fw-card.c 14.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*						-*- c-basic-offset: 8 -*-
 *
 * fw-card.c - card level functions
 *
 * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

#include <linux/module.h>
#include <linux/errno.h>
#include <linux/device.h>
25
#include <linux/rwsem.h>
26 27
#include "fw-transaction.h"
#include "fw-topology.h"
28
#include "fw-device.h"
29 30 31 32 33

/* The lib/crc16.c implementation uses the standard (0x8005)
 * polynomial, but we need the ITU-T (or CCITT) polynomial (0x1021).
 * The implementation below works on an array of host-endian u32
 * words, assuming they'll be transmited msb first. */
34
u16
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
crc16_itu_t(const u32 *buffer, size_t length)
{
	int shift, i;
	u32 data;
	u16 sum, crc = 0;

	for (i = 0; i < length; i++) {
		data = *buffer++;
		for (shift = 28; shift >= 0; shift -= 4 ) {
			sum = ((crc >> 12) ^ (data >> shift)) & 0xf;
			crc = (crc << 4) ^ (sum << 12) ^ (sum << 5) ^ (sum);
		}
		crc &= 0xffff;
	}

	return crc;
}

53
static DECLARE_RWSEM(card_rwsem);
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
static LIST_HEAD(card_list);

static LIST_HEAD(descriptor_list);
static int descriptor_count;

#define bib_crc(v)		((v) <<  0)
#define bib_crc_length(v)	((v) << 16)
#define bib_info_length(v)	((v) << 24)

#define bib_link_speed(v)	((v) <<  0)
#define bib_generation(v)	((v) <<  4)
#define bib_max_rom(v)		((v) <<  8)
#define bib_max_receive(v)	((v) << 12)
#define bib_cyc_clk_acc(v)	((v) << 16)
#define bib_pmc			((1) << 27)
#define bib_bmc			((1) << 28)
#define bib_isc			((1) << 29)
#define bib_cmc			((1) << 30)
#define bib_imc			((1) << 31)

static u32 *
generate_config_rom (struct fw_card *card, size_t *config_rom_length)
{
	struct fw_descriptor *desc;
	static u32 config_rom[256];
	int i, j, length;

81 82 83 84 85 86
	/* Initialize contents of config rom buffer.  On the OHCI
	 * controller, block reads to the config rom accesses the host
	 * memory, but quadlet read access the hardware bus info block
	 * registers.  That's just crack, but it means we should make
	 * sure the contents of bus info block in host memory mathces
	 * the version stored in the OHCI registers. */
87 88 89 90 91 92 93 94 95 96

	memset(config_rom, 0, sizeof config_rom);
	config_rom[0] = bib_crc_length(4) | bib_info_length(4) | bib_crc(0);
	config_rom[1] = 0x31333934;

	config_rom[2] =
		bib_link_speed(card->link_speed) |
		bib_generation(card->config_rom_generation++ % 14 + 2) |
		bib_max_rom(2) |
		bib_max_receive(card->max_receive) |
97
		bib_bmc | bib_isc | bib_cmc | bib_imc;
98 99 100 101 102 103 104 105 106 107 108
	config_rom[3] = card->guid >> 32;
	config_rom[4] = card->guid;

	/* Generate root directory. */
	i = 5;
	config_rom[i++] = 0;
	config_rom[i++] = 0x0c0083c0; /* node capabilities */
	j = i + descriptor_count;

	/* Generate root directory entries for descriptors. */
	list_for_each_entry (desc, &descriptor_list, link) {
109 110
		if (desc->immediate > 0)
			config_rom[i++] = desc->immediate;
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
		config_rom[i] = desc->key | (j - i);
		i++;
		j += desc->length;
	}

	/* Update root directory length. */
	config_rom[5] = (i - 5 - 1) << 16;

	/* End of root directory, now copy in descriptors. */
	list_for_each_entry (desc, &descriptor_list, link) {
		memcpy(&config_rom[i], desc->data, desc->length * 4);
		i += desc->length;
	}

	/* Calculate CRCs for all blocks in the config rom.  This
	 * assumes that CRC length and info length are identical for
	 * the bus info block, which is always the case for this
	 * implementation. */
	for (i = 0; i < j; i += length + 1) {
		length = (config_rom[i] >> 16) & 0xff;
		config_rom[i] |= crc16_itu_t(&config_rom[i + 1], length);
	}

	*config_rom_length = j;

	return config_rom;
}

static void
update_config_roms (void)
{
	struct fw_card *card;
	u32 *config_rom;
	size_t length;

	list_for_each_entry (card, &card_list, link) {
		config_rom = generate_config_rom(card, &length);
		card->driver->set_config_rom(card, config_rom, length);
	}
}

int
fw_core_add_descriptor (struct fw_descriptor *desc)
{
	size_t i;

	/* Check descriptor is valid; the length of all blocks in the
	 * descriptor has to add up to exactly the length of the
	 * block. */
	i = 0;
	while (i < desc->length)
		i += (desc->data[i] >> 16) + 1;

	if (i != desc->length)
165
		return -EINVAL;
166

167
	down_write(&card_rwsem);
168 169 170

	list_add_tail (&desc->link, &descriptor_list);
	descriptor_count++;
171 172
	if (desc->immediate > 0)
		descriptor_count++;
173 174
	update_config_roms();

175
	up_write(&card_rwsem);
176 177 178 179 180 181 182 183

	return 0;
}
EXPORT_SYMBOL(fw_core_add_descriptor);

void
fw_core_remove_descriptor (struct fw_descriptor *desc)
{
184
	down_write(&card_rwsem);
185 186 187

	list_del(&desc->link);
	descriptor_count--;
188 189
	if (desc->immediate > 0)
		descriptor_count--;
190 191
	update_config_roms();

192
	up_write(&card_rwsem);
193 194 195
}
EXPORT_SYMBOL(fw_core_remove_descriptor);

196 197 198 199
static const char gap_count_table[] = {
	63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
};

200 201 202 203 204 205 206 207 208 209 210
struct bm_data {
	struct fw_transaction t;
	struct {
		__be32 arg;
		__be32 data;
	} lock;
	u32 old;
	int rcode;
	struct completion done;
};

211
static void
212 213 214 215 216 217 218 219 220 221 222 223 224
complete_bm_lock(struct fw_card *card, int rcode,
		 void *payload, size_t length, void *data)
{
	struct bm_data *bmd = data;

	if (rcode == RCODE_COMPLETE)
		bmd->old = be32_to_cpu(*(__be32 *) payload);
	bmd->rcode = rcode;
	complete(&bmd->done);
}

static void
fw_card_bm_work(struct work_struct *work)
225
{
226
	struct fw_card *card = container_of(work, struct fw_card, work.work);
227
	struct fw_device *root;
228
	struct bm_data bmd;
229
	unsigned long flags;
230 231
	int root_id, new_root_id, irm_id, gap_count, generation, grace;
	int do_reset = 0;
232 233 234 235 236

	spin_lock_irqsave(&card->lock, flags);

	generation = card->generation;
	root = card->root_node->data;
237
	root_id = card->root_node->node_id;
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 10));

	if (card->bm_generation + 1 == generation ||
	    (card->bm_generation != generation && grace)) {
		/* This first step is to figure out who is IRM and
		 * then try to become bus manager.  If the IRM is not
		 * well defined (e.g. does not have an active link
		 * layer or does not responds to our lock request, we
		 * will have to do a little vigilante bus management.
		 * In that case, we do a goto into the gap count logic
		 * so that when we do the reset, we still optimize the
		 * gap count.  That could well save a reset in the
		 * next generation. */

		irm_id = card->irm_node->node_id;
		if (!card->irm_node->link_on) {
			new_root_id = card->local_node->node_id;
			fw_notify("IRM has link off, making local node (%02x) root.\n",
				  new_root_id);
			goto pick_me;
		}

		bmd.lock.arg = cpu_to_be32(0x3f);
		bmd.lock.data = cpu_to_be32(card->local_node->node_id);

		spin_unlock_irqrestore(&card->lock, flags);

		init_completion(&bmd.done);
		fw_send_request(card, &bmd.t, TCODE_LOCK_COMPARE_SWAP,
				irm_id, generation,
				SCODE_100, CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
				&bmd.lock, sizeof bmd.lock,
				complete_bm_lock, &bmd);
		wait_for_completion(&bmd.done);

		if (bmd.rcode == RCODE_GENERATION) {
			/* Another bus reset happened. Just return,
			 * the BM work has been rescheduled. */
			return;
		}

		if (bmd.rcode == RCODE_COMPLETE && bmd.old != 0x3f)
			/* Somebody else is BM, let them do the work. */
			return;

		spin_lock_irqsave(&card->lock, flags);
		if (bmd.rcode != RCODE_COMPLETE) {
			/* The lock request failed, maybe the IRM
			 * isn't really IRM capable after all. Let's
			 * do a bus reset and pick the local node as
			 * root, and thus, IRM. */
			new_root_id = card->local_node->node_id;
			fw_notify("BM lock failed, making local node (%02x) root.\n",
				  new_root_id);
			goto pick_me;
		}
	} else if (card->bm_generation != generation) {
		/* OK, we weren't BM in the last generation, and it's
		 * less than 100ms since last bus reset. Reschedule
		 * this task 100ms from now. */
		spin_unlock_irqrestore(&card->lock, flags);
		schedule_delayed_work(&card->work, DIV_ROUND_UP(HZ, 10));
		return;
	}

	/* We're bus manager for this generation, so next step is to
	 * make sure we have an active cycle master and do gap count
	 * optimization. */
	card->bm_generation = generation;
307

308
	if (root == NULL) {
309 310
		/* Either link_on is false, or we failed to read the
		 * config rom.  In either case, pick another root. */
311
		new_root_id = card->local_node->node_id;
312
	} else if (atomic_read(&root->state) != FW_DEVICE_RUNNING) {
313 314
		/* If we haven't probed this device yet, bail out now
		 * and let's try again once that's done. */
315 316
		spin_unlock_irqrestore(&card->lock, flags);
		return;
317
	} else if (root->config_rom[2] & bib_cmc) {
318 319 320 321
		/* FIXME: I suppose we should set the cmstr bit in the
		 * STATE_CLEAR register of this node, as described in
		 * 1394-1995, 8.4.2.6.  Also, send out a force root
		 * packet for this node. */
322
		new_root_id = root_id;
323
	} else {
324 325 326
		/* Current root has an active link layer and we
		 * successfully read the config rom, but it's not
		 * cycle master capable. */
327
		new_root_id = card->local_node->node_id;
328 329
	}

330
 pick_me:
331 332 333 334 335 336 337 338 339 340
	/* Now figure out what gap count to set. */
	if (card->topology_type == FW_TOPOLOGY_A &&
	    card->root_node->max_hops < ARRAY_SIZE(gap_count_table))
		gap_count = gap_count_table[card->root_node->max_hops];
	else
		gap_count = 63;

	/* Finally, figure out if we should do a reset or not.  If we've
	 * done less that 5 resets with the same physical topology and we
	 * have either a new root or a new gap count setting, let's do it. */
341

342 343
	if (card->bm_retries++ < 5 &&
	    (card->gap_count != gap_count || new_root_id != root_id))
344
		do_reset = 1;
345 346 347

	spin_unlock_irqrestore(&card->lock, flags);

348 349
	if (do_reset) {
		fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
350 351
			  card->index, new_root_id, gap_count);
		fw_send_phy_config(card, new_root_id, generation, gap_count);
352 353 354 355
		fw_core_initiate_bus_reset(card, 1);
	}
}

356 357 358 359 360 361 362 363 364
static void
flush_timer_callback(unsigned long data)
{
	struct fw_card *card = (struct fw_card *)data;

	fw_flush_transactions(card);
}

void
365
fw_card_initialize(struct fw_card *card, const struct fw_card_driver *driver,
366 367
		   struct device *device)
{
368
	static atomic_t index = ATOMIC_INIT(-1);
369

370
	kref_init(&card->kref);
371
	card->index = atomic_inc_return(&index);
372
	card->driver = driver;
373
	card->device = device;
374 375
	card->current_tlabel = 0;
	card->tlabel_mask = 0;
376 377
	card->color = 0;

378
	INIT_LIST_HEAD(&card->transaction_list);
379 380 381 382 383 384
	spin_lock_init(&card->lock);
	setup_timer(&card->flush_timer,
		    flush_timer_callback, (unsigned long)card);

	card->local_node = NULL;

385
	INIT_DELAYED_WORK(&card->work, fw_card_bm_work);
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
}
EXPORT_SYMBOL(fw_card_initialize);

int
fw_card_add(struct fw_card *card,
	    u32 max_receive, u32 link_speed, u64 guid)
{
	u32 *config_rom;
	size_t length;

	card->max_receive = max_receive;
	card->link_speed = link_speed;
	card->guid = guid;

	/* Activate link_on bit and contender bit in our self ID packets.*/
401 402
	if (card->driver->update_phy_reg(card, 4, 0,
					 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
403 404 405 406 407 408
		return -EIO;

	/* The subsystem grabs a reference when the card is added and
	 * drops it when the driver calls fw_core_remove_card. */
	fw_card_get(card);

409
	down_write(&card_rwsem);
410 411
	config_rom = generate_config_rom (card, &length);
	list_add_tail(&card->link, &card_list);
412
	up_write(&card_rwsem);
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

	return card->driver->enable(card, config_rom, length);
}
EXPORT_SYMBOL(fw_card_add);


/* The next few functions implements a dummy driver that use once a
 * card driver shuts down an fw_card.  This allows the driver to
 * cleanly unload, as all IO to the card will be handled by the dummy
 * driver instead of calling into the (possibly) unloaded module.  The
 * dummy driver just fails all IO. */

static int
dummy_enable(struct fw_card *card, u32 *config_rom, size_t length)
{
	BUG();
	return -1;
}

static int
dummy_update_phy_reg(struct fw_card *card, int address,
		     int clear_bits, int set_bits)
{
	return -ENODEV;
}

static int
dummy_set_config_rom(struct fw_card *card,
		     u32 *config_rom, size_t length)
{
	/* We take the card out of card_list before setting the dummy
	 * driver, so this should never get called. */
	BUG();
	return -1;
}

static void
dummy_send_request(struct fw_card *card, struct fw_packet *packet)
{
452
	packet->callback(packet, card, -ENODEV);
453 454 455 456 457
}

static void
dummy_send_response(struct fw_card *card, struct fw_packet *packet)
{
458
	packet->callback(packet, card, -ENODEV);
459 460
}

461 462 463 464 465 466
static int
dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	return -ENOENT;
}

467 468 469 470 471 472 473 474
static int
dummy_enable_phys_dma(struct fw_card *card,
		      int node_id, int generation)
{
	return -ENODEV;
}

static struct fw_card_driver dummy_driver = {
475
	.name            = "dummy",
476 477 478
	.enable          = dummy_enable,
	.update_phy_reg  = dummy_update_phy_reg,
	.set_config_rom  = dummy_set_config_rom,
479
	.send_request    = dummy_send_request,
480
	.cancel_packet   = dummy_cancel_packet,
481
	.send_response   = dummy_send_response,
482
	.enable_phys_dma = dummy_enable_phys_dma,
483 484 485 486 487
};

void
fw_core_remove_card(struct fw_card *card)
{
488 489
	card->driver->update_phy_reg(card, 4,
				     PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
490 491
	fw_core_initiate_bus_reset(card, 1);

492
	down_write(&card_rwsem);
493
	list_del(&card->link);
494
	up_write(&card_rwsem);
495 496 497 498 499 500 501 502

	/* Set up the dummy driver. */
	card->driver = &dummy_driver;

	fw_flush_transactions(card);

	fw_destroy_nodes(card);

503
	fw_card_put(card);
504 505 506 507 508 509
}
EXPORT_SYMBOL(fw_core_remove_card);

struct fw_card *
fw_card_get(struct fw_card *card)
{
510
	kref_get(&card->kref);
511 512 513 514 515

	return card;
}
EXPORT_SYMBOL(fw_card_get);

516 517 518 519 520 521 522 523
static void
release_card(struct kref *kref)
{
	struct fw_card *card = container_of(kref, struct fw_card, kref);

	kfree(card);
}

524 525 526 527 528 529
/* An assumption for fw_card_put() is that the card driver allocates
 * the fw_card struct with kalloc and that it has been shut down
 * before the last ref is dropped. */
void
fw_card_put(struct fw_card *card)
{
530
	kref_put(&card->kref, release_card);
531 532 533 534 535 536
}
EXPORT_SYMBOL(fw_card_put);

int
fw_core_initiate_bus_reset(struct fw_card *card, int short_reset)
{
537 538 539 540 541 542
	int reg = short_reset ? 5 : 1;
	/* The following values happen to be the same bit. However be
	 * explicit for clarity. */
	int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;

	return card->driver->update_phy_reg(card, reg, 0, bit);
543 544
}
EXPORT_SYMBOL(fw_core_initiate_bus_reset);