vc4_plane.c 28.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Copyright (C) 2015 Broadcom
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

/**
 * DOC: VC4 plane module
 *
 * Each DRM plane is a layer of pixels being scanned out by the HVS.
 *
 * At atomic modeset check time, we compute the HVS display element
 * state that would be necessary for displaying the plane (giving us a
 * chance to figure out if a plane configuration is invalid), then at
 * atomic flush time the CRTC will ask us to write our element state
 * into the region of the HVS that it has allocated for us.
 */

21 22 23 24 25
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_plane_helper.h>

26
#include "uapi/drm/vc4_drm.h"
27 28 29
#include "vc4_drv.h"
#include "vc4_regs.h"

30 31 32 33 34 35
enum vc4_scaling_mode {
	VC4_SCALING_NONE,
	VC4_SCALING_TPZ,
	VC4_SCALING_PPF,
};

36 37
struct vc4_plane_state {
	struct drm_plane_state base;
38 39 40
	/* System memory copy of the display list for this element, computed
	 * at atomic_check time.
	 */
41
	u32 *dlist;
42
	u32 dlist_size; /* Number of dwords allocated for the display list */
43
	u32 dlist_count; /* Number of used dwords in the display list. */
44

45 46 47 48 49 50
	/* Offset in the dlist to various words, for pageflip or
	 * cursor updates.
	 */
	u32 pos0_offset;
	u32 pos2_offset;
	u32 ptr0_offset;
51 52

	/* Offset where the plane's dlist was last stored in the
53 54
	 * hardware at vc4_crtc_atomic_flush() time.
	 */
55
	u32 __iomem *hw_dlist;
56 57 58

	/* Clipped coordinates of the plane on the display. */
	int crtc_x, crtc_y, crtc_w, crtc_h;
59
	/* Clipped area being scanned from in the FB. */
60
	u32 src_x, src_y;
61

62 63 64 65
	u32 src_w[2], src_h[2];

	/* Scaling selection for the RGB/Y plane and the Cb/Cr planes. */
	enum vc4_scaling_mode x_scaling[2], y_scaling[2];
66
	bool is_unity;
67
	bool is_yuv;
68 69 70 71

	/* Offset to start scanning out from the start of the plane's
	 * BO.
	 */
72
	u32 offsets[3];
73 74 75

	/* Our allocation in LBM for temporary storage during scaling. */
	struct drm_mm_node lbm;
76 77 78 79 80 81

	/* Set when the plane has per-pixel alpha content or does not cover
	 * the entire screen. This is a hint to the CRTC that it might need
	 * to enable background color fill.
	 */
	bool needs_bg_fill;
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
};

static inline struct vc4_plane_state *
to_vc4_plane_state(struct drm_plane_state *state)
{
	return (struct vc4_plane_state *)state;
}

static const struct hvs_format {
	u32 drm; /* DRM_FORMAT_* */
	u32 hvs; /* HVS_FORMAT_* */
	u32 pixel_order;
} hvs_formats[] = {
	{
		.drm = DRM_FORMAT_XRGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
97
		.pixel_order = HVS_PIXEL_ORDER_ABGR,
98 99 100
	},
	{
		.drm = DRM_FORMAT_ARGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
101
		.pixel_order = HVS_PIXEL_ORDER_ABGR,
102
	},
103 104
	{
		.drm = DRM_FORMAT_ABGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
105
		.pixel_order = HVS_PIXEL_ORDER_ARGB,
106 107 108
	},
	{
		.drm = DRM_FORMAT_XBGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
109
		.pixel_order = HVS_PIXEL_ORDER_ARGB,
110
	},
111 112
	{
		.drm = DRM_FORMAT_RGB565, .hvs = HVS_PIXEL_FORMAT_RGB565,
113
		.pixel_order = HVS_PIXEL_ORDER_XRGB,
114 115 116
	},
	{
		.drm = DRM_FORMAT_BGR565, .hvs = HVS_PIXEL_FORMAT_RGB565,
117
		.pixel_order = HVS_PIXEL_ORDER_XBGR,
118 119 120
	},
	{
		.drm = DRM_FORMAT_ARGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
121
		.pixel_order = HVS_PIXEL_ORDER_ABGR,
122 123 124
	},
	{
		.drm = DRM_FORMAT_XRGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
125
		.pixel_order = HVS_PIXEL_ORDER_ABGR,
126
	},
127 128
	{
		.drm = DRM_FORMAT_RGB888, .hvs = HVS_PIXEL_FORMAT_RGB888,
129
		.pixel_order = HVS_PIXEL_ORDER_XRGB,
130 131 132
	},
	{
		.drm = DRM_FORMAT_BGR888, .hvs = HVS_PIXEL_FORMAT_RGB888,
133
		.pixel_order = HVS_PIXEL_ORDER_XBGR,
134
	},
135 136 137
	{
		.drm = DRM_FORMAT_YUV422,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
138
		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
139 140 141 142
	},
	{
		.drm = DRM_FORMAT_YVU422,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
143
		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
144 145 146 147
	},
	{
		.drm = DRM_FORMAT_YUV420,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
148
		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
149 150 151 152
	},
	{
		.drm = DRM_FORMAT_YVU420,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
153
		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
154 155 156 157
	},
	{
		.drm = DRM_FORMAT_NV12,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
158
		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
159
	},
160 161 162 163 164
	{
		.drm = DRM_FORMAT_NV21,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
	},
165 166 167
	{
		.drm = DRM_FORMAT_NV16,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
168
		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
169
	},
170 171 172 173 174
	{
		.drm = DRM_FORMAT_NV61,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
	},
175 176 177 178 179 180 181 182 183 184 185 186 187 188
};

static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
{
	unsigned i;

	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
		if (hvs_formats[i].drm == drm_format)
			return &hvs_formats[i];
	}

	return NULL;
}

189 190 191 192 193 194 195 196 197 198
static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
{
	if (dst > src)
		return VC4_SCALING_PPF;
	else if (dst < src)
		return VC4_SCALING_TPZ;
	else
		return VC4_SCALING_NONE;
}

199 200 201 202 203
static bool plane_enabled(struct drm_plane_state *state)
{
	return state->fb && state->crtc;
}

204
static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
205 206 207 208 209 210 211 212 213 214
{
	struct vc4_plane_state *vc4_state;

	if (WARN_ON(!plane->state))
		return NULL;

	vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
	if (!vc4_state)
		return NULL;

215 216
	memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	__drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);

	if (vc4_state->dlist) {
		vc4_state->dlist = kmemdup(vc4_state->dlist,
					   vc4_state->dlist_count * 4,
					   GFP_KERNEL);
		if (!vc4_state->dlist) {
			kfree(vc4_state);
			return NULL;
		}
		vc4_state->dlist_size = vc4_state->dlist_count;
	}

	return &vc4_state->base;
}

233 234
static void vc4_plane_destroy_state(struct drm_plane *plane,
				    struct drm_plane_state *state)
235
{
236
	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
237 238
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);

239 240 241 242 243 244 245 246
	if (vc4_state->lbm.allocated) {
		unsigned long irqflags;

		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
		drm_mm_remove_node(&vc4_state->lbm);
		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
	}

247
	kfree(vc4_state->dlist);
248
	__drm_atomic_helper_plane_destroy_state(&vc4_state->base);
249 250 251 252
	kfree(state);
}

/* Called during init to allocate the plane's atomic state. */
253
static void vc4_plane_reset(struct drm_plane *plane)
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
{
	struct vc4_plane_state *vc4_state;

	WARN_ON(plane->state);

	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
	if (!vc4_state)
		return;

	plane->state = &vc4_state->base;
	vc4_state->base.plane = plane;
}

static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
{
	if (vc4_state->dlist_count == vc4_state->dlist_size) {
		u32 new_size = max(4u, vc4_state->dlist_count * 2);
		u32 *new_dlist = kmalloc(new_size * 4, GFP_KERNEL);

		if (!new_dlist)
			return;
		memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);

		kfree(vc4_state->dlist);
		vc4_state->dlist = new_dlist;
		vc4_state->dlist_size = new_size;
	}

	vc4_state->dlist[vc4_state->dlist_count++] = val;
}

285 286 287 288 289
/* Returns the scl0/scl1 field based on whether the dimensions need to
 * be up/down/non-scaled.
 *
 * This is a replication of a table from the spec.
 */
290
static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
291 292 293
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);

294
	switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
	case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
		return SCALER_CTL0_SCL_H_PPF_V_PPF;
	case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
		return SCALER_CTL0_SCL_H_TPZ_V_PPF;
	case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
		return SCALER_CTL0_SCL_H_PPF_V_TPZ;
	case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
		return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
	case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
		return SCALER_CTL0_SCL_H_PPF_V_NONE;
	case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
		return SCALER_CTL0_SCL_H_NONE_V_PPF;
	case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
		return SCALER_CTL0_SCL_H_NONE_V_TPZ;
	case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
		return SCALER_CTL0_SCL_H_TPZ_V_NONE;
	default:
	case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
		/* The unity case is independently handled by
		 * SCALER_CTL0_UNITY.
		 */
		return 0;
	}
}

320
static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
321
{
322
	struct drm_plane *plane = state->plane;
323 324
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
	struct drm_framebuffer *fb = state->fb;
325
	struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
326
	u32 subpixel_src_mask = (1 << 16) - 1;
V
Ville Syrjälä 已提交
327
	u32 format = fb->format->format;
328
	int num_planes = fb->format->num_planes;
329 330 331
	u32 h_subsample = 1;
	u32 v_subsample = 1;
	int i;
332

333 334
	for (i = 0; i < num_planes; i++)
		vc4_state->offsets[i] = bo->paddr + fb->offsets[i];
335

336 337 338 339 340
	/* We don't support subpixel source positioning for scaling. */
	if ((state->src_x & subpixel_src_mask) ||
	    (state->src_y & subpixel_src_mask) ||
	    (state->src_w & subpixel_src_mask) ||
	    (state->src_h & subpixel_src_mask)) {
341 342 343
		return -EINVAL;
	}

344 345
	vc4_state->src_x = state->src_x >> 16;
	vc4_state->src_y = state->src_y >> 16;
346 347
	vc4_state->src_w[0] = state->src_w >> 16;
	vc4_state->src_h[0] = state->src_h >> 16;
348 349 350 351 352 353

	vc4_state->crtc_x = state->crtc_x;
	vc4_state->crtc_y = state->crtc_y;
	vc4_state->crtc_w = state->crtc_w;
	vc4_state->crtc_h = state->crtc_h;

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
	vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
						       vc4_state->crtc_w);
	vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
						       vc4_state->crtc_h);

	if (num_planes > 1) {
		vc4_state->is_yuv = true;

		h_subsample = drm_format_horz_chroma_subsampling(format);
		v_subsample = drm_format_vert_chroma_subsampling(format);
		vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
		vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;

		vc4_state->x_scaling[1] =
			vc4_get_scaling_mode(vc4_state->src_w[1],
					     vc4_state->crtc_w);
		vc4_state->y_scaling[1] =
			vc4_get_scaling_mode(vc4_state->src_h[1],
					     vc4_state->crtc_h);

		/* YUV conversion requires that scaling be enabled,
		 * even on a plane that's otherwise 1:1.  Choose TPZ
		 * for simplicity.
		 */
		if (vc4_state->x_scaling[0] == VC4_SCALING_NONE)
			vc4_state->x_scaling[0] = VC4_SCALING_TPZ;
		if (vc4_state->y_scaling[0] == VC4_SCALING_NONE)
			vc4_state->y_scaling[0] = VC4_SCALING_TPZ;
	}

	vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
			       vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
			       vc4_state->x_scaling[1] == VC4_SCALING_NONE &&
			       vc4_state->y_scaling[1] == VC4_SCALING_NONE);
388 389 390 391 392 393 394 395 396 397 398

	/* No configuring scaling on the cursor plane, since it gets
	   non-vblank-synced updates, and scaling requires requires
	   LBM changes which have to be vblank-synced.
	 */
	if (plane->type == DRM_PLANE_TYPE_CURSOR && !vc4_state->is_unity)
		return -EINVAL;

	/* Clamp the on-screen start x/y to 0.  The hardware doesn't
	 * support negative y, and negative x wastes bandwidth.
	 */
399
	if (vc4_state->crtc_x < 0) {
400
		for (i = 0; i < num_planes; i++) {
401
			u32 cpp = fb->format->cpp[i];
402 403 404 405 406 407 408
			u32 subs = ((i == 0) ? 1 : h_subsample);

			vc4_state->offsets[i] += (cpp *
						  (-vc4_state->crtc_x) / subs);
		}
		vc4_state->src_w[0] += vc4_state->crtc_x;
		vc4_state->src_w[1] += vc4_state->crtc_x / h_subsample;
409
		vc4_state->crtc_x = 0;
410 411
	}

412
	if (vc4_state->crtc_y < 0) {
413 414 415 416 417 418 419 420
		for (i = 0; i < num_planes; i++) {
			u32 subs = ((i == 0) ? 1 : v_subsample);

			vc4_state->offsets[i] += (fb->pitches[i] *
						  (-vc4_state->crtc_y) / subs);
		}
		vc4_state->src_h[0] += vc4_state->crtc_y;
		vc4_state->src_h[1] += vc4_state->crtc_y / v_subsample;
421
		vc4_state->crtc_y = 0;
422 423
	}

424 425 426
	return 0;
}

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
{
	u32 scale, recip;

	scale = (1 << 16) * src / dst;

	/* The specs note that while the reciprocal would be defined
	 * as (1<<32)/scale, ~0 is close enough.
	 */
	recip = ~0 / scale;

	vc4_dlist_write(vc4_state,
			VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
			VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
	vc4_dlist_write(vc4_state,
			VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
}

static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
{
	u32 scale = (1 << 16) * src / dst;

	vc4_dlist_write(vc4_state,
			SCALER_PPF_AGC |
			VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
			VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
}

static u32 vc4_lbm_size(struct drm_plane_state *state)
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
	/* This is the worst case number.  One of the two sizes will
	 * be used depending on the scaling configuration.
	 */
461
	u32 pix_per_line = max(vc4_state->src_w[0], (u32)vc4_state->crtc_w);
462 463
	u32 lbm;

464 465 466 467 468 469 470 471 472 473 474 475 476 477
	if (!vc4_state->is_yuv) {
		if (vc4_state->is_unity)
			return 0;
		else if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
			lbm = pix_per_line * 8;
		else {
			/* In special cases, this multiplier might be 12. */
			lbm = pix_per_line * 16;
		}
	} else {
		/* There are cases for this going down to a multiplier
		 * of 2, but according to the firmware source, the
		 * table in the docs is somewhat wrong.
		 */
478 479 480 481 482 483 484 485
		lbm = pix_per_line * 16;
	}

	lbm = roundup(lbm, 32);

	return lbm;
}

486 487
static void vc4_write_scaling_parameters(struct drm_plane_state *state,
					 int channel)
488 489 490 491
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);

	/* Ch0 H-PPF Word 0: Scaling Parameters */
492
	if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
493
		vc4_write_ppf(vc4_state,
494
			      vc4_state->src_w[channel], vc4_state->crtc_w);
495 496 497
	}

	/* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
498
	if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
499
		vc4_write_ppf(vc4_state,
500
			      vc4_state->src_h[channel], vc4_state->crtc_h);
501 502 503 504
		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
	}

	/* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
505
	if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
506
		vc4_write_tpz(vc4_state,
507
			      vc4_state->src_w[channel], vc4_state->crtc_w);
508 509 510
	}

	/* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
511
	if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
512
		vc4_write_tpz(vc4_state,
513
			      vc4_state->src_h[channel], vc4_state->crtc_h);
514 515 516
		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
	}
}
517 518 519 520 521 522 523

/* Writes out a full display list for an active plane to the plane's
 * private dlist state.
 */
static int vc4_plane_mode_set(struct drm_plane *plane,
			      struct drm_plane_state *state)
{
524
	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
525 526 527
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
	struct drm_framebuffer *fb = state->fb;
	u32 ctl0_offset = vc4_state->dlist_count;
V
Ville Syrjälä 已提交
528
	const struct hvs_format *format = vc4_get_hvs_format(fb->format->format);
529
	int num_planes = drm_format_num_planes(format->drm);
530
	bool covers_screen;
531 532
	u32 scl0, scl1, pitch0;
	u32 lbm_size, tiling;
533
	unsigned long irqflags;
534
	int ret, i;
535 536 537 538 539

	ret = vc4_plane_setup_clipping_and_scaling(state);
	if (ret)
		return ret;

540 541 542 543 544 545 546
	/* Allocate the LBM memory that the HVS will use for temporary
	 * storage due to our scaling/format conversion.
	 */
	lbm_size = vc4_lbm_size(state);
	if (lbm_size) {
		if (!vc4_state->lbm.allocated) {
			spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
547 548 549
			ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm,
							 &vc4_state->lbm,
							 lbm_size, 32, 0, 0);
550 551 552 553 554 555 556 557 558
			spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
		} else {
			WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
		}
	}

	if (ret)
		return ret;

559 560 561 562 563 564 565 566 567 568 569 570 571
	/* SCL1 is used for Cb/Cr scaling of planar formats.  For RGB
	 * and 4:4:4, scl1 should be set to scl0 so both channels of
	 * the scaler do the same thing.  For YUV, the Y plane needs
	 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
	 * the scl fields here.
	 */
	if (num_planes == 1) {
		scl0 = vc4_get_scl_field(state, 1);
		scl1 = scl0;
	} else {
		scl0 = vc4_get_scl_field(state, 1);
		scl1 = vc4_get_scl_field(state, 0);
	}
572

573 574 575 576 577
	switch (fb->modifier) {
	case DRM_FORMAT_MOD_LINEAR:
		tiling = SCALER_CTL0_TILING_LINEAR;
		pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH);
		break;
578 579 580 581 582 583 584 585 586 587

	case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: {
		/* For T-tiled, the FB pitch is "how many bytes from
		 * one row to the next, such that pitch * tile_h ==
		 * tile_size * tiles_per_row."
		 */
		u32 tile_size_shift = 12; /* T tiles are 4kb */
		u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */
		u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift);

588 589
		tiling = SCALER_CTL0_TILING_256B_OR_T;

590 591 592
		pitch0 = (VC4_SET_FIELD(0, SCALER_PITCH0_TILE_Y_OFFSET) |
			  VC4_SET_FIELD(0, SCALER_PITCH0_TILE_WIDTH_L) |
			  VC4_SET_FIELD(tiles_w, SCALER_PITCH0_TILE_WIDTH_R));
593
		break;
594 595
	}

596 597 598 599 600 601
	default:
		DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx",
			      (long long)fb->modifier);
		return -EINVAL;
	}

602
	/* Control word */
603 604 605 606
	vc4_dlist_write(vc4_state,
			SCALER_CTL0_VALID |
			(format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
			(format->hvs << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
607
			VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
608
			(vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
609 610
			VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
			VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
611 612

	/* Position Word 0: Image Positions and Alpha Value */
613
	vc4_state->pos0_offset = vc4_state->dlist_count;
614 615
	vc4_dlist_write(vc4_state,
			VC4_SET_FIELD(0xff, SCALER_POS0_FIXED_ALPHA) |
616 617
			VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
			VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
618

619 620 621 622 623 624 625 626
	/* Position Word 1: Scaled Image Dimensions. */
	if (!vc4_state->is_unity) {
		vc4_dlist_write(vc4_state,
				VC4_SET_FIELD(vc4_state->crtc_w,
					      SCALER_POS1_SCL_WIDTH) |
				VC4_SET_FIELD(vc4_state->crtc_h,
					      SCALER_POS1_SCL_HEIGHT));
	}
627

628
	/* Position Word 2: Source Image Size, Alpha */
629
	vc4_state->pos2_offset = vc4_state->dlist_count;
630
	vc4_dlist_write(vc4_state,
631
			VC4_SET_FIELD(fb->format->has_alpha ?
632 633 634
				      SCALER_POS2_ALPHA_MODE_PIPELINE :
				      SCALER_POS2_ALPHA_MODE_FIXED,
				      SCALER_POS2_ALPHA_MODE) |
635
			(fb->format->has_alpha ? SCALER_POS2_ALPHA_PREMULT : 0) |
636 637
			VC4_SET_FIELD(vc4_state->src_w[0], SCALER_POS2_WIDTH) |
			VC4_SET_FIELD(vc4_state->src_h[0], SCALER_POS2_HEIGHT));
638 639 640 641

	/* Position Word 3: Context.  Written by the HVS. */
	vc4_dlist_write(vc4_state, 0xc0c0c0c0);

642 643 644 645 646

	/* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
	 *
	 * The pointers may be any byte address.
	 */
647
	vc4_state->ptr0_offset = vc4_state->dlist_count;
648 649
	for (i = 0; i < num_planes; i++)
		vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
650

651 652 653
	/* Pointer Context Word 0/1/2: Written by the HVS */
	for (i = 0; i < num_planes; i++)
		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
654

655 656 657 658 659
	/* Pitch word 0 */
	vc4_dlist_write(vc4_state, pitch0);

	/* Pitch word 1/2 */
	for (i = 1; i < num_planes; i++) {
660 661 662 663 664 665 666 667 668 669
		vc4_dlist_write(vc4_state,
				VC4_SET_FIELD(fb->pitches[i], SCALER_SRC_PITCH));
	}

	/* Colorspace conversion words */
	if (vc4_state->is_yuv) {
		vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5);
		vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5);
		vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5);
	}
670

671 672
	if (!vc4_state->is_unity) {
		/* LBM Base Address. */
673 674
		if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
		    vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
675
			vc4_dlist_write(vc4_state, vc4_state->lbm.start);
676
		}
677

678 679 680 681 682 683 684 685
		if (num_planes > 1) {
			/* Emit Cb/Cr as channel 0 and Y as channel
			 * 1. This matches how we set up scl0/scl1
			 * above.
			 */
			vc4_write_scaling_parameters(state, 1);
		}
		vc4_write_scaling_parameters(state, 0);
686 687 688 689

		/* If any PPF setup was done, then all the kernel
		 * pointers get uploaded.
		 */
690 691 692 693
		if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
		    vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
		    vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
		    vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
694 695 696 697 698 699 700 701 702 703 704 705 706 707
			u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
						   SCALER_PPF_KERNEL_OFFSET);

			/* HPPF plane 0 */
			vc4_dlist_write(vc4_state, kernel);
			/* VPPF plane 0 */
			vc4_dlist_write(vc4_state, kernel);
			/* HPPF plane 1 */
			vc4_dlist_write(vc4_state, kernel);
			/* VPPF plane 1 */
			vc4_dlist_write(vc4_state, kernel);
		}
	}

708 709 710
	vc4_state->dlist[ctl0_offset] |=
		VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);

711 712 713 714 715 716 717 718 719 720
	/* crtc_* are already clipped coordinates. */
	covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 &&
			vc4_state->crtc_w == state->crtc->mode.hdisplay &&
			vc4_state->crtc_h == state->crtc->mode.vdisplay;
	/* Background fill might be necessary when the plane has per-pixel
	 * alpha content and blends from the background or does not cover
	 * the entire screen.
	 */
	vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen;

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
	return 0;
}

/* If a modeset involves changing the setup of a plane, the atomic
 * infrastructure will call this to validate a proposed plane setup.
 * However, if a plane isn't getting updated, this (and the
 * corresponding vc4_plane_atomic_update) won't get called.  Thus, we
 * compute the dlist here and have all active plane dlists get updated
 * in the CRTC's flush.
 */
static int vc4_plane_atomic_check(struct drm_plane *plane,
				  struct drm_plane_state *state)
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);

	vc4_state->dlist_count = 0;

	if (plane_enabled(state))
		return vc4_plane_mode_set(plane, state);
	else
		return 0;
}

static void vc4_plane_atomic_update(struct drm_plane *plane,
				    struct drm_plane_state *old_state)
{
	/* No contents here.  Since we don't know where in the CRTC's
	 * dlist we should be stored, our dlist is uploaded to the
	 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
	 * time.
	 */
}

u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
	int i;

759 760
	vc4_state->hw_dlist = dlist;

761 762 763 764 765 766 767
	/* Can't memcpy_toio() because it needs to be 32-bit writes. */
	for (i = 0; i < vc4_state->dlist_count; i++)
		writel(vc4_state->dlist[i], &dlist[i]);

	return vc4_state->dlist_count;
}

768
u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
769
{
770 771
	const struct vc4_plane_state *vc4_state =
		container_of(state, typeof(*vc4_state), base);
772 773 774 775

	return vc4_state->dlist_count;
}

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
/* Updates the plane to immediately (well, once the FIFO needs
 * refilling) scan out from at a new framebuffer.
 */
void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
	struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
	uint32_t addr;

	/* We're skipping the address adjustment for negative origin,
	 * because this is only called on the primary plane.
	 */
	WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
	addr = bo->paddr + fb->offsets[0];

	/* Write the new address into the hardware immediately.  The
	 * scanout will start from this address as soon as the FIFO
	 * needs to refill with pixels.
	 */
795
	writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
796 797 798 799 800

	/* Also update the CPU-side dlist copy, so that any later
	 * atomic updates that don't do a new modeset on our plane
	 * also use our updated address.
	 */
801
	vc4_state->dlist[vc4_state->ptr0_offset] = addr;
802 803
}

804 805 806 807 808
static int vc4_prepare_fb(struct drm_plane *plane,
			  struct drm_plane_state *state)
{
	struct vc4_bo *bo;
	struct dma_fence *fence;
809
	int ret;
810 811 812 813 814

	if ((plane->state->fb == state->fb) || !state->fb)
		return 0;

	bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
815 816 817 818 819

	ret = vc4_bo_inc_usecnt(bo);
	if (ret)
		return ret;

820 821 822 823 824 825
	fence = reservation_object_get_excl_rcu(bo->resv);
	drm_atomic_set_fence_for_plane(state, fence);

	return 0;
}

826 827 828 829 830 831 832 833 834 835 836 837
static void vc4_cleanup_fb(struct drm_plane *plane,
			   struct drm_plane_state *state)
{
	struct vc4_bo *bo;

	if (plane->state->fb == state->fb || !state->fb)
		return;

	bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
	vc4_bo_dec_usecnt(bo);
}

838 839 840
static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
	.atomic_check = vc4_plane_atomic_check,
	.atomic_update = vc4_plane_atomic_update,
841
	.prepare_fb = vc4_prepare_fb,
842
	.cleanup_fb = vc4_cleanup_fb,
843 844 845 846 847 848 849 850
};

static void vc4_plane_destroy(struct drm_plane *plane)
{
	drm_plane_helper_disable(plane);
	drm_plane_cleanup(plane);
}

851 852 853 854 855 856 857 858 859 860
/* Implements immediate (non-vblank-synced) updates of the cursor
 * position, or falls back to the atomic helper otherwise.
 */
static int
vc4_update_plane(struct drm_plane *plane,
		 struct drm_crtc *crtc,
		 struct drm_framebuffer *fb,
		 int crtc_x, int crtc_y,
		 unsigned int crtc_w, unsigned int crtc_h,
		 uint32_t src_x, uint32_t src_y,
861 862
		 uint32_t src_w, uint32_t src_h,
		 struct drm_modeset_acquire_ctx *ctx)
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
{
	struct drm_plane_state *plane_state;
	struct vc4_plane_state *vc4_state;

	if (plane != crtc->cursor)
		goto out;

	plane_state = plane->state;
	vc4_state = to_vc4_plane_state(plane_state);

	if (!plane_state)
		goto out;

	/* No configuring new scaling in the fast path. */
	if (crtc_w != plane_state->crtc_w ||
	    crtc_h != plane_state->crtc_h ||
	    src_w != plane_state->src_w ||
	    src_h != plane_state->src_h) {
		goto out;
	}

884 885 886 887 888
	if (fb != plane_state->fb) {
		drm_atomic_set_fb_for_plane(plane->state, fb);
		vc4_plane_async_set_fb(plane, fb);
	}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
	/* Set the cursor's position on the screen.  This is the
	 * expected change from the drm_mode_cursor_universal()
	 * helper.
	 */
	plane_state->crtc_x = crtc_x;
	plane_state->crtc_y = crtc_y;

	/* Allow changing the start position within the cursor BO, if
	 * that matters.
	 */
	plane_state->src_x = src_x;
	plane_state->src_y = src_y;

	/* Update the display list based on the new crtc_x/y. */
	vc4_plane_atomic_check(plane, plane_state);

	/* Note that we can't just call vc4_plane_write_dlist()
	 * because that would smash the context data that the HVS is
	 * currently using.
	 */
	writel(vc4_state->dlist[vc4_state->pos0_offset],
	       &vc4_state->hw_dlist[vc4_state->pos0_offset]);
	writel(vc4_state->dlist[vc4_state->pos2_offset],
	       &vc4_state->hw_dlist[vc4_state->pos2_offset]);
	writel(vc4_state->dlist[vc4_state->ptr0_offset],
	       &vc4_state->hw_dlist[vc4_state->ptr0_offset]);

	return 0;

out:
	return drm_atomic_helper_update_plane(plane, crtc, fb,
					      crtc_x, crtc_y,
					      crtc_w, crtc_h,
					      src_x, src_y,
923 924
					      src_w, src_h,
					      ctx);
925 926
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
static bool vc4_format_mod_supported(struct drm_plane *plane,
				     uint32_t format,
				     uint64_t modifier)
{
	/* Support T_TILING for RGB formats only. */
	switch (format) {
	case DRM_FORMAT_XRGB8888:
	case DRM_FORMAT_ARGB8888:
	case DRM_FORMAT_ABGR8888:
	case DRM_FORMAT_XBGR8888:
	case DRM_FORMAT_RGB565:
	case DRM_FORMAT_BGR565:
	case DRM_FORMAT_ARGB1555:
	case DRM_FORMAT_XRGB1555:
		return true;
	case DRM_FORMAT_YUV422:
	case DRM_FORMAT_YVU422:
	case DRM_FORMAT_YUV420:
	case DRM_FORMAT_YVU420:
	case DRM_FORMAT_NV12:
	case DRM_FORMAT_NV16:
	default:
		return (modifier == DRM_FORMAT_MOD_LINEAR);
	}
}

953
static const struct drm_plane_funcs vc4_plane_funcs = {
954
	.update_plane = vc4_update_plane,
955 956 957 958 959 960
	.disable_plane = drm_atomic_helper_disable_plane,
	.destroy = vc4_plane_destroy,
	.set_property = NULL,
	.reset = vc4_plane_reset,
	.atomic_duplicate_state = vc4_plane_duplicate_state,
	.atomic_destroy_state = vc4_plane_destroy_state,
961
	.format_mod_supported = vc4_format_mod_supported,
962 963 964 965 966 967 968 969
};

struct drm_plane *vc4_plane_init(struct drm_device *dev,
				 enum drm_plane_type type)
{
	struct drm_plane *plane = NULL;
	struct vc4_plane *vc4_plane;
	u32 formats[ARRAY_SIZE(hvs_formats)];
970
	u32 num_formats = 0;
971 972
	int ret = 0;
	unsigned i;
973 974 975 976 977
	static const uint64_t modifiers[] = {
		DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED,
		DRM_FORMAT_MOD_LINEAR,
		DRM_FORMAT_MOD_INVALID
	};
978 979 980

	vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane),
				 GFP_KERNEL);
981 982
	if (!vc4_plane)
		return ERR_PTR(-ENOMEM);
983

984 985 986 987 988 989 990 991 992 993
	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
		/* Don't allow YUV in cursor planes, since that means
		 * tuning on the scaler, which we don't allow for the
		 * cursor.
		 */
		if (type != DRM_PLANE_TYPE_CURSOR ||
		    hvs_formats[i].hvs < HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE) {
			formats[num_formats++] = hvs_formats[i].drm;
		}
	}
994
	plane = &vc4_plane->base;
995
	ret = drm_universal_plane_init(dev, plane, 0,
996
				       &vc4_plane_funcs,
997
				       formats, num_formats,
998
				       modifiers, type, NULL);
999 1000 1001 1002 1003

	drm_plane_helper_add(plane, &vc4_plane_helper_funcs);

	return plane;
}