 1870 1871
struct e1000_info e1000_82583_info = {
	.mac			= e1000_82583,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_HAS_AMT
				  | FLAG_HAS_CTRLEXT_ON_LOAD,
1872
	.pba			= 36,
1873
	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
1874 1875 1876 1877 1878 1879
	.get_variants		= e1000_get_variants_82571,
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_bm,
	.nvm_ops		= &e82571_nvm_ops,
};