npu-dma.c 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
/*
 * This file implements the DMA operations for NVLink devices. The NPU
 * devices all point to the same iommu table as the parent PCI device.
 *
 * Copyright Alistair Popple, IBM Corporation 2015.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 */

#include <linux/export.h>
#include <linux/pci.h>
#include <linux/memblock.h>

#include <asm/iommu.h>
#include <asm/pnv-pci.h>
#include <asm/msi_bitmap.h>
#include <asm/opal.h>

#include "powernv.h"
#include "pci.h"

/*
 * Other types of TCE cache invalidation are not functional in the
 * hardware.
 */
#define TCE_KILL_INVAL_ALL PPC_BIT(0)

static struct pci_dev *get_pci_dev(struct device_node *dn)
{
	return PCI_DN(dn)->pcidev;
}

/* Given a NPU device get the associated PCI device. */
struct pci_dev *pnv_pci_get_gpu_dev(struct pci_dev *npdev)
{
	struct device_node *dn;
	struct pci_dev *gpdev;

	/* Get assoicated PCI device */
	dn = of_parse_phandle(npdev->dev.of_node, "ibm,gpu", 0);
	if (!dn)
		return NULL;

	gpdev = get_pci_dev(dn);
	of_node_put(dn);

	return gpdev;
}
EXPORT_SYMBOL(pnv_pci_get_gpu_dev);

/* Given the real PCI device get a linked NPU device. */
struct pci_dev *pnv_pci_get_npu_dev(struct pci_dev *gpdev, int index)
{
	struct device_node *dn;
	struct pci_dev *npdev;

	/* Get assoicated PCI device */
	dn = of_parse_phandle(gpdev->dev.of_node, "ibm,npu", index);
	if (!dn)
		return NULL;

	npdev = get_pci_dev(dn);
	of_node_put(dn);

	return npdev;
}
EXPORT_SYMBOL(pnv_pci_get_npu_dev);

#define NPU_DMA_OP_UNSUPPORTED()					\
	dev_err_once(dev, "%s operation unsupported for NVLink devices\n", \
		__func__)

static void *dma_npu_alloc(struct device *dev, size_t size,
			   dma_addr_t *dma_handle, gfp_t flag,
			   struct dma_attrs *attrs)
{
	NPU_DMA_OP_UNSUPPORTED();
	return NULL;
}

static void dma_npu_free(struct device *dev, size_t size,
			 void *vaddr, dma_addr_t dma_handle,
			 struct dma_attrs *attrs)
{
	NPU_DMA_OP_UNSUPPORTED();
}

static dma_addr_t dma_npu_map_page(struct device *dev, struct page *page,
				   unsigned long offset, size_t size,
				   enum dma_data_direction direction,
				   struct dma_attrs *attrs)
{
	NPU_DMA_OP_UNSUPPORTED();
	return 0;
}

static int dma_npu_map_sg(struct device *dev, struct scatterlist *sglist,
			  int nelems, enum dma_data_direction direction,
			  struct dma_attrs *attrs)
{
	NPU_DMA_OP_UNSUPPORTED();
	return 0;
}

static int dma_npu_dma_supported(struct device *dev, u64 mask)
{
	NPU_DMA_OP_UNSUPPORTED();
	return 0;
}

static u64 dma_npu_get_required_mask(struct device *dev)
{
	NPU_DMA_OP_UNSUPPORTED();
	return 0;
}

struct dma_map_ops dma_npu_ops = {
	.map_page		= dma_npu_map_page,
	.map_sg			= dma_npu_map_sg,
	.alloc			= dma_npu_alloc,
	.free			= dma_npu_free,
	.dma_supported		= dma_npu_dma_supported,
	.get_required_mask	= dma_npu_get_required_mask,
};

/*
 * Returns the PE assoicated with the PCI device of the given
 * NPU. Returns the linked pci device if pci_dev != NULL.
 */
static struct pnv_ioda_pe *get_gpu_pci_dev_and_pe(struct pnv_ioda_pe *npe,
						  struct pci_dev **gpdev)
{
	struct pnv_phb *phb;
	struct pci_controller *hose;
	struct pci_dev *pdev;
	struct pnv_ioda_pe *pe;
	struct pci_dn *pdn;

	if (npe->flags & PNV_IODA_PE_PEER) {
		pe = npe->peers[0];
		pdev = pe->pdev;
	} else {
		pdev = pnv_pci_get_gpu_dev(npe->pdev);
		if (!pdev)
			return NULL;

		pdn = pci_get_pdn(pdev);
		if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
			return NULL;

		hose = pci_bus_to_host(pdev->bus);
		phb = hose->private_data;
		pe = &phb->ioda.pe_array[pdn->pe_number];
	}

	if (gpdev)
		*gpdev = pdev;

	return pe;
}

void pnv_npu_tce_invalidate_entire(struct pnv_ioda_pe *npe)
{
	struct pnv_phb *phb = npe->phb;

	if (WARN_ON(phb->type != PNV_PHB_NPU ||
		    !phb->ioda.tce_inval_reg ||
		    !(npe->flags & PNV_IODA_PE_DEV)))
		return;

	mb(); /* Ensure previous TCE table stores are visible */
	__raw_writeq(cpu_to_be64(TCE_KILL_INVAL_ALL),
		phb->ioda.tce_inval_reg);
}

void pnv_npu_tce_invalidate(struct pnv_ioda_pe *npe,
				struct iommu_table *tbl,
				unsigned long index,
				unsigned long npages,
				bool rm)
{
	struct pnv_phb *phb = npe->phb;

	/* We can only invalidate the whole cache on NPU */
	unsigned long val = TCE_KILL_INVAL_ALL;

	if (WARN_ON(phb->type != PNV_PHB_NPU ||
		    !phb->ioda.tce_inval_reg ||
		    !(npe->flags & PNV_IODA_PE_DEV)))
		return;

	mb(); /* Ensure previous TCE table stores are visible */
	if (rm)
		__raw_rm_writeq(cpu_to_be64(val),
		  (__be64 __iomem *) phb->ioda.tce_inval_reg_phys);
	else
		__raw_writeq(cpu_to_be64(val),
			phb->ioda.tce_inval_reg);
}

void pnv_npu_init_dma_pe(struct pnv_ioda_pe *npe)
{
	struct pnv_ioda_pe *gpe;
	struct pci_dev *gpdev;
	int i, avail = -1;

	if (!npe->pdev || !(npe->flags & PNV_IODA_PE_DEV))
		return;

	gpe = get_gpu_pci_dev_and_pe(npe, &gpdev);
	if (!gpe)
		return;

	for (i = 0; i < PNV_IODA_MAX_PEER_PES; i++) {
		/* Nothing to do if the PE is already connected. */
		if (gpe->peers[i] == npe)
			return;

		if (!gpe->peers[i])
			avail = i;
	}

	if (WARN_ON(avail < 0))
		return;

	gpe->peers[avail] = npe;
	gpe->flags |= PNV_IODA_PE_PEER;

	/*
	 * We assume that the NPU devices only have a single peer PE
	 * (the GPU PCIe device PE).
	 */
	npe->peers[0] = gpe;
	npe->flags |= PNV_IODA_PE_PEER;
}

/*
 * For the NPU we want to point the TCE table at the same table as the
 * real PCI device.
 */
static void pnv_npu_disable_bypass(struct pnv_ioda_pe *npe)
{
	struct pnv_phb *phb = npe->phb;
	struct pci_dev *gpdev;
	struct pnv_ioda_pe *gpe;
	void *addr;
	unsigned int size;
	int64_t rc;

	/*
	 * Find the assoicated PCI devices and get the dma window
	 * information from there.
	 */
	if (!npe->pdev || !(npe->flags & PNV_IODA_PE_DEV))
		return;

	gpe = get_gpu_pci_dev_and_pe(npe, &gpdev);
	if (!gpe)
		return;

	addr = (void *)gpe->table_group.tables[0]->it_base;
	size = gpe->table_group.tables[0]->it_size << 3;
	rc = opal_pci_map_pe_dma_window(phb->opal_id, npe->pe_number,
					npe->pe_number, 1, __pa(addr),
					size, 0x1000);
	if (rc != OPAL_SUCCESS)
		pr_warn("%s: Error %lld setting DMA window on PHB#%d-PE#%d\n",
			__func__, rc, phb->hose->global_number, npe->pe_number);

	/*
	 * We don't initialise npu_pe->tce32_table as we always use
	 * dma_npu_ops which are nops.
	 */
	set_dma_ops(&npe->pdev->dev, &dma_npu_ops);
}

/*
 * Enable/disable bypass mode on the NPU. The NPU only supports one
281
 * window per link, so bypass needs to be explicitly enabled or
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
 * disabled. Unlike for a PHB3 bypass and non-bypass modes can't be
 * active at the same time.
 */
int pnv_npu_dma_set_bypass(struct pnv_ioda_pe *npe, bool enable)
{
	struct pnv_phb *phb = npe->phb;
	int64_t rc = 0;

	if (phb->type != PNV_PHB_NPU || !npe->pdev)
		return -EINVAL;

	if (enable) {
		/* Enable the bypass window */
		phys_addr_t top = memblock_end_of_DRAM();

		npe->tce_bypass_base = 0;
		top = roundup_pow_of_two(top);
		dev_info(&npe->pdev->dev, "Enabling bypass for PE %d\n",
			 npe->pe_number);
		rc = opal_pci_map_pe_dma_window_real(phb->opal_id,
					npe->pe_number, npe->pe_number,
					npe->tce_bypass_base, top);
	} else {
		/*
		 * Disable the bypass window by replacing it with the
		 * TCE32 window.
		 */
		pnv_npu_disable_bypass(npe);
	}

	return rc;
}

int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
{
	struct pci_controller *hose = pci_bus_to_host(npdev->bus);
	struct pnv_phb *phb = hose->private_data;
	struct pci_dn *pdn = pci_get_pdn(npdev);
	struct pnv_ioda_pe *npe, *gpe;
	struct pci_dev *gpdev;
	uint64_t top;
	bool bypass = false;

	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
		return -ENXIO;

	/* We only do bypass if it's enabled on the linked device */
	npe = &phb->ioda.pe_array[pdn->pe_number];
	gpe = get_gpu_pci_dev_and_pe(npe, &gpdev);
	if (!gpe)
		return -ENODEV;

	if (gpe->tce_bypass_enabled) {
		top = gpe->tce_bypass_base + memblock_end_of_DRAM() - 1;
		bypass = (dma_mask >= top);
	}

	if (bypass)
		dev_info(&npdev->dev, "Using 64-bit DMA iommu bypass\n");
	else
		dev_info(&npdev->dev, "Using 32-bit DMA via iommu\n");

	pnv_npu_dma_set_bypass(npe, bypass);
	*npdev->dev.dma_mask = dma_mask;

	return 0;
}