raid6test.c 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * asynchronous raid6 recovery self test
 * Copyright (c) 2009, Intel Corporation.
 *
 * based on drivers/md/raid6test/test.c:
 * 	Copyright 2002-2007 H. Peter Anvin
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */
#include <linux/async_tx.h>
23
#include <linux/gfp.h>
24
#include <linux/mm.h>
25
#include <linux/random.h>
26
#include <linux/module.h>
27 28 29 30 31 32 33

#undef pr
#define pr(fmt, args...) pr_info("raid6test: " fmt, ##args)

#define NDISKS 16 /* Including P and Q */

static struct page *dataptrs[NDISKS];
D
Dan Williams 已提交
34
static addr_conv_t addr_conv[NDISKS];
35 36 37 38 39 40 41 42 43 44 45 46 47 48
static struct page *data[NDISKS+3];
static struct page *spare;
static struct page *recovi;
static struct page *recovj;

static void callback(void *param)
{
	struct completion *cmp = param;

	complete(cmp);
}

static void makedata(int disks)
{
A
Akinobu Mita 已提交
49
	int i;
50 51

	for (i = 0; i < disks; i++) {
A
Akinobu Mita 已提交
52
		prandom_bytes(page_address(data[i]), PAGE_SIZE);
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
		dataptrs[i] = data[i];
	}
}

static char disk_type(int d, int disks)
{
	if (d == disks - 2)
		return 'P';
	else if (d == disks - 1)
		return 'Q';
	else
		return 'D';
}

/* Recover two failed blocks. */
static void raid6_dual_recov(int disks, size_t bytes, int faila, int failb, struct page **ptrs)
{
	struct async_submit_ctl submit;
	struct completion cmp;
	struct dma_async_tx_descriptor *tx = NULL;
	enum sum_check_flags result = ~0;

	if (faila > failb)
		swap(faila, failb);

	if (failb == disks-1) {
		if (faila == disks-2) {
			/* P+Q failure.  Just rebuild the syndrome. */
			init_async_submit(&submit, 0, NULL, NULL, NULL, addr_conv);
			tx = async_gen_syndrome(ptrs, 0, disks, bytes, &submit);
		} else {
			struct page *blocks[disks];
			struct page *dest;
			int count = 0;
			int i;

			/* data+Q failure.  Reconstruct data from P,
			 * then rebuild syndrome
			 */
			for (i = disks; i-- ; ) {
				if (i == faila || i == failb)
					continue;
				blocks[count++] = ptrs[i];
			}
			dest = ptrs[faila];
			init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL,
					  NULL, NULL, addr_conv);
			tx = async_xor(dest, blocks, 0, count, bytes, &submit);

			init_async_submit(&submit, 0, tx, NULL, NULL, addr_conv);
			tx = async_gen_syndrome(ptrs, 0, disks, bytes, &submit);
		}
	} else {
		if (failb == disks-2) {
			/* data+P failure. */
			init_async_submit(&submit, 0, NULL, NULL, NULL, addr_conv);
			tx = async_raid6_datap_recov(disks, bytes, faila, ptrs, &submit);
		} else {
			/* data+data failure. */
			init_async_submit(&submit, 0, NULL, NULL, NULL, addr_conv);
			tx = async_raid6_2data_recov(disks, bytes, faila, failb, ptrs, &submit);
		}
	}
	init_completion(&cmp);
	init_async_submit(&submit, ASYNC_TX_ACK, tx, callback, &cmp, addr_conv);
	tx = async_syndrome_val(ptrs, 0, disks, bytes, &result, spare, &submit);
	async_tx_issue_pending(tx);

	if (wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)) == 0)
		pr("%s: timeout! (faila: %d failb: %d disks: %d)\n",
		   __func__, faila, failb, disks);

	if (result != 0)
		pr("%s: validation failure! faila: %d failb: %d sum_check_flags: %x\n",
		   __func__, faila, failb, result);
}

static int test_disks(int i, int j, int disks)
{
	int erra, errb;

	memset(page_address(recovi), 0xf0, PAGE_SIZE);
	memset(page_address(recovj), 0xba, PAGE_SIZE);

	dataptrs[i] = recovi;
	dataptrs[j] = recovj;

	raid6_dual_recov(disks, PAGE_SIZE, i, j, dataptrs);

	erra = memcmp(page_address(data[i]), page_address(recovi), PAGE_SIZE);
	errb = memcmp(page_address(data[j]), page_address(recovj), PAGE_SIZE);

	pr("%s(%d, %d): faila=%3d(%c)  failb=%3d(%c)  %s\n",
	   __func__, i, j, i, disk_type(i, disks), j, disk_type(j, disks),
	   (!erra && !errb) ? "OK" : !erra ? "ERRB" : !errb ? "ERRA" : "ERRAB");

	dataptrs[i] = data[i];
	dataptrs[j] = data[j];

	return erra || errb;
}

static int test(int disks, int *tests)
{
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct completion cmp;
	int err = 0;
	int i, j;

	recovi = data[disks];
	recovj = data[disks+1];
	spare  = data[disks+2];

	makedata(disks);

	/* Nuke syndromes */
	memset(page_address(data[disks-2]), 0xee, PAGE_SIZE);
	memset(page_address(data[disks-1]), 0xee, PAGE_SIZE);

	/* Generate assumed good syndrome */
	init_completion(&cmp);
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, callback, &cmp, addr_conv);
	tx = async_gen_syndrome(dataptrs, 0, disks, PAGE_SIZE, &submit);
	async_tx_issue_pending(tx);

	if (wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)) == 0) {
		pr("error: initial gen_syndrome(%d) timed out\n", disks);
		return 1;
	}

	pr("testing the %d-disk case...\n", disks);
	for (i = 0; i < disks-1; i++)
		for (j = i+1; j < disks; j++) {
			(*tests)++;
			err += test_disks(i, j, disks);
		}

	return err;
}


static int raid6_test(void)
{
	int err = 0;
	int tests = 0;
	int i;

	for (i = 0; i < NDISKS+3; i++) {
		data[i] = alloc_page(GFP_KERNEL);
		if (!data[i]) {
			while (i--)
				put_page(data[i]);
			return -ENOMEM;
		}
	}

	/* the 4-disk and 5-disk cases are special for the recovery code */
	if (NDISKS > 4)
		err += test(4, &tests);
	if (NDISKS > 5)
		err += test(5, &tests);
215 216 217 218 219 220 221
	/* the 11 and 12 disk cases are special for ioatdma (p-disabled
	 * q-continuation without extended descriptor)
	 */
	if (NDISKS > 12) {
		err += test(11, &tests);
		err += test(12, &tests);
	}
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
	err += test(NDISKS, &tests);

	pr("\n");
	pr("complete (%d tests, %d failure%s)\n",
	   tests, err, err == 1 ? "" : "s");

	for (i = 0; i < NDISKS+3; i++)
		put_page(data[i]);

	return 0;
}

static void raid6_test_exit(void)
{
}

/* when compiled-in wait for drivers to load first (assumes dma drivers
 * are also compliled-in)
 */
late_initcall(raid6_test);
module_exit(raid6_test_exit);
MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
MODULE_DESCRIPTION("asynchronous RAID-6 recovery self tests");
MODULE_LICENSE("GPL");