tlbie_test.c 19.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
// SPDX-License-Identifier: GPL-2.0

/*
 * Copyright 2019, Nick Piggin, Gautham R. Shenoy, Aneesh Kumar K.V, IBM Corp.
 */

/*
 *
 * Test tlbie/mtpidr race. We have 4 threads doing flush/load/compare/store
 * sequence in a loop. The same threads also rung a context switch task
 * that does sched_yield() in loop.
 *
 * The snapshot thread mark the mmap area PROT_READ in between, make a copy
 * and copy it back to the original area. This helps us to detect if any
 * store continued to happen after we marked the memory PROT_READ.
 */

#define _GNU_SOURCE
#include <stdio.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <linux/futex.h>
#include <unistd.h>
#include <asm/unistd.h>
#include <string.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sched.h>
#include <time.h>
#include <stdarg.h>
#include <sched.h>
#include <pthread.h>
#include <signal.h>
#include <sys/prctl.h>

static inline void dcbf(volatile unsigned int *addr)
{
	__asm__ __volatile__ ("dcbf %y0; sync" : : "Z"(*(unsigned char *)addr) : "memory");
}

static void err_msg(char *msg)
{

	time_t now;
	time(&now);
	printf("=================================\n");
	printf("    Error: %s\n", msg);
	printf("    %s", ctime(&now));
	printf("=================================\n");
	exit(1);
}

static char *map1;
static char *map2;
static pid_t rim_process_pid;

/*
 * A "rim-sequence" is defined to be the sequence of the following
 * operations performed on a memory word:
 *	1) FLUSH the contents of that word.
 *	2) LOAD the contents of that word.
 *	3) COMPARE the contents of that word with the content that was
 *	           previously stored at that word
 *	4) STORE new content into that word.
 *
 * The threads in this test that perform the rim-sequence are termed
 * as rim_threads.
 */

/*
 * A "corruption" is defined to be the failed COMPARE operation in a
 * rim-sequence.
 *
 * A rim_thread that detects a corruption informs about it to all the
 * other rim_threads, and the mem_snapshot thread.
 */
static volatile unsigned int corruption_found;

/*
 * This defines the maximum number of rim_threads in this test.
 *
 * The THREAD_ID_BITS denote the number of bits required
 * to represent the thread_ids [0..MAX_THREADS - 1].
 * We are being a bit paranoid here and set it to 8 bits,
 * though 6 bits suffice.
 *
 */
#define MAX_THREADS 		64
#define THREAD_ID_BITS		8
#define THREAD_ID_MASK		((1 << THREAD_ID_BITS) - 1)
static unsigned int rim_thread_ids[MAX_THREADS];
static pthread_t rim_threads[MAX_THREADS];


/*
 * Each rim_thread works on an exclusive "chunk" of size
 * RIM_CHUNK_SIZE.
 *
 * The ith rim_thread works on the ith chunk.
 *
 * The ith chunk begins at
 * map1 + (i * RIM_CHUNK_SIZE)
 */
#define RIM_CHUNK_SIZE  	1024
#define BITS_PER_BYTE 		8
#define WORD_SIZE     		(sizeof(unsigned int))
#define WORD_BITS		(WORD_SIZE * BITS_PER_BYTE)
#define WORDS_PER_CHUNK		(RIM_CHUNK_SIZE/WORD_SIZE)

static inline char *compute_chunk_start_addr(unsigned int thread_id)
{
	char *chunk_start;

	chunk_start = (char *)((unsigned long)map1 +
			       (thread_id * RIM_CHUNK_SIZE));

	return chunk_start;
}

/*
 * The "word-offset" of a word-aligned address inside a chunk, is
 * defined to be the number of words that precede the address in that
 * chunk.
 *
 * WORD_OFFSET_BITS denote the number of bits required to represent
 * the word-offsets of all the word-aligned addresses of a chunk.
 */
#define WORD_OFFSET_BITS	(__builtin_ctz(WORDS_PER_CHUNK))
#define WORD_OFFSET_MASK	((1 << WORD_OFFSET_BITS) - 1)

static inline unsigned int compute_word_offset(char *start, unsigned int *addr)
{
	unsigned int delta_bytes, ret;
	delta_bytes = (unsigned long)addr - (unsigned long)start;

	ret = delta_bytes/WORD_SIZE;

	return ret;
}

/*
 * A "sweep" is defined to be the sequential execution of the
 * rim-sequence by a rim_thread on its chunk one word at a time,
 * starting from the first word of its chunk and ending with the last
 * word of its chunk.
 *
 * Each sweep of a rim_thread is uniquely identified by a sweep_id.
 * SWEEP_ID_BITS denote the number of bits required to represent
 * the sweep_ids of rim_threads.
 *
 * As to why SWEEP_ID_BITS are computed as a function of THREAD_ID_BITS,
 * WORD_OFFSET_BITS, and WORD_BITS, see the "store-pattern" below.
 */
#define SWEEP_ID_BITS		(WORD_BITS - (THREAD_ID_BITS + WORD_OFFSET_BITS))
#define SWEEP_ID_MASK		((1 << SWEEP_ID_BITS) - 1)

/*
 * A "store-pattern" is the word-pattern that is stored into a word
 * location in the 4)STORE step of the rim-sequence.
 *
 * In the store-pattern, we shall encode:
 *
 *      - The thread-id of the rim_thread performing the store
 *        (The most significant THREAD_ID_BITS)
 *
 *      - The word-offset of the address into which the store is being
 *        performed (The next WORD_OFFSET_BITS)
 *
 *      - The sweep_id of the current sweep in which the store is
 *        being performed. (The lower SWEEP_ID_BITS)
 *
 * Store Pattern: 32 bits
 * |------------------|--------------------|---------------------------------|
 * |    Thread id     |  Word offset       |         sweep_id                |
 * |------------------|--------------------|---------------------------------|
 *    THREAD_ID_BITS     WORD_OFFSET_BITS          SWEEP_ID_BITS
 *
 * In the store pattern, the (Thread-id + Word-offset) uniquely identify the
 * address to which the store is being performed i.e,
 *    address == map1 +
 *              (Thread-id * RIM_CHUNK_SIZE) + (Word-offset * WORD_SIZE)
 *
 * And the sweep_id in the store pattern identifies the time when the
 * store was performed by the rim_thread.
 *
 * We shall use this property in the 3)COMPARE step of the
 * rim-sequence.
 */
#define SWEEP_ID_SHIFT	0
#define WORD_OFFSET_SHIFT	(SWEEP_ID_BITS)
#define THREAD_ID_SHIFT		(WORD_OFFSET_BITS + SWEEP_ID_BITS)

/*
 * Compute the store pattern for a given thread with id @tid, at
 * location @addr in the sweep identified by @sweep_id
 */
static inline unsigned int compute_store_pattern(unsigned int tid,
						 unsigned int *addr,
						 unsigned int sweep_id)
{
	unsigned int ret = 0;
	char *start = compute_chunk_start_addr(tid);
	unsigned int word_offset = compute_word_offset(start, addr);

	ret += (tid & THREAD_ID_MASK) << THREAD_ID_SHIFT;
	ret += (word_offset & WORD_OFFSET_MASK) << WORD_OFFSET_SHIFT;
	ret += (sweep_id & SWEEP_ID_MASK) << SWEEP_ID_SHIFT;
	return ret;
}

/* Extract the thread-id from the given store-pattern */
static inline unsigned int extract_tid(unsigned int pattern)
{
	unsigned int ret;

	ret = (pattern >> THREAD_ID_SHIFT) & THREAD_ID_MASK;
	return ret;
}

/* Extract the word-offset from the given store-pattern */
static inline unsigned int extract_word_offset(unsigned int pattern)
{
	unsigned int ret;

	ret = (pattern >> WORD_OFFSET_SHIFT) & WORD_OFFSET_MASK;

	return ret;
}

/* Extract the sweep-id from the given store-pattern */
static inline unsigned int extract_sweep_id(unsigned int pattern)

{
	unsigned int ret;

	ret = (pattern >> SWEEP_ID_SHIFT) & SWEEP_ID_MASK;

	return ret;
}

/************************************************************
 *                                                          *
 *          Logging the output of the verification          *
 *                                                          *
 ************************************************************/
#define LOGDIR_NAME_SIZE 100
static char logdir[LOGDIR_NAME_SIZE];

static FILE *fp[MAX_THREADS];
static const char logfilename[] ="Thread-%02d-Chunk";

static inline void start_verification_log(unsigned int tid,
					  unsigned int *addr,
					  unsigned int cur_sweep_id,
					  unsigned int prev_sweep_id)
{
	FILE *f;
	char logfile[30];
	char path[LOGDIR_NAME_SIZE + 30];
	char separator[2] = "/";
	char *chunk_start = compute_chunk_start_addr(tid);
	unsigned int size = RIM_CHUNK_SIZE;

	sprintf(logfile, logfilename, tid);
	strcpy(path, logdir);
	strcat(path, separator);
	strcat(path, logfile);
	f = fopen(path, "w");

	if (!f) {
		err_msg("Unable to create logfile\n");
	}

	fp[tid] = f;

	fprintf(f, "----------------------------------------------------------\n");
	fprintf(f, "PID                = %d\n", rim_process_pid);
	fprintf(f, "Thread id          = %02d\n", tid);
	fprintf(f, "Chunk Start Addr   = 0x%016lx\n", (unsigned long)chunk_start);
	fprintf(f, "Chunk Size         = %d\n", size);
	fprintf(f, "Next Store Addr    = 0x%016lx\n", (unsigned long)addr);
	fprintf(f, "Current sweep-id   = 0x%08x\n", cur_sweep_id);
	fprintf(f, "Previous sweep-id  = 0x%08x\n", prev_sweep_id);
	fprintf(f, "----------------------------------------------------------\n");
}

static inline void log_anamoly(unsigned int tid, unsigned int *addr,
			       unsigned int expected, unsigned int observed)
{
	FILE *f = fp[tid];

	fprintf(f, "Thread %02d: Addr 0x%lx: Expected 0x%x, Observed 0x%x\n",
	        tid, (unsigned long)addr, expected, observed);
	fprintf(f, "Thread %02d: Expected Thread id   = %02d\n", tid, extract_tid(expected));
	fprintf(f, "Thread %02d: Observed Thread id   = %02d\n", tid, extract_tid(observed));
	fprintf(f, "Thread %02d: Expected Word offset = %03d\n", tid, extract_word_offset(expected));
	fprintf(f, "Thread %02d: Observed Word offset = %03d\n", tid, extract_word_offset(observed));
	fprintf(f, "Thread %02d: Expected sweep-id    = 0x%x\n", tid, extract_sweep_id(expected));
	fprintf(f, "Thread %02d: Observed sweep-id    = 0x%x\n", tid, extract_sweep_id(observed));
	fprintf(f, "----------------------------------------------------------\n");
}

static inline void end_verification_log(unsigned int tid, unsigned nr_anamolies)
{
	FILE *f = fp[tid];
	char logfile[30];
	char path[LOGDIR_NAME_SIZE + 30];
	char separator[] = "/";

	fclose(f);

	if (nr_anamolies == 0) {
		remove(path);
		return;
	}

	sprintf(logfile, logfilename, tid);
	strcpy(path, logdir);
	strcat(path, separator);
	strcat(path, logfile);

	printf("Thread %02d chunk has %d corrupted words. For details check %s\n",
		tid, nr_anamolies, path);
}

/*
 * When a COMPARE step of a rim-sequence fails, the rim_thread informs
 * everyone else via the shared_memory pointed to by
 * corruption_found variable. On seeing this, every thread verifies the
 * content of its chunk as follows.
 *
 * Suppose a thread identified with @tid was about to store (but not
 * yet stored) to @next_store_addr in its current sweep identified
 * @cur_sweep_id. Let @prev_sweep_id indicate the previous sweep_id.
 *
 * This implies that for all the addresses @addr < @next_store_addr,
 * Thread @tid has already performed a store as part of its current
 * sweep. Hence we expect the content of such @addr to be:
 *    |-------------------------------------------------|
 *    | tid   | word_offset(addr) |    cur_sweep_id     |
 *    |-------------------------------------------------|
 *
 * Since Thread @tid is yet to perform stores on address
 * @next_store_addr and above, we expect the content of such an
 * address @addr to be:
 *    |-------------------------------------------------|
 *    | tid   | word_offset(addr) |    prev_sweep_id    |
 *    |-------------------------------------------------|
 *
 * The verifier function @verify_chunk does this verification and logs
 * any anamolies that it finds.
 */
static void verify_chunk(unsigned int tid, unsigned int *next_store_addr,
		  unsigned int cur_sweep_id,
		  unsigned int prev_sweep_id)
{
	unsigned int *iter_ptr;
	unsigned int size = RIM_CHUNK_SIZE;
	unsigned int expected;
	unsigned int observed;
	char *chunk_start = compute_chunk_start_addr(tid);

	int nr_anamolies = 0;

	start_verification_log(tid, next_store_addr,
			       cur_sweep_id, prev_sweep_id);

	for (iter_ptr = (unsigned int *)chunk_start;
	     (unsigned long)iter_ptr < (unsigned long)chunk_start + size;
	     iter_ptr++) {
		unsigned int expected_sweep_id;

		if (iter_ptr < next_store_addr) {
			expected_sweep_id = cur_sweep_id;
		} else {
			expected_sweep_id = prev_sweep_id;
		}

		expected = compute_store_pattern(tid, iter_ptr, expected_sweep_id);

		dcbf((volatile unsigned int*)iter_ptr); //Flush before reading
		observed = *iter_ptr;

	        if (observed != expected) {
			nr_anamolies++;
			log_anamoly(tid, iter_ptr, expected, observed);
		}
	}

	end_verification_log(tid, nr_anamolies);
}

static void set_pthread_cpu(pthread_t th, int cpu)
{
	cpu_set_t run_cpu_mask;
	struct sched_param param;

	CPU_ZERO(&run_cpu_mask);
	CPU_SET(cpu, &run_cpu_mask);
	pthread_setaffinity_np(th, sizeof(cpu_set_t), &run_cpu_mask);

	param.sched_priority = 1;
	if (0 && sched_setscheduler(0, SCHED_FIFO, &param) == -1) {
		/* haven't reproduced with this setting, it kills random preemption which may be a factor */
		fprintf(stderr, "could not set SCHED_FIFO, run as root?\n");
	}
}

static void set_mycpu(int cpu)
{
	cpu_set_t run_cpu_mask;
	struct sched_param param;

	CPU_ZERO(&run_cpu_mask);
	CPU_SET(cpu, &run_cpu_mask);
	sched_setaffinity(0, sizeof(cpu_set_t), &run_cpu_mask);

	param.sched_priority = 1;
	if (0 && sched_setscheduler(0, SCHED_FIFO, &param) == -1) {
		fprintf(stderr, "could not set SCHED_FIFO, run as root?\n");
	}
}

static volatile int segv_wait;

static void segv_handler(int signo, siginfo_t *info, void *extra)
{
	while (segv_wait) {
		sched_yield();
	}

}

static void set_segv_handler(void)
{
	struct sigaction sa;

	sa.sa_flags = SA_SIGINFO;
	sa.sa_sigaction = segv_handler;

	if (sigaction(SIGSEGV, &sa, NULL) == -1) {
		perror("sigaction");
		exit(EXIT_FAILURE);
	}
}

int timeout = 0;
/*
 * This function is executed by every rim_thread.
 *
 * This function performs sweeps over the exclusive chunks of the
 * rim_threads executing the rim-sequence one word at a time.
 */
static void *rim_fn(void *arg)
{
	unsigned int tid = *((unsigned int *)arg);

	int size = RIM_CHUNK_SIZE;
	char *chunk_start = compute_chunk_start_addr(tid);

	unsigned int prev_sweep_id;
	unsigned int cur_sweep_id = 0;

	/* word access */
	unsigned int pattern = cur_sweep_id;
	unsigned int *pattern_ptr = &pattern;
	unsigned int *w_ptr, read_data;

	set_segv_handler();

	/*
	 * Let us initialize the chunk:
	 *
	 * Each word-aligned address addr in the chunk,
	 * is initialized to :
	 *    |-------------------------------------------------|
	 *    | tid   | word_offset(addr) |         0           |
	 *    |-------------------------------------------------|
	 */
	for (w_ptr = (unsigned int *)chunk_start;
	     (unsigned long)w_ptr < (unsigned long)(chunk_start) + size;
	     w_ptr++) {

		*pattern_ptr = compute_store_pattern(tid, w_ptr, cur_sweep_id);
		*w_ptr = *pattern_ptr;
	}

	while (!corruption_found && !timeout) {
		prev_sweep_id = cur_sweep_id;
		cur_sweep_id = cur_sweep_id + 1;

		for (w_ptr = (unsigned int *)chunk_start;
		     (unsigned long)w_ptr < (unsigned long)(chunk_start) + size;
		     w_ptr++)  {
			unsigned int old_pattern;

			/*
			 * Compute the pattern that we would have
			 * stored at this location in the previous
			 * sweep.
			 */
			old_pattern = compute_store_pattern(tid, w_ptr, prev_sweep_id);

			/*
			 * FLUSH:Ensure that we flush the contents of
			 *       the cache before loading
			 */
			dcbf((volatile unsigned int*)w_ptr); //Flush

			/* LOAD: Read the value */
			read_data = *w_ptr; //Load

			/*
			 * COMPARE: Is it the same as what we had stored
			 *          in the previous sweep ? It better be!
			 */
			if (read_data != old_pattern) {
				/* No it isn't! Tell everyone */
				corruption_found = 1;
			}

			/*
			 * Before performing a store, let us check if
			 * any rim_thread has found a corruption.
			 */
			if (corruption_found || timeout) {
				/*
				 * Yes. Someone (including us!) has found
				 * a corruption :(
				 *
				 * Let us verify that our chunk is
				 * correct.
				 */
				/* But first, let us allow the dust to settle down! */
				verify_chunk(tid, w_ptr, cur_sweep_id, prev_sweep_id);

				return 0;
			}

			/*
			 * Compute the new pattern that we are going
			 * to write to this location
			 */
			*pattern_ptr = compute_store_pattern(tid, w_ptr, cur_sweep_id);

			/*
			 * STORE: Now let us write this pattern into
			 *        the location
			 */
			*w_ptr = *pattern_ptr;
		}
	}

	return NULL;
}


static unsigned long start_cpu = 0;
static unsigned long nrthreads = 4;

static pthread_t mem_snapshot_thread;

static void *mem_snapshot_fn(void *arg)
{
	int page_size = getpagesize();
	size_t size = page_size;
	void *tmp = malloc(size);

	while (!corruption_found && !timeout) {
		/* Stop memory migration once corruption is found */
		segv_wait = 1;

		mprotect(map1, size, PROT_READ);

		/*
		 * Load from the working alias (map1). Loading from map2
		 * also fails.
		 */
		memcpy(tmp, map1, size);

		/*
		 * Stores must go via map2 which has write permissions, but
		 * the corrupted data tends to be seen in the snapshot buffer,
		 * so corruption does not appear to be introduced at the
		 * copy-back via map2 alias here.
		 */
		memcpy(map2, tmp, size);
		/*
		 * Before releasing other threads, must ensure the copy
		 * back to
		 */
		asm volatile("sync" ::: "memory");
		mprotect(map1, size, PROT_READ|PROT_WRITE);
		asm volatile("sync" ::: "memory");
		segv_wait = 0;

		usleep(1); /* This value makes a big difference */
	}

	return 0;
}

void alrm_sighandler(int sig)
{
	timeout = 1;
}

int main(int argc, char *argv[])
{
	int c;
	int page_size = getpagesize();
	time_t now;
	int i, dir_error;
	pthread_attr_t attr;
	key_t shm_key = (key_t) getpid();
	int shmid, run_time = 20 * 60;
	struct sigaction sa_alrm;

	snprintf(logdir, LOGDIR_NAME_SIZE,
		 "/tmp/logdir-%u", (unsigned int)getpid());
	while ((c = getopt(argc, argv, "r:hn:l:t:")) != -1) {
		switch(c) {
		case 'r':
			start_cpu = strtoul(optarg, NULL, 10);
			break;
		case 'h':
			printf("%s [-r <start_cpu>] [-n <nrthreads>] [-l <logdir>] [-t <timeout>]\n", argv[0]);
			exit(0);
			break;
		case 'n':
			nrthreads = strtoul(optarg, NULL, 10);
			break;
		case 'l':
639
			strncpy(logdir, optarg, LOGDIR_NAME_SIZE - 1);
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
			break;
		case 't':
			run_time = strtoul(optarg, NULL, 10);
			break;
		default:
			printf("invalid option\n");
			exit(0);
			break;
		}
	}

	if (nrthreads > MAX_THREADS)
		nrthreads = MAX_THREADS;

	shmid = shmget(shm_key, page_size, IPC_CREAT|0666);
	if (shmid < 0) {
		err_msg("Failed shmget\n");
	}

	map1 = shmat(shmid, NULL, 0);
	if (map1 == (void *) -1) {
		err_msg("Failed shmat");
	}

	map2 = shmat(shmid, NULL, 0);
	if (map2 == (void *) -1) {
		err_msg("Failed shmat");
	}

	dir_error = mkdir(logdir, 0755);

	if (dir_error) {
		err_msg("Failed mkdir");
	}

	printf("start_cpu list:%lu\n", start_cpu);
	printf("number of worker threads:%lu + 1 snapshot thread\n", nrthreads);
	printf("Allocated address:0x%016lx + secondary map:0x%016lx\n", (unsigned long)map1, (unsigned long)map2);
	printf("logdir at : %s\n", logdir);
	printf("Timeout: %d seconds\n", run_time);

	time(&now);
	printf("=================================\n");
	printf("     Starting Test\n");
	printf("     %s", ctime(&now));
	printf("=================================\n");

	for (i = 0; i < nrthreads; i++) {
		if (1 && !fork()) {
			prctl(PR_SET_PDEATHSIG, SIGKILL);
			set_mycpu(start_cpu + i);
			for (;;)
				sched_yield();
			exit(0);
		}
	}


	sa_alrm.sa_handler = &alrm_sighandler;
	sigemptyset(&sa_alrm.sa_mask);
	sa_alrm.sa_flags = 0;

	if (sigaction(SIGALRM, &sa_alrm, 0) == -1) {
		err_msg("Failed signal handler registration\n");
	}

	alarm(run_time);

	pthread_attr_init(&attr);
	for (i = 0; i < nrthreads; i++) {
		rim_thread_ids[i] = i;
		pthread_create(&rim_threads[i], &attr, rim_fn, &rim_thread_ids[i]);
		set_pthread_cpu(rim_threads[i], start_cpu + i);
	}

	pthread_create(&mem_snapshot_thread, &attr, mem_snapshot_fn, map1);
	set_pthread_cpu(mem_snapshot_thread, start_cpu + i);


	pthread_join(mem_snapshot_thread, NULL);
	for (i = 0; i < nrthreads; i++) {
		pthread_join(rim_threads[i], NULL);
	}

	if (!timeout) {
		time(&now);
		printf("=================================\n");
		printf("      Data Corruption Detected\n");
		printf("      %s", ctime(&now));
		printf("      See logfiles in %s\n", logdir);
		printf("=================================\n");
		return 1;
	}
	return 0;
}